536 research outputs found

    Can the unresolved X-ray background be explained by emission from the optically-detected faint galaxies of the GOODS project?

    Full text link
    The emission from individual X-ray sources in the Chandra Deep Fields and XMM-Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5-8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesised missing AGN. In the 0.5-6 keV energy range the stacked-source emission corresponds to the remaining 10-20 per cent of the total background -- the fraction that has not been resolved by Chandra. The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6-8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ~40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution.Comment: 7 pages, 1 figure, accepted for publication in MNRA

    Evidence for a constant IMF in early-type galaxies based on their X-ray binary populations

    Get PDF
    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom heavy IMFs. These bottom heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary populations (LMXBs) of nearby early-type galaxies. In these binaries, a neutron star or black hole accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of black holes and neutron stars present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light, and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low mass galaxies to a steep power-law IMF (with slope xx=2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.Comment: 12 pages, 5 figures, 2 tables, submitted to Ap

    X-ray emission from star-forming galaxies - III. Calibration of the Lx-SFR relation up to redshift z≃\simeq1.3

    Full text link
    We investigate the relation between total X-ray emission from star-forming galaxies and their star formation activity. Using nearby late-type galaxies and ULIRGs from Paper I and star-forming galaxies from Chandra Deep Fields, we construct a sample of 66 galaxies spanning the redshift range z~0-1.3 and the star-formation rate (SFR) range ~0.1-10^3 M_sun/yr. In agreement with previous results, we find that the Lx-SFR relation is consistent with a linear law both at z=0 and for the z=0.1-1.3 CDF galaxies, within the statistical accuracy of ~0.1 in the slope of the Lx-SFR relation. For the total sample, we find a linear scaling relation Lx/SFR~(4.0\pm 0.4)x10^{39}(erg/s)/(Msun/yr), with a scatter of ~0.4 dex. About ~2/3 of the 0.5-8 keV luminosity generated per unit SFR is expected to be due to HMXBs. We find no statistically significant trends in the mean Lx/SFR ratio with the redshift or star formation rate and constrain the amplitude of its variations by <0.1-0.2 dex. These properties make X-ray observations a powerful tool to measure the star formation rate in normal star-forming galaxies that dominate the source counts at faint fluxes.Comment: 11 pages, 3 tables, 4 figures, accepted for publication by MNRAS. Substantial changes since the last version, including the authors lis

    Pseudorandom Number Generators and the Square Site Percolation Threshold

    Full text link
    A select collection of pseudorandom number generators is applied to a Monte Carlo study of the two dimensional square site percolation model. A generator suitable for high precision calculations is identified from an application specific test of randomness. After extended computation and analysis, an ostensibly reliable value of pc = 0.59274598(4) is obtained for the percolation threshold.Comment: 11 pages, 6 figure

    Testing the Universality of the Stellar IMF with Chandra and HST

    Get PDF
    The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be "bottom-heavy" for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g. Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m<=0.5m <= 0.5 M⊙M_\odot) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m>=8m >= 8 M⊙M_\odot) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. (2014) searched for evidence of this trend and found that the observed number of LMXBs per unit KK-band luminosity (N/LKN/L_K) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory (Chandra) and Hubble Space Telescope (HST) observations of seven low-mass ellipticals where N/LKN/L_K is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/LKN/L_K. We reproduce the result of Peacock et al. (2014), strengthening the constraint that the slope of the IMF at m>=8m >= 8 M⊙M_\odot must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope (α1=\alpha_1= 3.843.84) for stars < 0.5 M⊙M_\odot (as suggested by near-IR indices), and that flattens out (α2=\alpha_2= 2.142.14) for stars > 0.5 M⊙M_\odot, and discuss its wider ramifications and limitations.Comment: Accepted for publication in ApJ; 7 pages, 2 figures, 1 tabl

    Evidence for Elevated X-ray Emission in Local Lyman Break Galaxy Analogs

    Get PDF
    In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L_X), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in UV-selected z<0.1 Lyman break analogs (LBAs). We present Chandra observations for four new GALEX-selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L_X/SFR ratios that are elevated by ~1.5sigma compared to local galaxies, similar to the ratios found for stacked LBGs in the early Universe (z>2). We show that these LBAs are unlikely to harbor AGN, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. We expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs=SFR/M* > 10^{-9}/yr), which suggest the prevalence of young stellar populations. Since both LBAs and LBGs have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L_X/SFR for the broader population of galaxies with high sSFRs (>10^{-10}/yr). The estimated dust extinctions (corresponding to column densities of N_H<10^{22}/cm^2) are expected to have insignificant effects on observed L_X/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L_X/SFR and metallicity appears consistent with theoretical expectations from X-ray binary population synthesis models. Therefore, we conclude that lower metallicities, related to more luminous HMXBs such as ultraluminous X-ray sources (ULXs), drive the elevated L_X/SFR observed in our sample of z<0.1 LBAs. The relatively metal-poor, active mode of star formation in LBAs and distant z>2 LBGs may yield higher total HMXB luminosity than found in typical galaxies in the local Universe.Comment: 11 pages, 7 figures, Submitted to ApJ (references updated in v2

    The X-ray Properties of the Nearby Star-Forming Galaxy IC 342: The XMM-Newton View

    Full text link
    We present the X-ray properties of IC342 using XMM-Newton. Thirty-five sources are detected coincident with the disk of IC342 (more than tripling the number known), of which ~31 are likely to be intrinsic to IC342. This population shows a range of spectral properties and has an X-ray luminosity function slope and infrared luminosity comparable to that of starburst galaxies such as M82 and the Antennae, while its relative lack of extended X-ray emission is similar to the properties of quiescent spirals. We do detect long-term variability between this observation and the 1991 ROSAT and 1993/2000 ASCA observations for five sources. Notably, the second most luminous source IC342 X-2 is is found to be in its the lowest luminosity state observed for X-2 to date, although the slope of the spectrum is intermediate between the previously observed low/hard and high/soft states. IC342 X-1, on the other hand, is found to be in an identical state to that observed in 2000 with ASCA. Assuming X-1 is in an anomalous very high (VH) state, then either (1) X-1 has remained in this state between 2000 and 2002, and is therefore the longest duration VH-state binary ever observed, or (2) it was simply caught in a VH state by chance in both the 2000 ASCA and 2002 XMM-Newton observations. We have also confirmed the ROSAT HRI result that the nucleus of IC342 is made up of both point-like and extended emission. The relative fluxes of the two spectral components suggest that the nucleus is complex, with a soft extended component contributing approximately half of the total luminosity. (Abridged)Comment: AJ in press (December 2003), 9 pages, 7 figures, 2 tables, emulateapj.cls use
    • …
    corecore