593 research outputs found

    Quantum Stress Tensor Fluctuations of a Conformal Field and Inflationary Cosmology

    Full text link
    We discuss the additional perturbation introduced during inflation by quantum stress tensor fluctuations of a conformally invariant field such as the photon. We consider both a kinematical model, which deals only with the expansion fluctuations of geodesics, and a dynamical model which treats the coupling of the stress tensor fluctuations to a scalar inflaton. In neither model do we find any growth at late times, in accordance with a theorem due to Weinberg. What we find instead is a correction which becomes larger the earlier one starts inflation. This correction is non-Gaussian and highly scale dependent, so the absence of such effects from the observed power spectra may imply a constraint on the total duration of inflation. We discuss different views about the validity of perturbation theory at very early times during which currently observable modes are transplanckian.Comment: 31 pages, 1 figure, uses LaTeX2epsilo

    Inflation without Slow Roll

    Full text link
    We draw attention to the possibility that inflation (i.e. accelerated expansion) might continue after the end of slow roll, during a period of fast oscillations of the inflaton field \phi . This phenomenon takes place when a mild non-convexity inequality is satisfied by the potential V(\phi). The presence of such a period of \phi-oscillation-driven inflation can substantially modify reheating scenarios. In some models the effect of these fast oscillations might be imprinted on the primordial perturbation spectrum at cosmological scales.Comment: 9 pages, Revtex, psfig, 1 figure, minor modifications, references adde

    The Entropy of the Gravitational Field

    Full text link
    We derive a formula for the nonequilibrium entropy of a classical stochastic field in terms of correlation functions of this field. The formalism is then applied to define the entropy of gravitational perturbations (both gravitational waves and density fluctuations). We calculate this entropy in a specific cosmological model (the inflationary Universe) and find that on scales of interest in cosmology the entropy in both density perturbations and gravitational waves exceeds the entropy of statistical fluctuations of the microwave background. The nonequilibrium entropy discussed here is a measure of loss of information about the system. We discuss the origin of the entropy in our cosmological models and compare the definition of entropy in terms of correlation functions with the microcanonical definition in quantum statistical mechanics.Comment: 40 pages, uses REVTE

    Density Perturbations in the Ekpyrotic Scenario

    Full text link
    We study the generation of density perturbations in the ekpyrotic scenario for the early universe, including gravitational backreaction. We expose interesting subtleties that apply to both inflationary and ekpyrotic models. Our analysis includes a detailed proposal of how the perturbations generated in a contracting phase may be matched across a `bounce' to those in an expanding hot big bang phase. For the physical conditions relevant to the ekpyrotic scenario, we re-obtain our earlier result of a nearly scale-invariant spectrum of energy density perturbations. We find that the perturbation amplitude is typically small, as desired to match observation.Comment: 36 pages, compressed and RevTex file, one postscript figure file. Minor typographical and numerical errors corrected, discussion added. This version to appear in Physical Review

    Gravity Waves Signatures from Anisotropic pre-Inflation

    Full text link
    We show that expanding or contracting Kasner universes are unstable due to the amplification of gravitational waves (GW). As an application of this general relativity effect, we consider a pre-inflationary anisotropic geometry characterized by a Kasner-like expansion, which is driven dynamically towards inflation by a scalar field. We investigate the evolution of linear metric fluctuations around this background, and calculate the amplification of the long-wavelength GW of a certain polarization during the anisotropic expansion (this effect is absent for another GW polarization, and for scalar fluctuations). These GW are superimposed to the usual tensor modes of quantum origin from inflation, and are potentially observable if the total number of inflationary e-folds exceeds the minimum required to homogenize the observable universe only by a small margin. Their contribution to the temperature anisotropy angular power spectrum decreases with the multipole l as l^(-p), where p depends on the slope of the initial GW power-spectrum. Constraints on the long-wavelength GW can be translated into limits on the total duration of inflation and the initial GW amplitude. The instability of classical GW (and zero-vacuum fluctuations of gravitons) during Kasner-like expansion (or contraction) may have other interesting applications. In particular, if GW become non-linear, they can significantly alter the geometry before the onset of inflation

    Cosmological density perturbations from conformal scalar field: infrared properties and statistical anisotropy

    Full text link
    We consider a scenario in which primordial scalar perturbations are generated when complex conformal scalar field rolls down its negative quartic potential. Initially, these are the perturbations of the phase of this field; they are converted into the adiabatic perturbations at a later stage. A potentially dangerous feature of this scenario is the existence of perturbations in the radial field direction, which have red power spectrum. We show, however, that to the linear order in the small parameter - the quartic self-coupling - the infrared effects are completely harmless, as they can be absorbed into field redefinition. We then evaluate the statistical anisotropy inherent in the model due to the existence of the long-ranged radial perturbations. To the linear order in the quartic self-coupling the statistical anisotropy is free of the infrared effects. The latter show up at the quadratic order in the self-coupling and result in the mild (logarithmic) enhancement of the corresponding contribution to the statistical anisotropy. The resulting statistical anisotropy is a combination of a larger term which, however, decays as momentum increases, and a smaller term which is independent of momentum.Comment: 19 pages, 2 figures. Journal version, typos corrected, subsection adde

    The Trans-Planckian Problem of Inflationary Cosmology

    Get PDF
    In most current models of inflation based on a weakly self-coupled scalar matter field minimally coupled to gravity, the period of inflation lasts so long that, at the beginning of the inflationary period, the physical wavelengths of comoving scales which correspond to the present large-scale structure of the Universe were smaller than the Planck length. Thus, the usual computations of the spectrum of fluctuations in these models involve extrapolating low energy physics (both in the matter and gravitational sector) into regions where this physics is not applicable. In this paper we demonstrate that the usual predictions of inflation for the spectrum of cosmological fluctuations do indeed depend on the hidden assumptions about super-Planck scale physics. We introduce a class of modified dispersion relations to mimic possible effects of super-Planck scale physics, and show that in some cases important deviations from the usual predictions of inflation are obtained. Some implications of this result for the unification of fundamental physics and early Universe cosmology are discussed.Comment: 16 pages, 2 figures. One important correction in the Corley/Jacobson case with b_m>0 and some misprints corrected. Version published in PR

    Inflation and de Sitter Thermodynamics

    Get PDF
    We consider the quasi-de Sitter geometry of the inflationary universe. We calculate the energy flux of the slowly rolling background scalar field through the quasi-de Sitter apparent horizon and set it equal to the change of the entropy (1/4 of the area) multiplied by the temperature, dE=TdS. Remarkably, this thermodynamic law reproduces the Friedmann equation for the rolling scalar field. The flux of the slowly rolling field through the horizon of the quasi-de Sitter geometry is similar to the accretion of a rolling scalar field onto a black hole, which we also analyze. Next we add inflaton fluctuations which generate scalar metric perturbations. Metric perturbations result in a variation of the area entropy. Again, the equation dE=TdS with fluctuations reproduces the linearized Einstein equations. In this picture as long as the Einstein equations hold, holography does not put limits on the quantum field theory during inflation. Due to the accumulating metric perturbations, the horizon area during inflation randomly wiggles with dispersion increasing with time. We discuss this in connection with the stochastic decsription of inflation. We also address the issue of the instability of inflaton fluctuations in the ``hot tin can'' picture of de Sitter horizon.Comment: 19 pages, 5 figure

    Revising the observable consequences of slow-roll inflation

    Get PDF
    We study the generation of primordial perturbations in a (single-field) slow-roll inflationary universe. In momentum space, these (Gaussian) perturbations are characterized by a zero mean and a non-zero variance Δ2(k,t)\Delta^2(k, t). However, in position space the variance diverges in the ultraviolet. The requirement of a finite variance in position space forces one to regularize Δ2(k,t)\Delta^2(k, t). This can (and should) be achieved by proper renormalization in an expanding universe in a unique way. This affects the predicted scalar and tensorial power spectra (evaluated when the modes acquire classical properties) for wavelengths that today are at observable scales. As a consequence, the imprint of slow-roll inflation on the CMB anisotropies is significantly altered. We find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio rr to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, nt=0n_t=0, is now compatible with a non-zero ratio r0.12±0.06r\approx 0.12\pm0.06, which is forbidden by the standard prediction (r=8ntr=-8n_t). The influence of relic gravitational waves on the CMB may soon come within the range of planned measurements, offering a non-trivial test of the new predictions.Comment: 24 page

    Trans-Planckian Physics from a Nonlinear Dispersion Relation

    Full text link
    We study a particular nonlinear dispersion relation ωp(kp)\omega_p(k_p) -- a series expansion in the physical wavenumber kpk_p -- for modeling first-order corrections in the equation of motion of a test scalar field in a de Sitter spacetime from trans-Planckian physics in cosmology. Using both a numerical approach and a semianalytical one, we show that the WKB approximation previously adopted in the literature should be used with caution, since it holds only when the comoving wavenumber kaHk\gg aH. We determine the amplitude and behavior of the corrections on the power spectrum for this test field. Furthermore, we consider also a more realistic model of inflation, the power-law model, using only a numerical approach to determine the corrections on the power spectrum.Comment: 11 pages, 10 figures. Some changes made, comments and references added, a figure added, typos corrected, conclusions unchanged, version accepted for pubblication in Phys. Rev.
    corecore