487 research outputs found

    Haemoglobinopathies and newborn haemoglobinopathy screening in Germany.

    Get PDF
    Germany has been an immigration country since the early 1950s. In December 2007, 6.7 million non-German citizens lived in the country. However, the total number of citizens with a migration background is 15–20 million, about 9 million of whom come from countries where sickle cell disease and thalassaemias are frequent. In a country with 82 million inhabitants health authorities are not worried by the presence of probably 1000–1500 sickle cell and 450 transfusion-dependent thalassaemia patients, and therefore no screening or preventive measures have been taken so far on a national scale. There are plans for a pilot project (1 year) to screen all newborns for sickle cell disease in obstetric hospitals in 4–5 cities with more than 20% migrants. Funding and lack of an infrastructure to provide counselling are major problems

    Enrichment of measles virus-like RNA in the nucleocapsid fraction isolated from subacute sclerosing panencephalitis brains

    Full text link
    A procedure has been developed which facilitates the detection of measles virus RNA sequences in human brains. The procedure involves isolating subviral components (nucleocapsids) from brain tissues prior to RNA purification, followed by hybridization of these RNAs to cDNA synthesized from measles virus 50 S RNA template. Using these techniques we were able to obtain an RNA fraction which was manyfold enriched in measles virus-specific RNA, relative to unfractionated subacute sclerosing panencephalitis (SSPE) brain RNAs. 70-100% of the measles virus-specific RNA present in these SSPE brain samples were recovered in this enriched fraction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24061/1/0000313.pd

    LIMD1 Is Induced by and Required for LMP1 Signaling, and Protects EBV-transformed Cells From DNA Damage-Induced Cell Death

    Get PDF
    LIMD1 (LIM domain-containing protein 1) is considered as a tumor suppressor, being deregulated in many cancers to include hematological malignancies; however, very little is known about the underlying mechanisms of its deregulation and its roles in carcinogenesis. Epstein-Barr Virus (EBV) is associated with a panel of malignancies of lymphocytic and epithelial origin. Using high throughput expression profiling, we have previously identified LIMD1 as a common marker associated with the oncogenic transcription factor IRF4 in EBV-related lymphomas and other hematological malignancies. In this study, we have identified potential conserved IRF4- and NFκB-binding motifs in the LIMD1 gene promoter, and both are demonstrated functional by promoter-reporter assays. We further show that LIMD1 is partially upregulated by EBV latent membrane protein 1 (LMP1) via IRF4 and NFκB in EBV latency. As to its role in the setting of EBV latent infection, we show that LIMD1 interacts with TRAF6, a crucial mediator of LMP1 signal transduction. Importantly, LIMD1 depletion impairs LMP1 signaling and functions, potentiates ionomycin-induced DNA damage and apoptosis, and inhibits p62-mediated selective autophagy. Taken together, these results show that LIMD1 is upregulated in EBV latency and plays an oncogenic role rather than that of a tumor suppressor. Our findings have identified LIMD1 as a novel player in EBV latency and oncogenesis, and open a novel research avenue, in which LIMD1 and p62 play crucial roles in linking DNA damage response (DDR), apoptosis, and autophagy and their potential interplay during viral oncogenesi

    p62-mediated Selective Autophagy Endows Virus-Transformed Cells With Insusceptibility to DNA Damage Under Oxidative Stress

    Get PDF
    DNA damage response (DDR) and selective autophagy both can be activated by reactive oxygen/nitrogen species (ROS/RNS), and both are of paramount importance in cancer development. The selective autophagy receptor and ubiquitin (Ub) sensor p62 plays a key role in their crosstalk. ROS production has been well documented in latent infection of oncogenic viruses including Epstein-Barr Virus (EBV). However, p62-mediated selective autophagy and its interplay with DDR have not been investigated in these settings. In this study, we provide evidence that considerable levels of p62-mediated selective autophagy are spontaneously induced, and correlate with ROS-Keap1-NRF2 pathway activity, in virus-transformed cells. Inhibition of autophagy results in p62 accumulation in the nucleus, and promotes ROS-induced DNA damage and cell death, as well as downregulates the DNA repair proteins CHK1 and RAD51. In contrast, MG132-mediated proteasome inhibition, which induces rigorous autophagy, promotes p62 degradation but accumulation of the DNA repair proteins CHK1 and RAD51. However, pretreatment with an autophagy inhibitor offsets the effects of MG132 on CHK1 and RAD51 levels. These findings imply that p62 accumulation in the nucleus in response to autophagy inhibition promotes proteasome-mediated CHK1 and RAD51 protein instability. This claim is further supported by the findings that transient expression of a p62 mutant, which is constitutively localized in the nucleus, in B cell lines with low endogenous p62 levels recaptures the effects of autophagy inhibition on CHK1 and RAD51 protein stability. These results indicate that proteasomal degradation of RAD51 and CHK1 is dependent on p62 accumulation in the nucleus. However, small hairpin RNA (shRNA)-mediated p62 depletion in EBV-transformed lymphoblastic cell lines (LCLs) had no apparent effects on the protein levels of CHK1 and RAD51, likely due to the constitutive localization of p62 in the cytoplasm and incomplete knockdown is insufficient to manifest its nuclear effects on these proteins. Rather, shRNA-mediated p62 depletion in EBV-transformed LCLs results in significant increases of endogenous RNF168-γH2AX damage foci and chromatin ubiquitination, indicative of activation of RNF168-mediated DNA repair mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autophagy that governs DDR in the setting of oncogenic virus latent infection, and provide a novel insight into virus-mediated oncogenesis

    A phase I and II study of 2-weekly irinotecan with capecitabine in advanced gastroesophageal adenocarcinoma

    Get PDF
    We investigated 2-weekly intravenous irinotecan combined with oral capecitabine in patients with advanced gastroesophageal adenocarcinoma. In phase I, doses were escalated in chemotherapy naïve or pretreated patients to establish maximum tolerated doses (MTD). In phase II, patients were treated at MTD as first-line therapy with the primary end point of RECIST response. Dose levels in phase I were as follows: Level 1: irinotecan 150 mg m−2 on day 1; capecitabine 850 mg m−2 12-hourly on days 1–9. Level 2: as level 1 but capecitabine 1000 mg m−2. Level 3: as level 2 but irinotecan 180 mg m−2. Level 4: as level 3 but capecitabine 1250 mg m−2. In phase I, 21 patients were entered. Maximum tolerated dose was level 3. Dose-limiting toxicities were lethargy, diarrhoea, vomiting and mucositis. In phase II, 31 patients were entered at level 3. During the first six cycles, 13 of these patients underwent dose reduction and three patients stopped treatment for toxicity. A further six patients stopped for progressive disease. The commonest grade 3–4 toxicities were lethargy (20%), diarrhoea (17%), nausea (10%) and anorexia (10%). There were no treatment-related deaths. The response rate was 32% (95% CI 16–52%). Median overall survival was 10 months. This regimen is active in gastroesophageal adenocarcinoma. However, using the MTD defined in phase I, fewer than 50% patients tolerated six cycles without modification in phase II; therefore, modification of these doses is recommended for further study

    Pharmacogenetic prediction of clinical outcome in advanced colorectal cancer patients receiving oxaliplatin/5-fluorouracil as first-line chemotherapy

    Get PDF
    To determine whether molecular parameters could be partly responsible for resistance or sensitivity to oxaliplatin (OX)-based chemotherapy used as first-line treatment in advanced colorectal cancer (CRC). We studied the usefulness of the excision repair cross-complementing 1 (ERCC1), xeroderma pigmentosum group D (XPD), XRCC1 and GSTP1 polymorphisms as predictors of clinical outcome in these patients. We treated 126 CRC patients with a first-line OX/5-fluorouracil chemotherapeutic regimen. Genetic polymorphisms were determined by real-time PCR on an ABI PRISM 7000, using DNA from peripheral blood. Clinical response (CR), progression-free survival (PFS) and overall survival (OS) were evaluated according to each genotype. In the univariate analysis for CR, ERCC1-118 and XPD 751 polymorphisms were significant (P=0.02 and P=0.05, respectively). After adjustment for the most relevant clinical variables, only ERCC1-118 retained significance (P=0.008). In the univariate analysis for PFS, ERCC1-118 and XPD 751 were significant (P=0.003 and P=0.009, respectively). In the multivariant analysis, only the XPD 751 was significant for PFS (P=0.02). Finally, ERCC1-118 and XPD 751 polymorphisms were significant in the univariate analysis for OS (P=0.006 and P=0.015, respectively). Both genetic variables remained significant in the multivariate Cox survival analysis (P=0.022 and P=0.03). Our data support the hypothesis that enhanced DNA repair diminishes the benefit of platinum-based treatments

    Phase I study of intermittent and chronomodulated oral therapy with capecitabine in patients with advanced and/or metastatic cancer

    Get PDF
    BACKGROUND: The combination of capecitabine and gemcitabine at Fixed Dose Rate (FDR) has been demonstrated to be well tolerated, with apparent efficacy in patients with advanced cancers. FDR gemcitabine infusion leads to enhanced intracellular accumulation of drug and possible augmented clinical effect. The goals of this phase I study were to determine the maximum-tolerated dose (MTD) of chronomodulated capecitabine in patients with advanced cancer and to describe the dose-limiting toxicities (DLT), the safety profile of this way of administration. METHODS: Patients with advanced solid tumours who had failed to response to standard therapy or for whom no standard therapy was available were elegible for this study. Capecitabine was administered orally according to following schedule: 1/4 of dose at 8:00 a.m.; 1/4 of dose at 6:00 p.m. and 1/2 of dose at 11:00 p.m. each day for 14 consecutive days, followed by a 7-day rest period. RESULTS: All 27 patients enrolled onto the study were assessable for toxicity. The most common toxicities during the first two cycles of chemotherapy were fatigue, diarrhoea and hand foot syndrome (HFS). Only one out of the nine patients treated at capecitabine dose of 2,750 mg/m(2 )met protocol-specified DLT criteria (fatigue grade 4). However, at these doses the majority of cycles of therapy were delivered without dose reduction or delay. No other episodes of DLT were observed at the same dose steps and at the lower dose steps of capecitabine (1,500/1,750/2,000/2,250/2,500 mg/m(2)). The dose of 2,750 mg/m(2 )is recommended for further study. Tumor responses were observed in patients with metastatic breast and colorectal cancer. CONCLUSION: High doses of chronomodulated capecitabine can be administered with acceptable toxicity. The evidence of antitumor activity deserves further investigation in phase II combination chemotherapy studies

    Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first submission - omitted bibliograph
    • …
    corecore