72 research outputs found

    Effects of kinked linear defects on planar flux line arrays

    Full text link
    In the hard core limit, interacting vortices in planar type II superconductors can be modeled as non-interacting one dimensional fermions propagating in imaginary time. We use this analogy to derive analytical expressions for the probability density and imaginary current of vortex lines interacting with an isolated bent line defect and to understand the pinning properties of such systems. When there is an abrupt change of the direction of the pinning defect, we find a sinusoidal modulation of the vortex density in directions both parallel and perpendicular to the defect.Comment: 13 figure

    Threading the spindle: a geometric study of chiral liquid crystal polymer microparticles

    Full text link
    Polymeric particles are strong candidates for designing artificial materials capable of emulating the complex twisting-based functionality observed in biological systems. In this letter, we provide the first detailed investigation of the swelling behavior of bipolar polymer liquid crystalline microparticles. Deswelling from the spherical bipolar configuration causes the microparticle to contract anisotropically and twist in the process, resulting in a twisted spindle shaped structure. We propose a model to describe the observed spiral patterns and twisting behavior

    Quantum versus Classical Dynamics in a driven barrier: the role of kinematic effects

    Full text link
    We study the dynamics of the classical and quantum mechanical scattering of a wave packet from an oscillating barrier. Our main focus is on the dependence of the transmission coefficient on the initial energy of the wave packet for a wide range of oscillation frequencies. The behavior of the quantum transmission coefficient is affected by tunneling phenomena, resonances and kinematic effects emanating from the time dependence of the potential. We show that when kinematic effects dominate (mainly in intermediate frequencies), classical mechanics provides very good approximation of quantum results. Moreover, in the frequency region of optimal agreement between classical and quantum transmission coefficient, the transmission threshold, i.e. the energy above which the transmission coefficient becomes larger than a specific small threshold value, is found to exhibit a minimum. We also consider the form of the transmitted wave packet and we find that for low values of the frequency the incoming classical and quantum wave packet can be split into a train of well separated coherent pulses, a phenomenon which can admit purely classical kinematic interpretation

    Vortex pinning by meandering line defects in planar superconductors

    Full text link
    To better understand vortex pinning in thin superconducting slabs, we study the interaction of a single fluctuating vortex filament with a curved line defect in (1+1) dimensions. This problem is also relevant to the interaction of scratches with wandering step edges in vicinal surfaces. The equilibrium probability density for a fluctuating line attracted to a particular fixed defect trajectory is derived analytically by mapping the problem to a straight line defect in the presence of a space and time-varying external tilt field. The consequences of both rapid and slow changes in the frozen defect trajectory, as well as finite size effects are discussed. A sudden change in the defect direction leads to a delocalization transition, accompanied by a divergence in the trapping length, near a critical angle.Comment: 9 pages, 9 figure

    Fluctuations and redundancy in optimal transport networks

    Full text link
    The structure of networks that provide optimal transport properties has been investigated in a variety of contexts. While many different formulations of this problem have been considered, it is recurrently found that optimal networks are trees. It is shown here that this result is contingent on the assumption of a stationary flow through the network. When time variations or fluctuations are allowed for, a different class of optimal structures is found, which share the hierarchical organization of trees yet contain loops. The transitions between different network topologies as the parameters of the problem vary are examined. These results may have strong implications for the structure and formation of natural networks, as is illustrated by the example of leaf venation networks.Comment: 4 pages, 4 figure

    Quantifying loopy network architectures

    Get PDF
    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the Asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.Comment: 17 pages, 8 figures. During preparation of this manuscript the authors became aware of the work of Mileyko at al., concurrently submitted for publicatio

    Collapse and folding of pressurized rings in two dimensions

    Full text link
    Hydrostatically pressurized circular rings confined to two dimensions (or cylinders constrained to have only z-independent deformations) undergo Euler type buckling when the outside pressure exceeds a critical value. We perform a stability analysis of rings with arc-length dependent bending moduli and determine how weakened bending modulus segments affect the buckling critical pressure. Rings with a 4-fold symmetric modulation are particularly susceptible to collapse. In addition we study the initial post-buckling stages of the pressurized rings to determine possible ring folding patterns

    Limited Urban Growth: London's Street Network Dynamics since the 18th Century

    Get PDF
    We investigate the growth dynamics of Greater London defined by the administrative boundary of the Greater London Authority, based on the evolution of its street network during the last two centuries. This is done by employing a unique dataset, consisting of the planar graph representation of nine time slices of Greater London's road network spanning 224 years, from 1786 to 2010. Within this time-frame, we address the concept of the metropolitan area or city in physical terms, in that urban evolution reveals observable transitions in the distribution of relevant geometrical properties. Given that London has a hard boundary enforced by its long-standing green belt, we show that its street network dynamics can be described as a fractal space-filling phenomena up to a capacitated limit, whence its growth can be predicted with a striking level of accuracy. This observation is confirmed by the analytical calculation of key topological properties of the planar graph, such as the topological growth of the network and its average connectivity. This study thus represents an example of a strong violation of Gibrat's law. In particular, we are able to show analytically how London evolves from a more loop-like structure, typical of planned cities, toward a more tree-like structure, typical of self-organized cities. These observations are relevant to the discourse on sustainable urban planning with respect to the control of urban sprawl in many large cities, which have developed under the conditions of spatial constraints imposed by green belts and hard urban boundaries.Comment: PlosOne, in publicatio

    Leaf venation, as a resistor, to optimize a switchable IR absorber

    Get PDF
    Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature’s vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber
    • …
    corecore