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Abstract. Recent studies have demonstrated the potential of OCTA
retinal imaging for the discovery of biomarkers of vascular disease of
the eye and other organs. Furthermore, advances in deep learning have
made it possible to train algorithms for the automated detection of such
biomarkers. However, two key limitations of this approach are the need
for large numbers of labeled images to train the algorithms, which are
often not met by the typical single-centre prospective studies in the liter-
ature, and the lack of interpretability of the features learned during train-
ing. In the current study, we developed a network analysis framework to
characterise retinal vasculature where geometric and topological infor-
mation are exploited to increase the performance of classifiers trained
on tens of OCTA images. We demonstrate our approach in two different
diseases with a retinal vascular footprint: diabetic retinopathy (DR) and
chronic kidney disease (CKD). Our approach enables the discovery of
previously unreported retinal vascular morphological differences in DR
and CKD, and demonstrate the potential of OCTA for automated disease
assessment.

Keywords: Optical coherence tomography angiography · Vascular net-
work · Graph analysis · Retinal biomarkers

1 Introduction

Optical coherence tomography angiography (OCTA) is a fast and efficient imag-
ing modality that allows the visualisation of retinal vasculature at the capillary



2 Y. Giarratano et al.

level. This technology offers the advantage of visualising in vivo the microvascu-
lature without any invasive procedure, emerging as a promising modality to in-
vestigate microvascular disease. However, the usefulness of OCTA as a diagnostic
tool depends on the availability of accurate and reproducible image quantifica-
tion metrics to identify retinal microvascular changes. Machine learning (ML),
and in particular deep learning (DL) in recent years, has emerged as a promising
approach for automated image analysis. Despite the popularity of DL in medical
applications, these techniques typically require large amounts of labeled data for
training, and a straight forward clinical interpretation of the features learned
during training might not be possible. Hence, several existing approaches in the
literature for the analysis of OCTA scans have focused on a small set of in-
terpretable candidate biomarkers based on accumulated clinical knowledge. In
diabetic retinopathy, metrics related to the morphology of the foveal avascular
zone (FAZ), the central part of the retina responsible for the sharpest vision,
and vascular-based metrics such as vessel density and capillary nonperfusion
have been used as biomarkers to investigate disease progression [6, 8, 10, 15]. In
addition, vessel density has been considered in Alzheimer’s disease [18, 21] and
chronic kidney disease [17], highlighting the potential of retinal OCTA imaging
to investigate disease of other organs, an area of increasing interest [19]. Albeit
promising, these phenotypes are not representative of the full spectrum of reti-
nal vascular morphometric characteristics that could be exploited for diagnosis.
Hence, novel approaches to biomarker discovery are urgently needed. Further-
more, automated classification of diabetic retinopathy severity has been recently
explored and support vector machine classification models, based on vessel den-
sity, vessel caliber, and FAZ measurements, have been proposed in [1,11]. Trans-
fer learning was recently used to reduce the volume of data required to train
DL models for the prediction of diabetic retinopathy patient status from OCTA
images [7] without the need of feature engineering. However, such approach has
not been able to provide to date interpretability of results.
In the current study, we propose a fully automated approach to the classification
of OCTA images according to disease status based on interpretable retinal vas-
cular features (i.e., quantifications of vascular characteristics). Our framework
enables: hypothesis-free discovery of new retinal biomarkers of disease; develop-
ment of ML classifiers based on modestly sized image datasets without compro-
mising features interpretability. We propose new microvascular metrics based on
geometrical and topological properties of the graph representation of the vascu-
lature and we show applications in two case studies: diabetic retinopathy (DR)
and chronic kidney disease (CKD). In the DR substudy, we replicate previous
findings of changes in vessel morphology and vessel density [4, 6] and discover
new discriminative topological features. In the CKD substudy, we discover previ-
ously unreported structural and functional changes, and we are the first to report
automated classification of CKD patient status based on OCTA retinal imaging.
Finally, we show our DR and CKD classifiers outperform or achieve comparable
performances of state-of-the-art DL approaches even when considering transfer
learning, with the added advantage of features interpretability.
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2 Methods

2.1 Vascular Graph construction

Images of the left and right eye of the study participants are obtained using a
commercial OCTA device (RTVue XR Avanti; Optovue). Only the superficial
layer (from the internal limiting membrane layer (ILM) to the inner plexiform
layer (IPL)), are considered for all metrics. Superficial and deep layers (from
the IPL to the bottom of the outer plexiform layer) with 3 × 3 mm field of
view are used to compute FAZ metrics (Figure 1A). Input of our approach is
the binary mask of the retinal plexus of interest (Figure 1B). Firstly, we ap-
ply automated segmentation by using a U-Net architecture as described in [2].
Morphological thinning is then performed on the binary image to obtain a one
pixelwise wide skeleton of the vasculature. In order to construct the graph and
preserve the morphological structure of the network, we use a map that, con-
sidering the skeletonized image, S, of n × n pixels, for each row i and column
j, the element sij ∈ {0, 1} is associated to the coordinates (i, j). Vertices of our
graph are then found as coordinates of the white pixel of the binary mask. To
construct edges, we analyse the neighborhood of size 2× 2, drawing firstly verti-
cal and horizontal connections, and in absence of links, we explore connections
along the diagonals. This procedure allows us to find edges that preserve the
morphological structure of the network avoiding over connectivity. Finally, to
each node, we assign two attributes: coordinates and radius. The latter is used
to compute edge attribute thickness as the average radius of its end points, and
keep track of vessel width. Radii are calculated starting from the original im-
age, by computing vessel boundaries and their Euclidean distance from the pixel
centre-line representing our vertex. The final network is rescaled according to
the original pixel size (Figure 1C). Considering the anatomy of the vasculature,
we assume small disconnected components as segmentation artifacts, and only
the largest connected component is used in our analysis.

2.2 Graph simplification

Due to the size of the images, the final vascular network is highly dense in
the number of nodes and edges. To compute morphological metrics that require
to explore all the nodes in the network, which can be a very time-consuming
procedure, we adopted a simplified version of the graph that preserves the vas-
culature structure. Briefly, let G = (V, E) be our initial graph and eA, eB ∈ E
two adjacent edges of starting and end points (u, v) and (v, w), respectively. If
eA and eB lay on the same line then remove eA and eB , and create a new edge,
eAB = (u,w). This simplification is used, for example, to speed up the process
of finding the intercapillary space, since it reduces computational time, without
affecting the morphology of the network (see Figure 1C,E).
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Fig. 1. (A) Original image (Superficial+Deep layers). (B) Binary image obtained using
U-Net. (C) Graph representation of the vascular network. (D) Regions of interest in the
network: foveal (F), superior (S), nasal (N), inferior (I), temporal (T). (E) Simplified
graph (nodes in red, edges in black).

2.3 Feature extraction

Our graph representation of the vascular network allows us to exploit many
vascular interpretable features that have never been used to investigate OCTA
images before. We compute the following features for each of the regions of
interest in the retinal plexus (foveal, superior, nasal, inferior, and temporal,
Figure 1D). In the case of distributions, mean, median, variance, skewness, and
kurtosis are reported.

Graph-based features An overview of the vascular network is obtained by
computing basic graph metrics. Graph density measures the sparseness of the
network, average clustering coefficient is used to measure how closely connected
the nodes in the network are. Graph diameter describing the maximum eccen-
tricity, i.e. the maximum distance between any two nodes in the network and
the graph radius, describing its minimum, are calculated to understand the span
of the network. Finally, edges thickness is used to investigate vessels widening
and thinning possibly associated with diseases.

Coordinate-based features These metrics are related to the position of each
node in the network. They mainly capture the morphology and size of portions of
the graph. Among these metrics, we find common retinal measures related to the
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foveal avascular zone (FAZ), a crucial part in the retina that has been observed
widening in people with diabetic conditions [15]. We are interested in FAZ area,
perimeter, and shape. FAZ area (A) and perimeter (P) are computed by con-
sidering all the points making up its boundary as vertices of a polygon. Based
on this measurement FAZ circularity is defined as C = 4πA/P 2. To characterise
FAZ shape we use the acircularity index, computed as P/(2πR), where R is the
radius of a circle of size equal to the FAZ area, and the axis ratio, calculated by
fitting an ellipse in the FAZ and then computing major and minor axis. Suppos-
ing FAZ boundary, B, describing a path on which an object is moving, and each
node of coordinate (xi, yi) in B as an observation of the object taken in constant
time intervals, we can then compute the speed of the object, its curvature (the
deviation of a curve from a straight line as k = |x′y′′− y′x′′|/(x′2 + y′2)3/2), and
the number of turning points to estimate boundary smoothness.
Finally, vessel tortuosity has been previously associated with diabetes. We de-
fine the tortuosity as the ratio of the length of the path between two branching
points against the Euclidean distance between its end points.

Flow-based features Characterisation of the resistance to blood flow of a
given vessel can be done by using Poiseuille’s law defined as R(l, r) = ∆P/Q =
8ηl/πr4, where∆P is the pressure difference between the two ends of the vascular
segment and Q is the flow rate. Given the length (l) and radius (r) of the vessel
and assuming constant viscosity of blood (η = 2.084 × 10−3Pa · s), we can
compute the resistance at each vessel segment.
Another measurement that we extract is the area to flow capacity ratio. Tissue
is supplied by oxygen and nutrients carried in the vessels, considering the size
of the intercapillary space (a face in the graph), the radius, and length of the
vessels that enclose it, we can estimate the ratio between tissue area and flow
capacity (under the assumption of vessels cylindrical in shape).

Topology-based features The retinal microvasculature is a complex and in-
tertwined network, the investigation of changes underlying its loopy structure
can reveal valuable insight into disease detection and progression. As suggested
in [3] and [9] biological networks can be mapped into binary tree structures. The
mapping implementation is based on the algorithm described in [9]: starting
from the retinal loopy graph (containing only loops and therefore free of nodes
of degree one), we find the area enclosed by edges, called faces, representing the
leaves of the tree. At each step, we remove the shortest edge in the face boundary
so that small loops are merged into bigger loops. To find the initial faces, we
use the doubly connected edge list (DCEL) and the algorithm described in [12].
To ensure a binary tree root a pseudo loop surrounding the initial network is
created. The binary tree mapping allows us to exploit new metrics, such as tree
depth, indicating how homogeneous the loops are distributed over the network
structure, tree leaves, showing the number of loops, tree asymmetry, how much
the structure deviates from a perfect binary tree. To characterise the shape, we
can use the number of exterior and interior edges, where an external edge has a
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bifurcation at its upstream end, tree altitude and total exterior path length [20].
Strahler-branching ratio is calculated by assigning a hierarchical ordering to the
edges of the binary tree. We can then, classify each external edge as external-
external or external-internal based on the Strahler order of the sibling edge [14].
Topological pattern comparison can be done by introducing graphlets up to size
4: small subgraphs whose distribution can elucidate repeated motives in the net-
work. To reduce computational time, graphlets distribution is estimated based
on a sample distribution. Finally we use random walks to characterise the av-
erage path length in the network. We select 1000 walks of length 300, where all
the walks start from a randomly selected node, and compare it to the euclidean
distance between start and end node.

2.4 Demographics and statistical analysis

We considered three groups of participants: 26 diabetic subjects with and with-
out diabetic retinopathy (12 DR and 14 NoDR, respectively), 25 subjects that
suffer from chronic kidney disease (CKD), and 25 age- and gender-matched
healthy subjects (Controls). For each participant, only one eye was considered
for our analysis. All the included images were free from major observable ar-
tifacts such as vertical and horizontal line distortions. Each patient scan was
used by our framework to extract meaningful morphological and topological
metrics. Statistical analysis was then performed to investigate features that are
significantly different across groups and possibly associated with disease sta-
tus. Shapiro-Wilk test was used to assess features normally distributed. In three
groups comparison (DR, NoDR, and Controls) we performed one-way analysis
of variance (ANOVA), in the case of variables normally distributed, and non-
parametric Kruskal-Wallis test otherwise. For one versus one comparisons, we
used t-tests for the normally distributed features, and Mann–Whitney test in
the failure of Shapiro-Wilk test. In the case of multiple comparison, Bonferroni
correction was applied.
After removing highly correlated metrics, we performed feature selection within
a ten-fold cross-validation. In DR study, 30 features with the highest mutual
information were selected before using Random Forest as classification model.
In the CKD study, only the features that are statistically significant in each fold
were used before applying support vector machines (SVM). Finally, we provided
comparisons of our models with state-of-the-art DL approaches to patient classi-
fication. A VGG16 architecture with transfer learning was used as described in [7]
to classify the same OCTA images. Ten-fold cross-validation and data augmen-
tation was used in both sub-studies. Sensitivity, specificity, accuracy, and area
under the curve (AUC) were reported for performance evaluation.

3 Results

Diabetic cohort Among the 189 statistically significant features, 79 were
graph-based, 28 coordinate-based, 67 topology-based, and 15 flow-based. From
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these features, vessel skeleton density and the enlargement of the intercapillary
spaces have been already reported [5, 16]. Figure 2A-C displays three features
of interest: a) number of nodes, which is equivalent to the previously reported
vessel skeleton density metric (since nodes represent pixels in the skeleton); b)
mean size of the intercapillary spaces, a candidate for simple clinical inspection;
and c) the median circularity of the intercapillary space in the nasal segment,
which could distinguish between Controls and DR, and between Controls and
NoDR, highlighting the importance of shape analysis. Interestingly, these three
features showed a monotonic decrease/increase going from Controls to NoDR
and finally DR, highlighting that the network properties of NoDR appear as an
intermediate stage between Controls and DR. Random Forest provided the high-
est AUC (0.84) in the classification of the three groups, outperforming VGG16
with transfer learning and data augmentation (AUC= 0.79) (Table 1).

Fig. 2. Statistical significant features in diabetic (DR, NoDR) and CKD groups com-
pared with Controls.

CKD cohort We found 43 statistically significant features, including 10 graph-
based metrics, 20 coordinate-based metrics, 10 topology-based metrics, and 3
flow-based metrics. Our results showed differences in previously unreported mor-
phological and flow metrics. The CKD group shows larger values of vessel radius
in the temporal region of the retina, as well as a high imbalance in the curvature
measurements of the FAZ, indicating high variability of this parameter in the
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Table 1. Table of classification performances in DR study

Controls NoDR DR
Our approach VGG16 Our approach VGG16 Our approach VGG16

ACC (mean ± SE) 0.80±0.07 0.78 ± 0.05 0.75 ± 0.08 0.72 ± 0.04 0.82 ± 0.06 0.77 ± 0.04
SEN (mean ± SE) 0.79 ± 0.08 0.90 ± 0.05 0.30 ± 0.10 0.20 ± 0.13 0.55 ± 0.19 0.55 ± 0.11
SPE (mean ± SE) 0.77 ± 0.08 0.67 ± 0.11 0.88 ± 0.05 0.88± 0.05 0.88 ± 0.05 0.86 ± 0.05
AUC (mean ± SD) 0.90 ± 0.11 0.90±0.15 0.67 ± 0.37 0.67± 0.28 0.81 ± 0.12 0.75 ± 0.22

disease group. Moreover, the newly introduced area to flow capacity has been
found lower in the temporal area of the CKD group underlining the strong con-
nection between structural and functional changes (2D-F). In contrast with our
diabetic cohort (and previous DR studies), common measurements such as vessel
density and size of intercapillary spaces did not differ between CKD and controls,
highlighting that the retinal vascular changes in CKD could be perceived clini-
cally as much more subtle. This is also confirmed by classification performances.
Both SVM and VGG16 performed poorly in the classification task (Table 2),
achieving the same AUC equals to 0.62.

Table 2. Table of classification performances in CKD study

Controls CKD
Our approach VGG16 Our approach VGG16

ACC 0.52± 0.09 0.48 ± 0.08 0.52± 0.09 0.48 ± 0.08
SEN 0.58 ± 0.14 0.61 ± 0.09 0.47± 0.15 0.38 ± 0.12
SPE 0.47± 0.15 0.38 ± 0.12 0.58 ± 0.14 0.61 ± 0.09
AUC 0.62 ± 0.29 0.62 ± 0.37 0.62 ± 0.29 0.62 ± 0.37

4 Discussion and conclusions

With the increasing interest in mining the retinal landscape for biomarkers of
both eye and systemic disease, which some authors have termed oculomics [19],
OCTA has become a key modality for the study of the retinal microvascular
system in vivo. Previous studies have shown associations between changes in the
retinal microvascular structure and conditions as diverse as diabetic retinopa-
thy, Alzheimer’s disease, and chronic kidney disease. Early identification of these
alterations can contribute to timely target patients at risk and effectively moni-
tor disease progression. Quantifying these changes by matching selected vascular
features may provide a non-invasive alternative to characterise vascular dysfunc-
tions and gain valuable insights for clinical practice. In this study, we propose
a novel network analysis framework for hypothesis-free discovery of new retinal
biomarkers of disease and the development of machine learning classifiers based
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on modestly sized image datasets without compromising on the interpretabil-
ity of the classification features. These geometric and topological features may
elucidate vascular alterations and unravel clinically relevant measurements. We
demonstrate our approach in two different diseases with a retinal vascular foot-
print: diabetic retinopathy and chronic kidney disease. In the diabetic cohort,
we are capable of replicating previous findings of structural alterations asso-
ciated with disease. In both sub-studies, we uncover a large number of previ-
ously unreported biomarkers. Furthermore, our automated image classification
approach outperforms or achieves comparable results of state-of-the-art deep
learning approaches with the added advantage of feature interpretability. Our
results confirm that automated classification of chronic kidney disease status
based on OCTA imaging is a more challenging task. Future work should in-
vestigate the development of more advanced feature selection approaches for
model construction that can leverage the large number of biomarkers discovered
without suffering from what is known as peaking phenomenon (too large set of
features leads to poorer performances than a small set of selected features [13]),
and validate our results on larger cohorts to support statistical analysis. Our
methodology lays the foundation of a novel prospective approach for retinal
microvascular analysis that can realise the full diagnostic potential of OCTA
imaging.

References

1. Alam, M., Zhang, Y., Lim, J.I., Chan, R.V., Yang, M., Yao, X.: Quantitative
Optical Coherence Tomography Angiography Features for Objective Classification
and Staging of Diabetic Retinopathy. Retina (Philadelphia, Pa.) 40(2), 322–332
(2020)

2. Giarratano, Y., Bianchi, E., Gray, C., Morris, A., MacGillivray, T., Dhillon,
B., Bernabeu, M.O.: Automated Segmentation of Optical Coherence Tomog-
raphy Angiography Images: Benchmark Data and Clinically Relevant Metrics.
arXiv:1912.09978v2 (2020)

3. Katifori, E., Magnasco, M.O.: Quantifying loopy network architectures. PLoS ONE
7(6) (2012)

4. Khadamy, J., Aghdam, K., Falavarjani, K.: An update on optical coherence to-
mography angiography in diabetic retinopathy. Journal of Ophthalmic & Vision
Research 13, 487 (2018)

5. Kim, A.Y., Chu, Z., Shahidzadeh, A., Wang, R.K., Puliafito, C.A., Kashani, A.H.:
Quantifying microvascular density and morphology in diabetic retinopathy using
spectral-domain optical coherence tomography angiography. Investigative Ophthal-
mology and Visual Science 57(9), OCT362–OCT370 (2016)

6. Krawitz, B.D., Mo, S., Geyman, L.S., Agemy, S.A., Scripsema, N.K., Garcia, P.M.,
Chui, T.Y., Rosen, R.B.: Acircularity index and axis ratio of the foveal avascular
zone in diabetic eyes and healthy controls measured by optical coherence tomog-
raphy angiography. Vision Research 139, 177–186 (2017)

7. Le, D., Alam, M.N., Lim, J.I., Chan, R.V.P., Yao, X.: Deep learning for objec-
tive OCTA detection of diabetic retinopathy. In: Manns, F., Ho, A., Söderberg,
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