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Abstract

We investigate the growth dynamics of Greater London defined by the administrative boundary of the Greater London
Authority, based on the evolution of its street network during the last two centuries. This is done by employing a unique
dataset, consisting of the planar graph representation of nine time slices of Greater London’s road network spanning 224
years, from 1786 to 2010. Within this time-frame, we address the concept of the metropolitan area or city in physical terms,
in that urban evolution reveals observable transitions in the distribution of relevant geometrical properties. Given that
London has a hard boundary enforced by its long standing green belt, we show that its street network dynamics can be
described as a fractal space-filling phenomena up to a capacitated limit, whence its growth can be predicted with a striking
level of accuracy. This observation is confirmed by the analytical calculation of key topological properties of the planar
graph, such as the topological growth of the network and its average connectivity. This study thus represents an example of
a strong violation of Gibrat’s law. In particular, we are able to show analytically how London evolves from a more loop-like
structure, typical of planned cities, toward a more tree-like structure, typical of self-organized cities. These observations are
relevant to the discourse on sustainable urban planning with respect to the control of urban sprawl in many large cities
which have developed under the conditions of spatial constraints imposed by green belts and hard urban boundaries.
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Introduction

Understanding spatio-temporal patterns in complex transpor-

tation systems is a major problem for efficient spatial organization.

[1,2]. These systems span a wide range of natural and

technological phenomena, from biology to urban systems. They

are represented in studies such as leaf venation, crack pattern

formation, river networks and urban street networks, for systems

embedded in a two-dimensional Euclidean space, and ant

galleries, circulatory systems, soap froths, and pipe networks for

those embedded in a three-dimensional space [3–6]. Within

transportation systems, a particularly relevant field is focused on

studies of urban growth [7,8]. These are not simply paradigms of

complexity, but they hold the key to many statistical regularities

that have resided at the centre of scientific debate for many years,

such as Zipf’s law for rank-size distributions and Gibrat’s law of

proportionate growth [9–11].

Planar graphs are basic tools for understanding transportation

systems embedded in two-dimensional space, in particular urban

street networks, where the street intersections are the vertices and the

street segments connecting two intersections are the links [12]. As

these graphs are embedded in a two-dimensional surface, the

planarity criteria requires that the links do not cross each other.

Planar graphs are the oldest graphs used in topological analysis

[13], but their properties are still widely unknown due to

difficulties arising from incorporating such planarity criteria into

analytical calculation [14,15]. Although it is now well understood

how the quest for transport optimality leads to the formation of

reticulate networks rather than trees [16,17], disentangling the

interconnections between topological and metrical properties for

reticulate planar networks is still an open problem.

Here we analyse a unique dataset based on the street patterns of

London defined as the Greater London Authority area (GLA

hereafter) at nine time instants represented as nine map series

spanning over 224 years - from 1786 to 2010 (see Fig. 1). In these

maps, each street segment is classified according to a four level

hierarchy consisting of motorways, class A, class B, and minor

roads, thus enabling us to extract the hierarchy of the network as

recorded in the maps without further assumptions. First, we

speculate on the problem of the city’s boundary. In this context,

we show that the core of London’s urban street network can be

well defined by the statistical properties of the underlying street

network, which are reflected by the transitions in the distribution

of certain geometrical properties. Second, we show that the growth

in the number of vertices and links of the planar graphs

representing London can be treated as a fractal space-filling

phenomena within a capacitated limit and thus described in terms

of logistic functions through the Verhulst model [18]. This

observation allows the London street network’s growth problem to

be treated analytically, and enables us to forecast with striking

precision some key topological quantities about the street network

dynamics.

As a relevant outcome of this analysis, we highlight that the

presented results represent a strong violation of the Gibrat’s law,
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which states that urban growth is independent of city size [11].

Moreover, these results allow us to forecast the evolution of the

extent of the city and its sprawl [19], which has important

implications for urban planning, and more generally provide a

novel and efficacious approach to the study of transport systems

embedded in two-dimensional space.

The Dataset

A unique feature of the database employed by this project is the

extensive time coverage, which spans over 200 years of London’s

urban growth. The data set that we developed includes the

generation of time series maps for the 1,600 km2 area defined by

the present boundary of the Greater London Authority. Our time

series captures in a chronological sequence the evolution of

London’s road network in 1786, 1830, 1880, 1900, 1920, 1940,

1965, 1990 and 2010. This allows us to trace the evolution of

Greater London’s road network from the incipient stages of

metropolitan growth at the dawn of the industrial revolution to the

present.

For documentation of the network’s evolution, we used a

selection of highly detailed historic maps [20], which allowed us to

identify each of the existing roads at the time when the maps were

created. We imported geo-referenced TIFF images of the

historical maps in ArcGIS and traced manually the road centre

lines on screen to create ArcGIS polylines. We excluded

pedestrian paths and alleyways, but included the traditional

London mews houses, which represent a substantial element of

London’s road network.

On the road classification for the first two maps (1786 and

1830), the classification shown on the original maps has been used.

These first two maps have highlighted what was called at that time

‘‘principal roads’’. An A road classification has been assigned to all

of the roads shown as principal roads on the 1786 map. The new

principal roads which appear on the second map (1830) have been

given B road classification.

For the remaining maps (1880–2010), which are all produced

from Ordnance Survey maps, the current official classification of

roads has been used. This method is problematic to the extent that

this classification has been introduced gradually since the 1920s

and it is not consistent across space and time - many of the roads

have changed their classification over the years. Given this, we

chose to use the present road classification (2010) and apply it

backwards - in other words whenever a road appears (e.g. in 1940)

it takes the class which it currently has (in 2010). However, we did

not assign an A or B rank classification to loose fragments -

meaning that for a road to be classified in these higher classes it

has to be connected at least to one end of a road of class A or B.

The dataset was then transformed into a weighted planar graph,

where each intersection is a vertex N~N(x,y) and each link is a

street segment with a weight given by its hierarchical classification.

Historical population data were extracted from [21].

Results

The problem of city boundaries
When analysing urban structure, we consider the city as being

composed of many layers of infrastructure which underpin its

social and economic functioning [22]. These are interconnected

and coevolve, and lead to many different definitions of the city’s

physical extent. Thus the definition of a city can be quite blurred

with respect to these layers. Cities are usually analysed within their

administrative boundaries, or within the extent of their urbanised

area defined in terms of their population densities [23,24].

Nevertheless, a precise definition of a city’s physical extent is

crucial to any statistical analysis and extremely relevant when

measuring fundamental relations, as for example in Gibrat’s law

and Zipf’s Law [9,23,25]. Here we deal with a city, London, which

has been capacitated by an artificial boundary imposed to limit its

Figure 1. The street network in the GLA (Greater London Area) from 1786 to 2010. Different road colours correspond to different road
classifications (red A roads and motorways, blue B roads, gray minor roads).
doi:10.1371/journal.pone.0069469.g001
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growth and as such, it is representative of a number of world cities

such as Paris, São Paulo, Hong Kong, and Seoul, that are similarly

constrained.

City growth as a street network can be understood as the

coevolution of two distinct phenomena, based on the hierarchy of

its roads. On the one hand, we have the growth of major roads

(including motorways, class A and class B roads) and, on the other,

the growth of minor roads. A and B roads represent the backbone

of the city, concentrating the main flows of people and materials

sustaining the city. Minor roads divide the blocks created by the A

and B roads into smaller areas, and are mainly devoted to local

residential and business use [26].

The fact that the initial development of the A and B roads

generally precedes the development of minor roads in the case of

London’s evolution is quite clear from Fig. 1, where a relatively

dense net of A and B roads is already present in 1786. The city

then develops by filling the areas enclosed by A and B roads with

minor roads. In Fig. 2, we show the measure of the sum of the

lengths of the street segments of a given class LCLASS(t) as a

function of time in the left panel, and its change rate DL=Dt in the

right for GLA’s street network growth (motorways have been

excluded from this analysis, since they only appear from the 1965

map onwards and occupy a small number of transport links in

Greater London). From this analysis, it is clear that the main

structure of the A and B road backbone pre-dated the city in 1786,

although additions to this backbone have increased by a factor of

4.2 during the subsequent 224 years. However, minor roads

comprise most of the network growth that has taken place. This

mixture of major and minor roads leads to a considerable

fragmentation of the major road system, increasing the number of

intersections. We believe that this mechanism ultimately generates

the kind of complex street pattern that we experience in large cities

[27].

These two different phenomena are reflected in different street

intersection patterns depicted in Fig. 3, which shows a sample

10 km610 km GLA area at a time interval of around one century.

In the left panel, we show the intersection pattern of the non-

urbanized area of the 1880 GLA map comprised of

N~355 points (intersections), which have an average density

r~3:55:10{6 m{2. If the system were homogeneous, this density

would suggest a length-scale of the order l*1=
ffiffiffi
r
p

&530 m, one

that we generally experience when we are outside the city’s

boundaries. In the right panel, we show the intersections for the

same grid square in 1990, including N~4704 intersections with

an average density r~4:7:10{5 m{2. This gives a scale to the

system of the order of l&146 m, that is a spatial scale we

experience typically in compactly developed cities.

These observations relate the identification of an urban area to

the street intersection density in that area. This idea was

introduced by Jia et al. in [28], bringing to the fore the concept

of natural cities. In order to give strength to this reasoning, in Fig. 4

we show a qualitative analysis of the intersection density in the

GLA area. The figure is reminiscent of a wild fire spreading, or

more generally of a percolation phenomenon [29]. If we then use

box-counting to calculate the number of boxes NB(R) at scale R

that are occupied by intersections, we know that this quantity

scales as a power law NB(R)!R{DF for fractal objects, where DF

is the fractal dimension [30].

In the left panel of Fig. 5, we show NB(R) for street patterns in

the GLA area at three time slices, each separated by about one

century. The relationships overlap, closely fitting a power law with

a fractal exponent DF&1:78. The right panel of the same figure

displays the results of an identical analysis but for the city area of

London (which we define below as the core). Interestingly, the

behaviour of the road networks does not change at these different

scales, which is a typical property of fractal objects, but the growth

pattern is clearly different in the core from the GLA area. This

analysis shows that the intersection density is a robust property of

the road networks in the GLA. This observation allows us to

Figure 2. Left panel: sum of the length of the street segments of a given class LCLASS(t) as a function of time expressed in meters. Right panel:
growth rate DL

Dt
for the sum of the length of the street segments of a given class as a function of time expressed in meters/year.

doi:10.1371/journal.pone.0069469.g002

Figure 3. Left panel: Street intersections inside a 10 km side square in
the non-urbanized area of the GLA in 1880. Right panel: Street
intersections inside the same square in 1990.
doi:10.1371/journal.pone.0069469.g003
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address the boundary of the city or urban core problem in the

intersection density space.

In order to split the core from the wider area, by separating the

area of high intersection density patterns from the parts of the

maps where the intersection density is low, we apply the Jenks

natural breaks algorithm to the GLA density maps [31]. This

methodology begins with a certain number of classes, then

generates regions minimizing the within-class variance, while

maximizing the inter-class variance between different regions.

Setting the number of classes for the intersection density equal to

two, we find that the algorithm clearly identifies urbanized areas

from areas that are not urbanized. We then use the boundaries of

these regions as those of the city. In this way, the spread of urban

development within the GLA area is well-defined and the

boundary for London’s city core is clearly demarcated through

the years, as we show in Fig. 6.

We refer to the urban core areas shown in Fig. 6 as ‘‘London’’, in

order to distinguish it from the GLA area in Fig. 1. Such a choice

enables us to recognise the emergence of some robust network

properties that identify the city as a well-defined physical object.

Street length and face area distributions are robust features

emerging from our city boundaries definition. These properties are

shown in Fig. 7.

In the top panels of Fig. 7, we show the street length distribution

P(l) for the street segments, defined by every two consecutive

intersections. In the top-left panel, the measure is calculated for the

GLA area in 1786, when it is mostly not yet urbanized. The

distribution displays a clear exponential tail. In the top-right panel,

we show the same measure computed for three time slices which

Figure 4. Street intersection density surfaces in the GLA area from 1786 to 2010.
doi:10.1371/journal.pone.0069469.g004

Figure 5. Number of occupied squares NB(R) at scale R for the intersection density maps and measurement of the fractal exponent
DF . Left panel: For the GLA. Right panel: For the density core we define as London.
doi:10.1371/journal.pone.0069469.g005
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differ by about one century for London. In this case, the

distribution is robustly log-normal throughout the entire 224

years (see R2 values in the caption).

The city face or parcel area (referred in common language as

city blocks) is a quantity that has been considered in statistical

physics, since it displays a fat tail distribution [32,33]. In the

middle-right panel of Fig. 7, we show the face area distribution

P(A) in the 1786, 1880 and 1900 London street networks. The

plots are well fitted by log-normal distributions. This finding might

appear to be contradictory to previous claims that such a

distribution is scale free [14,15,33], but in reality the confusion

between lognormal and power law distributions is well known and

can be easily understood [34]. However, it is quite reasonable to

think that the city face area distribution is not a scale-free

phenomena, since there is an evident limit for the size of urban

blocks, which are rarely smaller than 100 m2. The face area

distribution is a robust property of the system as defined by the

minor roads. To see this, in the middle-left panel of Fig. 7, we

show the face area distribution for the 1965 map, when minor

roads are excluded. From the cumulative distribution, it is possible

to see that the tail of this distribution is exponential.

In the bottom panels of Fig. 7, we measure the total length of

the street network L(N) as a function of the number of

intersections N . In [35,36], this measure is shown to be sub-

linear, with an exponent close to 0.5, i.e. L(N)!
ffiffiffiffiffi
N
p

. In the

bottom-left panel, we show that measuring this quantity in the

GLA area, we also obtain a sub-linear trend, with exponent 0.68.

Nevertheless, when we measure this quantity for the London area

as defined above, the behaviour is linear (bottom-right panel),

showing that urban statistical behaviour is very sensitive to the city

boundary definition. However this measure is merely qualitative

and it serves us to illustrate how the definition of the city boundary

can drastically change the result of a statistical measure, so that the

linear trend has to be considered purely qualitative. In the next

section we provide a better approximation for this quantity.

Capacitated growth in London
The next step in our analysis is to examine the properties of the

planar graphs representing London from 1786 to 2010. In a city,

there are structures such as bridges and tunnels which violate the

planarity of the graph, but as the percentage of such violations is

negligible (v0:01%), the planar graph representation can be

considered an excellent approximation.

As we stated in the previous section, the growth of a city can be

seen as a percolation phenomena in a two-dimensional space.

However, in the UK and particularly in London, urban sprawl is

highly controlled by bands of open space forming the green belt,

which in London’s case was formally incorporated in 1953 [37],

but dates back as an idea to the time of Queen Elizabeth I. We can

therefore argue that the elements forming the street network of

London, i.e. the intersections and the street segments, grew in time

as a space-filling phenomena to the capacitated limit determined

by this green belt. In analytical terms we can say that if f (t) is the

number of intersections or street segments defining the network,

the simplest growth dynamics for such elements to the capacitated

limit can be expressed as:

df (t)

dt
~rf (t) 1{

f (t)

C

� �
, ð1Þ

where r is the growth rate and C the carrying capacity. The carrying

capacity represents the bias to the free growth of the system, i.e.

when f (t)~C, the growth of the network stops (df ~0). In the

case of C~z?, the solution of Eq.1 is an exponential function

with growth rate r, that is the solution for unbiased growth. The

general solution of Eq.1 has been well known since 1838 in the

work of Verhulst [18], and it is the logistic function:

Figure 6. Our definition of London’s street network, as the urban core of the GLA area derived using the Jenks clustering
algorithm.
doi:10.1371/journal.pone.0069469.g006
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Figure 7. Top-left panel: Street length distribution as measured in the GLA area in 1786 with exponential fit (R2~0:99). Top-right panel: Street
length distribution for London as defined by the Jenks’ algorithm about one century apart with lognormal fit (R2~0:97=0:99=0:99 for 1786, 1880,
2010). Middle-left panel: Parcel area distribution for the network generated by motorways, A and B roads in the 1965 GLA area with exponential fit
(R2~0:99). Middle-right panel: Parcel area distribution for London with lognormal fit (R2~0:98=0:99=0:99 for 1786, 1880, 2010). Bottom-left panel:

London’s Street Network Dynamics

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e69469



f (t)~
C

1ze{r(t{t0)
, ð2Þ

where t0 is the inflection point, i.e. L2f =Lt2Dt~t0
~0.

In the top panels of Fig. 8, we present the measures of the

number of vertices N(t) and the number of edges E(t) as a

function of time t. The goodness of fit of such plots with the logistic

function of Eq.2 is impressive (Adj:R2~0:9988 for N,

Adj:R2~0:9984 for E).

First, Eq.2 allows us to forecast the asymptotic value for the

number of intersections as N?~CN&85123, for the street

segments E?~CE&115615 and for the related average street

connectivity vkw
?~2E?=N?&2:72 in London.

In the bottom-left panel of Fig. 8, we show the growth of the

number of links or segments as a function of the number of

vertices, i.e. the topological growth of the planar graph. This can

be analytically expressed by combining the two logistic functions

expressing the growth of the vertices and the edges, and can be

written as:

E(N)~
CE

1za
CN

N
{1

� �rE
rN

2
4

3
5

, ð3Þ

where a~exp½rE(t0E{t0N )� is constant and rE=rN&1:07 is close

to unity.

Total street length as a function of the number of intersections for the GLA area with allometric fit (R2~0:99). Bottom-right panel: Total street length
as a function of the number of intersections for London with allometric fit (R2~0:99).
doi:10.1371/journal.pone.0069469.g007

Figure 8. Top-left panel: The number of street intersections N(t) as a function of time and the logistic fit (R2~0:999). Top-right panel: The number
of street segments E(t) as a function of time and the logistic fit (R2~0:998). Bottom-left panel: The number of street segments E(N) as a function of
the number of street intersections (R2~0:999). Bottom-right panel: The average degree vk(N)w of the networks as a function of the number of
street intersections (R2~0:74).
doi:10.1371/journal.pone.0069469.g008
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In the bottom-right panel of Fig. 8, we show the average degree

vk(N)w of the network as a function of the number of vertices

N . This is a slightly decreasing function of time, indicating that the

city tends to become a more tree-like structure. Considering that

vk(N)w~2E=N, this is readily computed from Eq.3. This is an

important result, since the average degree is related to the treeness

or loopiness of the graph [38]. In particular vkw~2 characterizes

tree-like structures, while vkw~4 characterizes grid-like struc-

tures [39]. In general in nature we find situations where the

average degree is between these two values. It has been shown that

for leaf venation networks, the loopy structure evolves from a tree

[40] and relevant research has been done on the robustness of

loopy architectures [2,4,5]. Here we show that the London’s urban

street network tends to evolve from a more loopy architecture to a

more tree-like one. This is in accordance with a space-filling

principle where first a loopy architecture emerges in order to

assure a proper and robust circulation of goods in the territory and

then empty spaces are filled with leaves. This observation is related

to the tendency of planned cities to evolve into self-organized

cities, a process represented by the transformation of many

European urban cores from rigid Roman grids into more organic

structures during the medieval period [41].

Now we have the instruments to approximate a solution for the

total length of the London street network L(N) as a function of the

number of nodes N. Since the length distribution of the street

segment is lognormal (Fig. 7), the average length vlw of the

street segments is a well defined quantity. Therefore the total

length of the network can be expressed as

L(N)~E(N)vl(N)w, ð4Þ

where vl(N)w is a slowly varying function of the number of

vertices and can be approximated by a line (see left panel of Fig. 9)

and E(N) is given by Eq.3. In the right panel of Fig. 9, we show

the total length of the network fitted by Eq.4. Again the goodness

of the fit is highly satisfactory (R2~0:9951).

Discussion

Urban street networks are complex phenomena, in the sense

that they are assemblages of elemental units such as streets, which

emerge over centuries or millennia, and despite the absence of a

unique urban plan, they show global universal statistical proper-

ties. Here we show that despite the complexity of urban systems,

there are some useful perspectives on the city that consider urban

growth to be an analytically tractable phenomenon. Using London

as a case study, we have shown that the topological and metrical

properties characterizing the complexity of a city can be

disentangled and described by a small number of parameters that

generate the growth of infrastructure within a limited space. This

allows us to derive analytically a few key quantities and to forecast

the future evolution of the street network. Also we are able to

derive global properties of the network, such as its loopiness, by

tracking the time evolution of its elemental constitutive elements. It

is important to underline the fact that the growth of London is

strongly influenced by the Green Belt policy, which was first

suggested nearly 100 years ago, with policies effectively constrain-

ing the city’s urbanization process over this period. We can also

speculate that the introduction of the formal policy in 1953

corresponds roughly to the inflection points on the logistic

functions shown in Fig. 8, implying that city shapes and forms

are highly influenced by local policies.

Regarding the generality of the presented results, we underline

that at this stage of the research our generalization of the results is

entirely speculative. We show how London’s growth is highly

constrained by local policies, such as the Green Belt. One could

argue that this makes London a special case, but this is not the case

at least for England, where all large cities are surrounded by such

constraining green areas [42]. As we pointed out earlier, other

than England many other cities and city states in the world are

similarly constrained. Moreover we have to consider that a green

belt acts as a natural barrier, such as a sea, a lake, a mountain, etc.

and that many cities lacking administrative barriers have natural

barriers to constrain their growth. This is just to say that even if

each city is unique, London’s capacitated growth must not be

considered as extreme or idiosyncratic.

Another possible critique to this analysis could be the validity of

the application of the Verhulst model of Eq.1 to the London’s

street intersection and segment growth. As a matter of fact,

sigmoidal functions are widely recognisable in nature and can be

subject to different interpretations. Nevertheless, Eq.1 represents a

population growth to a capacitated limit, that seems to represent

our case study and we can see from the left panel of Fig. 10 that

the street intersection growth is strictly correlated with the

Figure 9. Left panel: the average length vl(N)w of the street segments in London’s urban core as a function of the number of vertices. The fitting
function is a line, vl(N)w~5:10{4Nz99, (adj. R2~0:90). Right panel: the total length of the network L(N) as a function of the number of vertices,
fitted by Eq.4 (R2~0:995).
doi:10.1371/journal.pone.0069469.g009
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population growth, where the Verhulst model is first introduced

for population growth to a capacitated limit. Moreover in the right

panel of Fig. 10, we show that Eq.1 can be verified empirically,

where dN=dt has a neat quadratic behaviour as a function of N.

Interestingly, this represents a clear and strong violation of

Gibrat’s law, although we do not formally test this speculation with

respect to its measurement.

One could argue that the condensation phenomena that is

evident in Fig. 8 is a result of limiting the dataset to the GLA area

and that if one would consider a wider area a different behaviour

could possibly be found. To test this we show in Fig. 11 the actual

greenbelt and the extension of the modern London extracted with

the methodology outlined in this paper. The figure demonstrates

that the 2010 extent of London as defined in our methodology

does not violate the greenbelt. This supports the argument that the

greenbelt effectively stopped the expansion of London’s road

infrastructure.

Understanding urban growth, particularly the capacitated

growth of large cities like London, is central to many perspectives

on how we must design and manage urban areas in order to

accommodate a sustainable environment. The analysis of spatially

constrained network growth becomes particularly relevant in the

light of the ongoing global debate about sustainable development

and public policies aimed at limiting suburban sprawl. By the

middle of the twenty-first century, the world’s urban population is

expected to double, increasing from approximately 3.4 billion in

2009 to 6.4 billion in 2050 [43]. This growth will put an enormous

strain on natural resources and one of the most popular mitigation

measures adopted by planning authorities throughout the globe is

to set physical limits to urban expansion [44]. Many fast growing

world cities (e.g., São Paolo, Seoul, Beijing, Hong Kong, etc.) have

followed London’s example and instituted green belts to stop

urban sprawl. In the last few decades, a number of metropolitan

areas in the US (e.g. Portland, Seattle, etc.) have introduced urban

Figure 10. In the left panel, we show the street intersection growth N(t) and the population growth for London as a function of time. To appreciate
the correlations between the two phenomena we normalised both measures to unity. In the right panel, we show the variation of street intersections
during time dN=dt as a function of the number of intersections N . This represents a strong violation of Gibrat’s law.
doi:10.1371/journal.pone.0069469.g010

Figure 11. The greenbelt surrounding London and the actual extension of London as calculated with the method introduced in the
paper. The extensions of London’s street network which appear to violate the green belt boundary are in fact filling in highly fragmented interstitial
areas not included in the green belt.
doi:10.1371/journal.pone.0069469.g011
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growth boundaries and this policy is being adopted by many cities

around the globe. In this light, it is critical to examine the

behaviour of infrastructure and transport networks under the

conditions of constrained growth as key determinants of urban

growth patterns. Our analysis is aimed at shedding light on the

spatial behaviour of such systems using London as an important

and illuminating case study.

We consider the observations presented here to be a first step

towards a fuller understanding of pattern formation in the

evolution of such cities, and it is thus essential that studies of

different cities are now needed to explore the existence of more

universal properties of such limits on urban growth. We also

speculate that the analytical techniques presented in this paper

could be successfully applied in the analysis of other reticulated

planar networks, such as leaf venation patterns, circulatory or river

networks.
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