22 research outputs found

    Developing policy-relevant river fish monitoring in Greece: Insights from a nation-wide survey

    Get PDF
    A wide-ranging river fish survey was executed in the summer of 2009 as part of the preparatory actions for the establishment of a monitoring programme for the EU Water Framework Directive (WFD). This was the first extensive electrofishing campaign for WFD standardized bioassessment in Greece and the experience and insights gained are used here to provide a review of fish-based assessment conditions and requirements in this country. The survey sampled 85 sites on 25 rivers throughout mainland Greece, collecting 70 species of freshwater fish. Quantitative site-based assemblage data is used for taxonomic and ordination analyses revealing a strong biogeographic regionalization in the distribution of the ichthyofauna. The structural and spatial organisation of the fish fauna through the use of species-level and community-level data analyses is explored in three ecoregions where data was deemed sufficient. Transitions in community taxonomic composition among ecoregions were abrupt and concordant with geographical barriers and reflect the influence of historical biogeographic processes. Community-based analysis revealed a substantial degree of variation in quantitative attributes of the fish assemblages among ecoregions. Key conclusions of this work are: (a) the fish-based bioassessment system must be regionalised to reflect biogeographic variation, (b) high faunal heterogeneity among ecoregions (taxonomic, structural), and to a lower degree among basins, constrain the transferability of bioassessment metrics and indices created for explicit regions to other regional frameworks; (c) faunal depauperation in most of the study areas reduce the utility of functional bioassessment metrics and also limits the utilization of rare species and the applicability of the classical form of the “Index of Biotic Integrity” concept. Recommendations to cope with these problems are discussed

    The Large Magellanic Cloud and the Distance Scale

    Full text link
    The Magellanic Clouds, especially the Large Magellanic Cloud, are places where multiple distance indicators can be compared with each other in a straight-forward manner at considerable precision. We here review the distances derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing Binaries, and show that the results from these distance indicators generally agree to within their errors, and the distance modulus to the Large Magellanic Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science. From a presentation at the conference The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective, Naples, May 201

    The XMM-Newton survey of the Small Magellanic Cloud: XMMUJ010633.1-731543 and XMMUJ010743.1-715953, two new Be/X-ray binary systems

    Full text link
    In the course of the XMM-Newton survey of the Small Magellanic Cloud (SMC), two new bright X-ray sources were discovered exhibiting the spectral characteris- tics of High Mass X-ray Binaries - but revealing only weak evidence for pulsations in just one of the objects(at 153s in XMMUJ010743.1-715953). The accurate X- ray source locations permit the identification of these X-ray source with Be stars, thereby strongly suggesting these systems are new Be/X-ray binaries. From blue spectra the proposed classification for XMMUJ010633.1-731543 is B0.5-1Ve and for XMMUJ010743.1-715953 it is B2IV-Ve.Comment: MNRAS (accepted), 12 pages, 17 figures, 4 table

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    RR lyrae variables in the small magellanic cloud - II. The extended area: Chemical and structural analysis

    No full text
    We have performed the Fourier decomposition analysis of 8- and 13-yr V-band light curves of a carefully selected sample of 454 fundamental-mode RR Lyrae variables (RRab type), detected in an ≃14 square degree area of the Small Magellanic Cloud (SMC) and listed in the Optical Gravitational Lensing Experiment, phase III, Catalogue of Variable Stars. The Fourier decomposition parameters were used to derive metal abundances and distance moduli, following the methodology described by Kapakos, Hatzidimitriou & Soszyński. The average metal abundance of the RRab stars on the new scale of Carretta et al. was found to be &lange;[Fe/H]C09⦥=-1.69±0.41 dex (std, with a standard error of 0.02 dex). A tentativemetallicity gradient of -0.013 ± 0.007 dex kpc -1 was detected, with increasing metal abundance towards the dynamical centre of the SMC, but selection effects are also discussed. The distance modulus of the SMC was re-estimated and was found to be &lange;μ⦥ = 19.13 ± 0.19 (std) in a distance scale where the distance modulus of the Large Magellanic Cloud (LMC) is μLMC = 18.52 ± 0.06 (std). The average 1σ line-of-sight depth was found to be σ int = 5.3 ± 0.4 kpc (std), while spatial variations of the depth were detected. The SMC was found to be deeper in the north-eastern region, while metal-richer and metal-poorer objects in the sample seem to belong to different dynamical structures. The former have smaller scale height and may constitute a thick disc, its width being 10.40 ± 0.02 kpc, and a bulge whose size (radius) is estimated to be 2.09 ± 0.81 kpc. The latter seem to belong to a halo structure with a maximum depth along the line of sight extending over 16 kpc in the SMC central region and falling to σ12 kpc in the outer regions. © 2012 The Authors Monthly Notices of the Royal Astronomical Society. © 2012 RAS

    RR Lyrae variables in the Small Magellanic Cloud - I. The central region

    No full text
    We have performed the Fourier decomposition analysis of 11-yr V-band light curves of a carefully selected sample of 100 RR Lyrae variables, detected in the central regions of the Small Magellanic Cloud (SMC), with the Optical Gravitational Lensing Experiment, phases II and III. The sample consisted of 84 fundamental mode pulsators (RRab stars) and 16 first-overtone pulsators (RRc stars). The Fourier decomposition parameters were used to derive metal abundances and distance moduli for these RR Lyrae variables. The average metal abundance of the RRab stars on the new scale of Carretta et al. is found to be 〈[Fe/H]C09〉=-1.62 ± 0.41 dex (std, with a standard error of 0.05 dex). The distance modulus of the SMC was found to be 〈μ〉= 18.90 ± 0.18(std) from the RRab population in a distance scale where the distance modulus of the Large Magellanic Cloud (LMC) is μLMC= 18.52 ± 0.06 (std). The 1σ line-of-sight depth for the RRab stars was found to be σint= 4.13 ± 0.27kpc, in good agreement with that estimated from red clump stars and eclipsing binaries. There is a clear indication that the metal-poorer and metal-richer objects in the sample may belong to different dynamical structures. The metal-rich stars have smaller scaleheight and could be part of a disc-like structure, while the more metal poor objects could be part of a much thicker structure, such as an inner halo or a bulge component. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS
    corecore