17,527 research outputs found

    Maxwell Superalgebras and Abelian Semigroup Expansion

    Get PDF
    The Abelian semigroup expansion is a powerful and simple method to derive new Lie algebras from a given one. Recently it was shown that the SS-expansion of so(3,2)\mathfrak{so}\left( 3,2\right) leads us to the Maxwell algebra M\mathcal{M}. In this paper we extend this result to superalgebras, by proving that different choices of abelian semigroups SS lead to interesting D=4D=4 Maxwell Superalgebras. In particular, the minimal Maxwell superalgebra sMs\mathcal{M} and the NN-extended Maxwell superalgebra sM(N)s\mathcal{M}^{\left( N\right) } recently found by the Maurer Cartan expansion procedure, are derived alternatively as an SS-expansion of osp(4N)\mathfrak{osp}\left( 4|N\right) . Moreover we show that new minimal Maxwell superalgebras type sMm+2s\mathcal{M}_{m+2} and their NN-extended generalization can be obtained using the SS-expansion procedure.Comment: 31 pages, some clarifications in the abstract,introduction and conclusion, typos corrected, a reference and acknowledgements added, accepted for publication in Nuclear Physics

    N=1 Supergravity and Maxwell superalgebras

    Get PDF
    We present the construction of the D=4D=4 supergravity action from the minimal Maxwell superalgebra sM4s\mathcal{M}_{4}, which can be derived from the osp(41)\mathfrak{osp}\left( 4|1\right) superalgebra by applying the abelian semigroup expansion procedure. We show that N=1N=1, D=4D=4 pure supergravity can be obtained alternatively as the MacDowell-Mansouri like action built from the curvatures of the Maxwell superalgebra sM4s\mathcal{M}_{4}. We extend this result to all minimal Maxwell superalgebras type sMm+2s\mathcal{M}_{m+2}. The invariance under supersymmetry transformations is also analized.Comment: 22 pages, published versio

    Lovelock gravities from Born-Infeld gravity theory

    Get PDF
    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm\mathfrak{C}_{m}. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.Comment: v3, 15 pages, two references added, published versio

    Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type

    Get PDF
    Recently was shown that standard odd and even-dimensional General Relativity can be obtained from a (2n+1)(2n+1)-dimensional Chern-Simons Lagrangian invariant under the B2n+1B_{2n+1} algebra and from a (2n)(2n)-dimensional Born-Infeld Lagrangian invariant under a subalgebra LB2n+1\cal{L}^{B_{2n+1}} respectively. Very Recently, it was shown that the generalized In\"on\"u-Wigner contraction of the generalized AdS-Maxwell algebras provides Maxwell algebras types Mm\cal{M}_{m} which correspond to the so called BmB_{m} Lie algebras. In this article we report on a simple model that suggests a mechanism by which standard odd-dimensional General Relativity may emerge as a weak coupling constant limit of a (2p+1)(2p+1)-dimensional Chern-Simons Lagrangian invariant under the Maxwell algebra type M2m+1\cal{M}_{2m+1}, if and only if mpm\geq p. Similarly, we show that standard even-dimensional General Relativity emerges as a weak coupling constant limit of a (2p)(2p)-dimensional Born-Infeld type Lagrangian invariant under a subalgebra LM2m\cal{L}^{\cal{M}_{2m}} of the Maxwell algebra type, if and only if mpm\geq p. It is shown that when m<pm<p this is not possible for a (2p+1)(2p+1)-dimensional Chern-Simons Lagrangian invariant under the M2m+1\cal{M}_{2m+1} and for a (2p)(2p)-dimensional Born-Infeld type Lagrangian invariant under LM2m\cal{L}^{\cal{M}_{2m}} algebra.Comment: 30 pages, accepted for publication in Eur.Phys.J.C. arXiv admin note: text overlap with arXiv:1309.006

    Generalized Poincare algebras and Lovelock-Cartan gravity theory

    Get PDF
    We show that the Lagrangian for Lovelock-Cartan gravity theory can be re-formulated as an action which leads to General Relativity in a certain limit. In odd dimensions the Lagrangian leads to a Chern-Simons theory invariant under the generalized Poincar\'{e} algebra B2n+1,\mathfrak{B}_{2n+1}, while in even dimensions the Lagrangian leads to a Born-Infeld theory invariant under a subalgebra of the B2n+1\mathfrak{B}_{2n+1} algebra. It is also shown that torsion may occur explicitly in the Lagrangian leading to new torsional Lagrangians, which are related to the Chern-Pontryagin character for the B2n+1B_{2n+1} group.Comment: v2: 18 pages, minor modification in the title, some clarifications in the abstract, introduction and section 2, section 4 has been rewritten, typos corrected, references added. Accepted for publication in Physic letters

    Few-body decay and recombination in nuclear astrophysics

    Get PDF
    Three-body continuum problems are investigated for light nuclei of astrophysical relevance. We focus on three-body decays of resonances or recombination via resonances or the continuum background. The concepts of widths, decay mechanisms and dynamic evolution are discussed. We also discuss results for the triple α\alpha decay in connection with 2+2^+ resonances and density and temperature dependence rates of recombination into light nuclei from α\alpha-particles and neutrons.Comment: 9 pages, 8 figures. Proceedings of the 21st European Few Body Conference held in Salamanca (Spain) in August-September 201

    Positivity in the presence of initial system-environment correlation

    Get PDF
    The constraints imposed by the initial system-environment correlation can lead to nonpositive Dynamical maps. We find the conditions for positivity and complete positivity of such dynamical maps by using the concept of an assignment map. Any initial system-environment correlations make the assignment map nonpositive, while the positivity of the dynamical map depends on the interplay between the assignment map and the system-environment coupling. We show how this interplay can reveal or hide the nonpositivity of the assignment map. We discuss the role of this interplay in Markovian models.Comment: close to the published version. 5 pages, 1 figur
    corecore