948,647 research outputs found

    Thin KAPTON polyimide films vacuum formed at high temperature retain their shape at temperatures to 450 K

    Get PDF
    Purpose of investigation was to identify candidate materials for self-evacuating multilayer insulation systems to be used on liquid hydrogen tanks on space shuttle, which would survive re-entry temperatures and mechanical and thermal cycling of one hundred flights

    Evidence for episodic warm outflowing CO gas from the intermediate mass young stellar object IRAS 08470-4321

    Get PDF
    We present a R=10,000 M-band spectrum of LLN19 (IRAS 08470-4321), a heavily embedded intermediate-mass young stellar object located in the Vela Molecular Cloud, obtained with VLT-ISAAC. The data were fitted by a 2-slab cold-hot model and a wind model. The spectrum exhibits deep broad ro-vibrational absorption lines of 12CO v=1<-0 and 13CO v=1<-0. A weak CO ice feature at 4.67 micron is also detected. Differences in velocity indicate that the warm gas is distinct from the cold millimeter emitting gas, which may be associated with the absorption by cooler gas (45K). The outflowing warm gas at 300-400K and with a mass-loss rate varying between 0.48E-7 and 4.2E-7 MSun /yr can explain most of the absorption. Several absorption lines were spectrally resolved in subsequent spectra obtained with the VLT-CRIRES instrument. Multiple absorption substructures in the high-resolution (R=100,000) spectra indicate that the mass-loss is episodic with at least two major events that occurred recently (<28 years). The discrete mass-loss events together with the large turbulent width of the gas (dv=10-12 km/s) are consistent with the predictions of the Jet-Bow shock outflow and the wide-angle wind model. The CO gas/solid column density ratio of 20-100 in the line-of-sight confirms that the circumstellar environment of LLN~19 is warm. We also derive a 12C/13C ratio of 67 +/- 3, consistent with previous measurements in local molecular clouds but not with the higher ratios found in the envelope of other young stellar objects.Comment: 16 pages, 12 figures, accepted for publication in MNRA

    Optimal mistuning for enhanced aeroelastic stability of transonic fans

    Get PDF
    An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom

    Limit-Cycle Properties of a Rijke Tube

    Get PDF
    Thermoacoustic instability appears when unsteady heat release is favourably coupled with acoustic pressure perturbations. The important technical applications involving thermoacoustics are combustion instability in rocket motors and low-pollutant lean flames; noisy industrial burners; pulsed combustors; and thermoacoustic engines. The simplest device for studying thermoacoustic instability is a Rijke tube. In this work, a series of experiments is carried out to determine the nonlinear behavior of the transition to instability and the excited regimes for an electrically driven Rijke tube. A hysteresis effect in the stability boundary is observed. A mathematical theory involving heat transfer, acoustics, and thermoacoustic interactions is developed to predict the transition to instability and limit-cycle properties

    Exclusive J/\psi Productions at e^+ e^- Colliders

    Get PDF
    Exclusive quarkonium pair production in electron-positron collisions is studied in non-relativistic QCD. The obtained cross section for J/\psi + \eta_c production in the leading order is confronted against the recent measurements by the Belle Collaboration at KEKB. It is shown that a large renormalization K-factor is necessary to explain the experimental data. We point out that the J^{PC}=0^{-+} nature of the hadronic systems that are assigned to be \eta_c should be tested by the triple angular distributions in terms of the scattering angle, and, polar and azimuthal angles of J/\psi into leptons. We further study J/\psi + J/\psi and \Upsilon + \Upsilon productions at LEP energies. Although the axial-vector couplings of the Z-boson to charm and bottom quarks allow production of such pairs when one of them is polarised transversally and the other longitudinally, we find that the integrated luminosity at Z pole accumulated by LEP is not large enough to observe the exclusive pair production of quarkonium.Comment: 11 pages, 2 eps figures, LaTe

    Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    Get PDF
    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching current, SNAPs showed sub 35 ps FWHM Gaussian jitter similar to standard 100 nm wide superconducting nanowire single-photon detectors. At lower values of IB, the instrument response function (IRF) of the detectors became wider, more asymmetric, and shifted to longer time delays. We could reproduce the experimentally observed IRF time-shift in simulations based on an electrothermal model, and explain the effect with a simple physical picture
    corecore