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We investigated the timing jitter of superconducting nanowire avalanche 

photodetectors (SNAPs, also referred to as cascade-switching superconducting 

single-photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near 

the switching current, SNAPs showed sub-35-ps FWHM Gaussian jitter similar to 

standard 100-nm-wide superconducting nanowire single-photon detectors. At lower 

values of IB, the instrument response function (IRF) of the detectors became wider, 

more asymmetric, and shifted to longer time delays. We could reproduce the 

experimentally observed IRF time-shift in simulations based on an electrothermal 

model, and explain the effect with a simple physical picture. 

 

Superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade-switching 

superconducting single-photon detectors) 1 are based on a parallel-nanowire architecture (Figure 1a) 

that allows single-photon counting with higher signal-to-noise ratio (up to a factor of ~ 4 higher 2 ) 

than superconducting nanowire single-photon detectors (SNSPDs) 3 with the same nanowire width. 

Figure 1b shows the equivalent electrical circuit of a SNAP with 4 parallel sections (or 4-SNAP). All 

of the sections have nominally the same kinetic inductance (L0) and are connected in series with an 

inductor (LS) and in parallel with a readout resistor (Rload). If the bias current (IB) of a N-SNAP is 
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origin of photodetection delay and jitter. However, jitter measurements as a function of IB, which have 

not been reported so far, have been hampered by decreasing signal-to-noise ratio (SNR, which makes 

the jitter induced by the electrical noise of the set up dominant over the jitter of the device) and 

exponentially decreasing detection efficiency (which makes the acquisition time of the instrument 

response function significantly longer 9 ) with decreasing IB. We recently found a way to overcome 

these obstacles: we employed SNAPs to read out 20- and 30-nm-wide nanowires 2. The detection 

efficiency at 1550 nm wavelength was 17-20% and showed only a weak bias-current-dependence 

(<5% relative variation) in the bias range IAV < IB < ISW, where ISW is the SNAP switching current 2. 

Taking advantage of the possibility of efficiently detecting single photons over the entire SNAP bias 

range with high SNR ( > 3, as defined in Ref. 2 ), we studied the timing performance of 30-nm-wide 2-, 

3- and 4-SNAPs as a function of the bias current. Our results suggest that the gap suppression time, 

which would be expected to be strongly dependent on the bias current, has little if any effect on the 

most-likely photodetection delay when the detectors are operating in single-photon regime.  

 We measured the instrument response function (IRF) of 10 devices with active areas ranging 

from 0.8 to 2.1 µm2 (see Ref. 2 for details on the fabrication process). Our main finding is that, 

although at bias currents near ISW the IRF of SNAPs had a Gaussian shape with sub-35-ps full width at 

half maximum (FWHM), at lower values of IB the IRF became wider, more asymmetric, and shifted to 

longer time delays. We could simulate the experimentally observed IRF time-shift (but not the 

observed asymmetry) by using an electrothermal model 10. 

To illuminate the detectors, we used a mode-locked, sub-ps-pulse-width laser emitting at 

~ 1550 nm wavelength with 77 MHz repetition rate. The laser output was split into two single-mode 

optical fibers that we coupled to the detector under test and to a low-jitter fast photodiode (pulse rise 

time < 35 ps). The signals from the SNAP and from the fast photodiode were sent to a 
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6-GHz-bandwidth, 40-GSample/s oscilloscope, which we used to measure the IRF. We verified that 

the SNAPs were operating in the single-photon regime by setting the power level of the incident light 

within a range in which the detector photoresponse counts increased linearly with incident power (as in 

Ref. 2 ).  

Figure 2a schematically represents the moments of the photodetection process most relevant to 

our discussion: (1) t0: a sub-ps laser pulse is emitted; (2) tFPD: the rising edge of the photoresponse 

pulse of the fast photodiode crosses the oscilloscope trigger level set to 50% of the average pulse peak 

value; (3) tHSN: a photon is absorbed in the nanowire and it starts a resistive state formation process 

(hotspot nucleation, HSN); (4) tξ: the first resistive slab of length ξ (the coherence length of NbN 10 ) is 

formed across the width of the initiating section; (5) tSNAP: the rising edge of the SNAP photoresponse 

pulse crosses the oscilloscope trigger level set to 50% of the average pulse peak value (which depends 

on IB); and (6) t95%: the SNAP photoresponse pulse crosses the oscilloscope trigger level set to 95% of 

the average pulse peak value.  

We defined the detector IRF as the histogram of the time delay tD measured on the oscilloscope 

between the rising edges of the fast photodiode pulse (tFPD) and of the SNAP pulse (tSNAP), i.e. 

tD = tSNAP - tFPD. The IRF histograms were calculated by using ~ 6·104 time delay samples. The 

absolute value of tD was set by the propagation times of the signals (laser pulse, fast-photodiode pulse 

and SNAP pulse) through the optical and electrical paths of our set up, as illustrated by arrows in 

Figure 2a. These delays were irrelevant to the problem. Therefore, for convenience we added an 

offset 11 so that tD = 0 s at the maximum of the IRF when the device under test was biased at IB = ISW.  

 Figure 2b shows the IRF of a 2-SNAP (normalized by its maximum value) at different bias 

currents. We observed two current-dependent effects in the IRF: (1) as IB was increased, the time delay 

corresponding to the maximum of the IRF (we called this time delay "maximum-likelihood delay", 
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MLD) shifted towards shorter time delays; (2) as IB was decreased, the IRF progressively transitioned 

from a Gaussian shape (when the detector was biased close to ISW) to a broader and asymmetric shape, 

exhibiting a decaying tail which extended for several hundreds of picoseconds beyond the MLD. 

 

Figure 2. a. Schematic representation of instances during the photodetection process. A photon from an optical pulse 

emitted at t0 is absorbed in the initiating section (tHSN), generating a resistive slab along the width of the nanowire (tξ). After 

the avalanche, the SNAP bias current is diverted into the load and an output voltage pulse forms across the load resistor. 

The arrival of this pulse can be detected once the rising edge of the SNAP pulse crosses the trigger level of the oscilloscope 

(tSNAP). We measured the time delay between tSNAP and a reference tFPD, the instant at which the rising edge of the 

photodetection signal from a fast photodiode crossed the trigger level of the oscilloscope. The voltage (V) vs time (t) curves 
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represent the oscilloscope traces of the fast photodiode (left hand side) and SNAP (right hand side) pulses. The dashed lines 

represent the 50% and 95% thresholds. b. IRF (normalized by the maximum of each trace) of a 30-nm-wide 2-SNAP at bias 

currents: IB / ISW = 1; 0.93; 0.85; 0.78; 0.73; 0.69 and 0.64. The curved arrow indicates the direction of increasing IB. The 

double-pointed arrow indicates the maximum-likelihood delay (MLD) at IB / ISW = 0.73. The MLD of the IRF was set to 

0 seconds at IB / ISW = 1. c. Jitter of a 2-, 3- and 4-SNAP based on 30-nm-wide nanowires as a function of the normalized 

bias current (IB / ISW). The switching currents of the 2-, 3-, and 4-SNAP were 13.2 µA, 17.9 µA, and 27.8 A respectively. 

The vertical dashed lines indicate the avalanche currents of the SNAPs 2. The data for the jitter of 3- and 4-SNAPs biased 

below IAV are not shown (see Ref. 12) as the devices were not operating as single-photon detectors (they were instead 

operating in arm-trigger regime as described in Ref. 2 ). d. IRF asymmetry vs. IB / ISW for the same devices shown in panel 

c.  

 Figure 2c shows the jitter of 2-, 3- and 4-SNAPs, defined as the FWHM of the IRF, as a 

function of IB/ISW. The jitter of SNAPs showed a weak dependence on the bias current for IB close to 

ISW (e.g. for a 2-SNAP the jitter increased from 35 ps at IB = 0.97ISW to 41 ps at IB = 0.88ISW), but 

rapidly increased as IB approached IAV (by ~ 100 ps for a decrease in IB of 0.1ISW). IAV was determined 

from detection efficiency measurements, as reported in Ref. 2. We note that for IB approaching ISW, 

SNAPs showed the same jitter as standard SNSPDs 6 (~33 ps), in contrast to previous reports of larger 

timing jitter of SNAPs 13,14. 

 Figure 2d shows the IRF asymmetry, defined as the ratio between the length of the IRF tails 

(experimentally defined as the time between 90% and 10% of the IRF maximum) after and before the 

MLD. Like the jitter, the asymmetry of SNAPs showed a weak dependence on the bias current at high 

IB, but rapidly increased as IB approached IAV.  

The shift of the MLD to shorter delays with increasing IB can be explained by considering the 

dependence of the electrothermal dynamics of the device on the bias current. Using the electrothermal 

model described in Ref. 10, we simulated the time evolution of the current diverted from the SNAP to 

the read out (Iout) after a HSN event occurred in the initiating section. Our model did not describe the 
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to the device of Figure 2b. Arrows indicate the time at which the resistive ξ-slab is formed (tξ); the time at which Iout 

reaches 95% of its maximum (t95%) for IB / ISW= 0.96; the detector peak time for IB / ISW = 0.96 (tP); and the direction of 

increasing IB. b. Experimental MLD vs IB (squares) and simulated tP vs IB (stars) for the 2-SNAP of Figure 2b. The error on 

the MLD values was assumed to be twice the bin size of the IRF histograms. The value of the MLD for the highest IB was 

set to 0 s. 

The absolute values of the MLD and of tP were defined with respect to different moments in 

time (tFPD for the MLD and tξ for tP) and by using different thresholds on the SNAP photoresponse 

pulse (50% of the average pulse peak value for the MLD and 95% of the average pulse peak value for 

tP, see Ref. 12 ). However, the current dependencies of the values of the MLD and tP were similar 

across the entire bias-current range (~ 30% of ISW) of single-photon operation. From the comparison 

between the experimentally measured MLD values and the calculated tP values, we conclude that, 

when neglecting the effect of jitter, the MLD dependence on current can be entirely accounted for by 

the bias dependence of the peak delay tP. Therefore, time difference tξ – tFPD does not significantly 

contribute to the bias dependence of the MLD. Since the time difference tHSN – tFPD does not depend on 

IB by definition 17, we can conclude that tξ – tHSN does not appreciably affect the bias dependence of the 

MLD either. Therefore, the gap suppression time 4, which is known to be current-dependent 18, has 

negligible influence on the resistive-slab creation time, i.e. the time difference tξ – tHSN. 

Our simulations indicate that the increase of tP with decreasing IB may not be unique to the 

SNAP operation. We simulated the operation of a SNSPD after a HSN event for different bias currents 

(see Ref. 12 ) and found that tP increases from 76 ps at IB = ISW to 127 ps at IB = 0.64ISW.The physical 

process responsible for the abrupt increase in the width and asymmetry of the IRF of SNAPs as IB 

approached IAV remains unexplained. The timing jitter may be related to statistical variations occuring 

within the resistive slab creation time (between tHSN and tξ), while the increase in the asymmetry with 
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decreasing bias current may be due to the increase in the time required by the current redistributed 

from the initiating section to suppress the superconducting gap in the secondary sections. 

The central result of this paper is the experimental observation that as the bias current of 

SNAPs was decreased from the device switching current, the device instrument response function 

(IRF) shifted to longer time delays and became more broad and asymmetric. While we were able to 

develop a model of the IRF time shift that closely described the experimental data, we could not 

explain the change in shape of the IRF as the bias current was varied. 

The authors thank Andrew Kerman, Hyunil Byun, James Daley, Mark Mondol and Prof. 

Rajeev Ram for technical support. Detector fabrication and modeling was supported by the Center for 

Excitonics (Award # DE-SC0001088). Measurements and work at MIT Lincoln Laboratory were 

sponsored by the United States Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, 

interpretations, recommendations and conclusions are those of the authors and are not necessarily 

endorsed by the United States Government. This work was completed while Prof. K. K. Berggren was 

on sabbatical at Delft University of Technology, and supported by the Netherlands Organization for 

Scientific Research. 
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IRF of SNAPs in arm-trigger regime 

When biased below the avalanche current (IAV), 3- and 4-SNAPs operated in arm-trigger regime 1. In this regime the 

devices did not operate as single-photon detectors because more than one hotspot nucleation (HSN) event was necessary to 

trigger a detector pulse (2 HSN events for 3-SNAPs and 2 or 3 HSN events, depending on the bias current, for 4-SNAPs). 

Therefore, as the bias current (IB) was decreased below IAV, the devices transitioned from operating as 3-SNAPs (4-SNAPs) 

biased slightly above IAV to operating as pseudo 2-SNAP (pseudo 3- or 2-SNAPs, depending on the bias current) biased 

close to the switching current (ISW). 

 Figure SM 1a shows the instrument response function (IRF) of a 3-SNAP for IB ranging from ISW to 0.52ISW. The IRF 

became wider and more asymmetric as IB was decreased from ISW to ~0.8ISW. For IB slightly below ~0.8ISW, the IRF 

abruptly changed shape and became approximately as narrow and symmetric as the IRF measured for IB ~ ISW. As IB was 

decreased further, the IRF became again wider and more asymmetric. Figure SM 1b and c show a quantitative 

characterization of the shape of the IRF of 3- and 4-SNAPs in terms of its width (jitter) and asymmetry. The abrupt changes 

in the shape of the IRF as IB was decreased can be explained with the arm-trigger-regime model, as discussed in Ref. 1. 

 

 

Figure SM 1. a. IRF (normalized by the maximum of each trace) of a 30-nm-wide 3-SNAP for IB ranging from ISW to 0.52ISW. b, c. Jitter (b, defined as 

the FWHM of the IRF) and IRF asymmetry (c) of a 30-nm-wide 3-SNAP (green, ISW = 17.9 µA) and 4-SNAP (blue, ISW = 25.6 μA). The IRF asymmetry 

was defined as the ratio between the IRF tails (experimentally defined as the time between 90% and 10% of the IRF maximum) before and after the 

maximum-likelihood delay. 
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Discussion of our definition of the MLD and of tP 

We adopted tSNAP as a reference to measure the MLD to maximize the count rate (and then minimize the acquisition time) 

and to minimize the counts due to the electrical noise when measuring the IRF (“false counts”, see Ref. 1 ).  

 We used low-noise 3-GHz-bandwidth amplifiers to read out the SNAPs. Therefore the rise time 2 of the measured 

SNAP photoresponse pulse was limited by the bandwidth of our amplifiers. Figure SM 2 shows the measured averaged 

voltage pulse of a 2-SNAP at different bias currents. Due to the bandwidth limitation, we observed a bias-independent 

delay (~305ps; see inset of ) between the times at which the rising edge of the SNAP photoresponse pulse reached 50% and 

95 % of the peak value (tSNAP and t95%). This constant offset between tSNAP and t95% allowed us to measure the current-

dependent behavior of t95% by measuring the current-dependent behavior of tSNAP.  

 

Figure SM 2. Measured voltage pulse (averaged over ~ 5000 traces; normalized to the pulse amplitude at IB=0.99ISW) of a 30-nm-wide 2-SNAP for IB 

ranging from 0.99ISW to 0.72ISW by steps of ~0.02ISW. The time at which the pulse reached its maximum value was set to 0 s. inset. Time delay between 

the 95%-of-maximum (t95%) and 50%-of-maximum transition (at tSNAP) of the rising edge of the voltage pulse as a function of normalized bias current 

IB/ISW. The maximum variation of t95%-tSNAP for IB ranging from 0.99ISW to 0.72ISW was 5ps.  

 Figure SM 3a shows the bias dependence of the MLD (experiment, black curve) and of the detector peak delay tP 

(simulation, in color) extracted from the simulated SNAP pulses shown in Figure 3a by using different thresholds on the 

SNAP pulse as references: tmax (red curve), the instant at which the SNAP photoresponse pulse reaches its maximum; t95% 

(orange curve), the instant at which the rising edge of the SNAP photoresponse pulse reaches 95% of the pulse peak value; 

and tSNAP (green curve), the instant at which the rising edge of the SNAP photoresponse pulse reachesb 50% of the pulse 
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