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Abstract

An inverse design prccedure was developed for the Jdesign
of a mistuned rotor. The design requirements are that the
stability margin of the eigenvalues of the aeroelastic system
be greater than or equal to some minimum stability margin, and
that the mass added to each blade be positive. The objective
was to achieve these requirements with a minimal amount of
mistuning. Hence, the problem was posed as a constrained
optimization problem. The conatrained minimization problam
was solved by the technigue of mathematical programming via
augmented Lagrangians. The unconstrained minimization phase
of this technigue was solved by the variable metric method of
Broyden, Fletcher, and Shanno.

The bladed disk was modelled as being composed of a rigid
disk mounted on a rigid shaft. Bach of the blades ware
modelled with a single tosional degree of freedcm. Adamcyzk
and Goldstein's linearized aerodynamic model for the unsteady
moment coefficients in a supersonic cascade was applied at the
typical section. The resulting non-self-adjoint eigenvalue
problem is of the form Ag = ABqg. The eigenvalues and
eigenvectors of this eigenvalue problem were found by a
fourth-order Runge-Kutta line integration of the derivatives
of the eigenvalues and eigenvectors.

It was shown that mass mistuning does not introduce
damping into the system, and that a necessary but not
sufficient condition for stability is tnat the blade be self
damped. The results of the optimization showed that an

optimally mistuned rotor can achieve a given stability margin
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for a much lower level of mistuning than alternate mistuning.
However, it was shown that optimal mistuning is sensitive to
errors in mistuning. Smalli errors in the implementation of
optimal mistuning can severely reduce the gains in stability
achieved by optimal mistuning. Alternate mistuning, on the

other hand, is relatively insensitive to errors in mistune.
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1. INTRODUCTION

The aercelastic phenomenon of flutter in a transonic
rotor is unusual in the field of airfoil aeroelasticity in
that the instability is not of the frequency coalescence type
which is common in isolated airfoils. The instability in a
rotor is due to the destabilizing effect of the cascade
aerodynamics. The motion of a single blade will cause
unsteady aerodynamic forces on all the other blades. These
forces can cause the rotor to be unstable. It has been shown
by several researchers that the effect of mistuning, that is
the altering of the natural frequencies of the blades of a
rotor, generally has a benificial effect on the stability of
the rotor [1-3]. In the past, however, the analysis of
mistuned rotors has been limited to the determination of the
aeroelastic behavior of a rotor whose mistuning has been
specified. In this investigation, the inverse problem is
solved. A method is presented for the determination of ‘the
mistuning arrangement which provides the greatest stability
for the least amount of mistuning.

Recently, Kaza and Kielb [1,2] have used a
bending~torsion coupled model of the blades to examine the
effects of mistuue on subsonic and supe "sonic rotors. They
showed that if the eiastic axis is at ihe midchord of the
blade, and the first bending frequency and the first torsional

frequency of the blades are not nearly egual, then the flutter

speed predicted by a single torsional mode agrees well with
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the results of the two degree of freedom bending-torsion
model. This indicates that the flutter of rotors is not of
the clasical bending-torsion frequency coalescence type.
Furthermore, their work has demonstrated that the effect of
mistuning is generally stabilizing.

The phenomenon of flutter in transonic rotors is
dependent on the unsteady aerodynamic forces acting on the
blades of the rotor. Several authora have studied the
unsteady forc¢es acting on blades in supersonic flows [4-6]).
The aerodynamic conditions modelled were steady uniform flows
over flat, rnonturning airfoils with unsteady perturbations of
the flow due to the motion of the airfoils. The flow was
modelled as irrotational, isentropic, and two-dimensional.
The blades undergo simple harmonic motion but are phased such
that the motion of the blades can be iescribed in terms of
travelling waves. This repregentation of the blade motion is
useful for deriving these unsteady forces. However, it will
be shown that this representation is not as useful for
studying the mistuned aeroelastic behavior of the rotor.

The unsteady aerodynamic forces can, through a Fourier
transformation, be converted into an influence coefficient
form. The coefficients indicate the force felt on a reference
blade for a unit amplitude displacement of any other blade on
the rotor. 1In this form, one can clearly identify the origin
of the forces acting on a blade. As early 25 1969,

Samoylovich [7] used such transformations to determine the

R T ekt & et
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influence coefficients of an infinite caacade. In 1934,
Srinivassn [B8] used a similar transformation to study the
influence of nistuning on blade torsional flutter of a
shrouded fan. In that samé year, Hanamura, Tanaka, and
Yamaguchi [9] used ' the inverse of this transform to convert
experimental data from individual blade generalized
coordinates to travelling wave coordinates. Recently, Kaza
and Kielb [1,2] have used a similar transformation ‘to
transform the mass and stiffness matrices from the individual
blade coordinates to the travelling wave coordinates to study
the effects of mistune on the flutter and forced response of
rotors.

In Chapter 2 of this report, the basic theory o0f rotor
aeroelasticity is reviewed. The blades are modelled with one
degree of freszsdom per blade to study the effects of structural
mistuning on the aeroelastic phenomenon of flutter. The
mistuned rotor stability problem ias cast as a matrix
eigenvalue problen. By making use of the properties of the
eigenvalue problem, it will be shown that structural mistuning
does not introduce damping into the system, but rather makes
use of the damping already present in the system to delay the
onset of flutter. Hence, there are limits to the usefulness
of mistuning as a mechanism for the preventition of flutter.

In Chapter 3, a method of determining the eigenvalues and
eigenvectors of the mistuned system is presented. The first

step in the process is to determine the derivatives of the
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eigenvalues with respect to *the mistune parameters. Once
these derivatives are known, one can then integrate these
derivatives to another 'mistuned gtate to determine the new
eigenvalues and eigenvectors. This integration is carried out
using a fourth-order Runge-Kutta algorithm. It was necessary
to develop this method of evaluation of the eigenvalues for
use with the inverse design procedure discussed in Chapter 4.
Conventional methods of evaluating the eigenvalues of such a
system (such as the inverse power method or the QR method) are
shown to be unacceptable for use in the inverse design
procedure.

The inverse design procedure is presented in Chapter 4.
When designing a rotor which will not flutter, one would like
to minimize the amount of mistuning required to achieve a
flutter free system. Por this reason, the inverse design
procedure was posed as a constrained minimization problem.
The minimized quantity is the amount of mistune in the rotor
and the constraint insures an adequate stability margin. This
inverse design problem can be divided into two parts: the
definition of the problem statement; and the efficient
solution for the conatrained minimum. As part of the problem
definition, a cost function must be defined whicﬁ represents
the level of mistune which is present in the rotor. The
design specifications are then c¢ast as constraints. For
inastance, one such depign requirement is that the rotor be

free of flutter at its aeroelastic design point. The second

LT i
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part of the problem is to find the solution for this
conatrained minimization problem. The solution is defined as
that mistune pattern which minimizes the cost function while
satisfying 21l the design requirements. The technique used to
solve this problem is mathematical programming via augmented
Lagrangians [16,11].

Finally, in Chapter 5, the results of the optimization
are presented. It will be shown that optimal mistuning can
achieve the design requirements at a relatively low level of
mistuning compared to alternate mistuning. However, several
other issues need to be addresgsed before the designer can
implement these optimal mistune patterns. For example, the
optimal mistune patterns found in this investigation are very
sensitive to errors in implementation. If the rotor is not
mistuned very precisely, the rotor will lose the stability
margin gained in the optimal mistuning. This and facets of
the problem of practical implementation will be discussed,
leading to a realistic assessment of the practical value and

realizable optimization of rotor mistuning.

i B 4
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2. AEROELASTIC EQUATIONS OF MOTION FOR A BLADED DISK

In this chapter, the equations of motion which gavern the
aeroelastic behavior of alhladed disk are developed and the
implications these equations have on stability are examined.
The bladed disk is modelled as a rigid disk mounted on a rigid
shaft. Each of the N flexible blades are aerodynamically
identical but may have small differences in structural
properties from one blade to the next. This structural
nonuniformity is known as mistuning. Mistuning may be of a
statistical nature due to manufacturing tolerances or material
differences from blade to blade, or it may be designed into
the rotor by introducing deliberate changes in blade materials

or dimensions.

2.1 STRUCTURAL DYNAMIC MODEL OF THE BLADED DISK

The disk considered in this investigation is -‘assumed to
be rigid and mounted on a rigid shaft rotating at rotational
speed {y- EBEach blade is assumed to have a giagle torsional
degree of fraeedom. In this investigation, this degree of
freedom was taken to be the first torsional mode of the blade.
The structural model does not include the effects of disk
flexibility, rotation, or blade to blade coupling through
shrouds. However, the principles of mistuning can be extended

to include such effects as discussed by Kaza and Kielb [12].

In the absaence of aerodynamic forces, each blade is uncoupled

from every other blade and behaves 1like an uncoupled
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oscillator. In this typical section analysis, the resulting
equations of motion are
Ii‘.{i * G qui = 0, ¢ = 0,1,2,... N-i (2.1)

where I; is the typical section moment of inertia, mai is
the first natural torsionzl frequency of the ith blade, and
q; is the torsional degree of freedom of the ith blade about
the elastic axis as shown in Figure 2.1. 1In the presence of
aerodynamic forces, the blades are recoupled since the forces
acting on one blade depend on the time_ history of all the

other blades.

I';Ei; + w;EI;C,i: M.‘;(q,a_J...,M,k,a‘;‘j,q.,...)) (2.2)

t=2 0, 0L%,...; N-|

where M = the relative Mach number
k = the reduced frequency of vibration
¢ = the solidity of the rotor at the typical
section
g = the stagger angle of the typical section
a = the location of the pitch axis

In matrix form this becomes

..



[\ I‘\](""'} ' [\“‘EL\]{%} - ZA’] {m} (2.3)

The right hand side of Equation (2.3) includes the effect
of both forces due to external forcing and forces arising from
the motion of the blades. Or said another way, the blades are
subjected to both inhomogeneous and homugeneous forces. The
stability of this system is governed by the homogeneous terms.
Therefore, when analyzing the aeroelastic stability of the
system, only the motion dependent forces need to be included.

To determine the solution to Eguation (2.3), it is
assumed = that all the blades undergo simple harmonic motion.
This assumption is made for two reasons. First, unsteady
aerodynamics coefficients are derived assuming the airfoils of
a cascade undergo uniform harmonic motion. Second, avan
though such an analysis does not strictly give the damping
ratios of the different modes, such an analysis will correctly
predict the neutral stability modes since the blades undergo
simple harmonic motion at the stability boundary. With the
assumption of simple harmonic motion, the displacement of the
blades is expressed as

cti - R"-(-ﬂ-i e‘jwt) , [= 0, 1, 2,..-, NI (2.4)

Substitution of Equation (2.4) into the equations of motion

results in the eigenvalue problem
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U A =) o AT (2.5)
) -Pndf
_ 17"([:’@‘[ L]{q;}ﬂjat

The aerodynamic influence coefficients, [L], are as yet
undetermined. However, by the symmetry of the cascade, it
must be that [L] is a circulant matrix [3]. That is, all the
columns of [L] are identical except that each succesive column
is shifted down by one row since the effect of blade 2 on
blade 1 must be the same as the effect of bhlade 3 on blade 2,
etc. Of course, [L] is s8till a function of w since the
unsteady aerodynamicas are a function of the reduced frequency
of vibration, k = wb/U. Dugundji and Bundas [13] have shown
how to approximate the unsteady aerodynamic forces over a wide
range of frequency k using Pade approximates and have included
this effect into a standing wave flutter analysis. However,
for the present analysis it is assumed that [L] is independent
of w since, for small amounts of mistune, the reduced

frequency of the various modes varies by a small amount.

2.2 NONDIMENSIONAL FORM OF THE EIGENVALUE PROBLEM

Some insight into the problem of flutter can be gained by
examining the eigenvalue equations in nondimensional form.
Toward this end, Equation (2.5) is divided by IRmR2 where «p
is the first +torsional frequency of the nominal reference
blade and I is the typical section moment of inertia. Then

the nondimensional eigenvalue problem becomes
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[oso)(a) = o [[resg] - 2 £ a3 e

where ey= the fractional mass mistune of the ith blade

ci- the fractional atiffness mistune of the ith
blade
Q= w/wR = the nondimensional eigenfrequency

K = the nondimensional mass of the blade compared
to the mass of the surrounding fluid
- m/Trpb2
r = the nondimensional radius of gyration
= {I/mb2
m = the mass of the typical section of the
nominal blade
In Equation (2.6), the matrix ([L] appears as an apparent
inertial term. This is a result of the choice of notation
since the aerodynamic forces were assumed to be proportional
to mz[LJ. If instead the aerodynamic forces were chosen to
be proportional to sz[Ll, where w, is the natural frequency
of the nominal blade, then [L] would appear as an apparent
stiffness term. However, both are good approximaticns at the
stabiiity boundary for small levels of mistune. Dugundji and
Bundas [13] have used bPade approximates to obtain Dbetter
approximations to the aerodynamic forces both close to and
away from the stability boundary and for a large range of
reduced fregquency.

Note that this eigenvalue problem is of the form
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[ }{a) =) 83} (2.7)

This form of the eigenvalue equation is slightly more
difficult to work with than the standard eigenvalue .form,
Qﬂ = Xg. Some useful properties of Equation (2.7) are
developed in Section 3.1.

In general, the &igenvalues ) will be complex and hence,
2  will also be complex. The fact that 2 i3 not purely real
but will have a small imaginary part violates the assumption
of simple harmonic motion. Strictly speaking, these
eigenvalues do not give the correct damping ratio of the
different eigenmodes. However, the assumption of simple
harmonic motion is only violated slightly since the imaginary
part of R is usually very small compared to the real part.
Bundas [14] has shown that for small dJamping ratios, the
damping ratio predicted by assumming simple harmonic motion
gives a good approximation to the actual damping ratio.

This approach of assuming simple harmonic motion, only to
find that the eigenvalues do not represent simple harmonic
motion, is similar to the traditional V~g diagram analysis
often used in analyzing the stability of isolated airfoils.
The damping ratio of each eigenvalue found from Equation (2.6)
is interpreted as the damping ratio which must be subtracted
from that mode so that the mode will undergo simple harmonic
motion.

An alternative formulation to the eigenvalue equation
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given in Section 2.2 is to pose the eigenvalue problem in
terms of travelling wave coordinates. Formulation of the

nondimensional eigenvalue problem in this fashion gives

[e] [ mn\][s]{q,& =
o (e [0 0T * s DT 301

where [E] is a linear transformation matrix (see Section 2.3),

(2.8)

and an is a travelling wave with an interblade phase angle
of B = 2™n/N. This form has been used by other investigators
to study the effects of mistune on rotor stability and forced
response [1,2]. The principle advantage to this form is that
the eigenvalues and eigenvectors of the tuned system are
readily determined. For € and §; =0, the eigenvalue

problem becomes

[r1fan = = 2« 2Lt Qs (2.9)

The characteristic equation is then

det ([I] -at|[1 ”,;t'“r‘[\jf'-:m =° (2.10)

Since all the matrices in Equation (2.9) are diagonal, the
determinant is equal to zero if and only if one or more of the
diagonal entries is equal to zero. This is equivalent to

3

2 A - =042, N1
. (”L/‘aég / hi=oiz (2.11)
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Hence, the eigenfrequencies ara

Q. = !

k +J"_+T;Lr;-— {(2.12)

It ias seen from Eguation (2.12) that the tuned rotor will

flutter if any one of the unsteady moment coefficients an has
a positive imaginary part. This formulation of the eigenvalue
problem is not as useful when €; and Gi are not equal to
zero. In the mistuned case, the matrices [E]-l [1+ ei][EJ and

[e3"L [1+ 6;JLE] will, in general, be fully populated.

2.3 DETERMINATION OF THE AERODYNAMIC INFLUENCE COEFFICIENT
MATRIX .

When describing simple harmonic motion of the blades,
there are many equally valid generalized coordinate systems
one can use to represent their motion. The three common
choices are the travelling wave representation, the standing
wave representation, and the individual blade coordinates
where each blade is represented by its own degree of freedom.
Of course, one may easily transform from one coordinate system
to another by simple coordinate transformations. The choice
of coordinate system will generally depend on the nature of
the problem being solved. For instance, when analyzing a
flexible disk, the mnatural chcice is the standing wave
coordinate system since for the tuned rotor, the¢ eigenmodes

are standing waves which can be classified by the number of
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nodal diameters and nodal circumferances.

"when deriving unsteady aerodynamic forces which act on a
blade, it is easiest to work in travelling wave coordinates.
However, describing the force acting on a reference blade as a
function of interblade phase angle does not yield a physical
understanding of the origin of these forces. One would like
to look at the unsteady air loads as influence coefficients,
i.e., forces which act on a given blade due to the motion of
other individual blades. Looking ﬁt the forces in this manner
gives a clearer picture of the mechanisms of flutter.

Consider the cascade shown in Figure 2.2. Suppose there
is a travelling wavé moﬁing through the cascade with an
interblade phase angle of B, = 2mn/N. The deflection of the
ith blade is then

J[h’t#ﬂni) (2.13)

9 = 9. ¢
As Bn has been defined, the travelling wave moves in the
direction of rotor rotation with a wave speed of w/n. Of
course, it is equally valid to consider this motion as a
backward travelling wave with an interblade phase angle of
2r - Bn. To completely describe all possible combinations of
sinusoidal motion of the N individual blades requires N

interblade phase angles,
N-

9: =22 9e. @

h»o (2.14)

VDt +8,0)
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This is conveniently expressed in matrix form as

(4 = [e]fude™ .

where the matrix [E] is

-
E.a. Ea“ E.'. * E.‘._-‘l
EI‘. Er,l E,‘; . .
€. E., E.,.
[E]= Lo (2.16)
-E."“l. ! - E"-"']

I
The unsteady aerodynamic moment acting on the zeroth §‘='
‘ ¥
blade for a given travelling wave with amplitude qg and :
n

interblade phase angle B is

51 11 e_"i"t
M, = T2 @48 9en (2.17)

But the force acting on the ith blade due to travelling wave
mode n is just the force acting on the zeroth blade but
shifted in phase by Bni . Summing the contributions made from

all the interblade phase angles gives

N-1 . .
M, = mebiw3 4, ‘7,-,.6‘”“" ) - (2.18)
Neyp
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This is expressed more succinctly in matrix form.

{M“} - T ba‘“"[EH_\}hJ{q’:} e’* (2.19)

Next, Equation {2.15) is used to eliminate qg from Equation
n
{2.19). This gives the desired result of describing the

unsteady aerodynamics in terms of the motion of the individual

blades
v, \ -!
where the entries of the matrix EE]_l are given by
e L e (2.21) §
= e . .
Eaxe " W :

So that finally the influence coefficient matrix [L] is given

by i

-1

[L] = [E][\JF-][E] (2.22)

Multiplication of the right hand side yields that [L]  is

in fact a circulant matrix.

rL' L”-' L”-'- ¢« & L'- |

L' L. Lﬂ'-' 2 o L‘ -‘.

[L] - L:'t ‘L' L_' s a o L3 i
o (2.23) |

__L”_; LH-I L".J ¢ s » L ' :
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N~ j2rKn
where LK = T{,—E })"‘ C¢ N (2.24)

N=g

Equation (2.24) shows that Ly is just the Kth

coefficient in a discrete Fourier series representation of

1l .
Bn
%= -jrrin
Lo, =2, Lue * N (2.25)
K= p

So for example, if [L] is a tridiagonal matrix, then the
physical interpretation is that only the two blades adjacent

to a given blade and the blade itself have any direct effect

‘'on  the blade. Then from Equation (2.25), lg  will contain
n

only cos(d), cos(f), and sin(g) components. In other words,
the plot of the real and imaginary parts of 1Bn when plotted
as a function of £ will have a D.C. offset and will have
components of cos{f) and sin{B). If the influence coefficient
matrix has a larger bandwidth, then 1Bn will contain higher
harmonics of cos(B) and sin(B8).

As early as 1969, Samoylovich [7] used a similar PFourier
transform to convert from travelling wave coordinates to
individual blade coordinates. 1In 198@, Hanamura, Tananka, and
Yamaguchi [9] reversed the process. They experimentally
measured the influence coefficients of a cascade of blades in
incompressible flow by vibrating a single blade and measuring

the resulting forces on all the other blades. They then

converted these forces to interblade phase angle coordinates
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by the use of the Fourier series representation, Equation

(2.25)

2.4 IMPORTANCE OF BLADE SELF DAMPING
As stated earlier, the matrix [L] is circulant. Hence,

every term on the diagunal is equal. This term, denoted by

Ly » reflects the aerodynamic effect the motion of the blade

has on itself. To show the importance of this term, consider
the case of mass mistune only (i.e., no stiffness mistune,

6; = 8). Then the eigenvalue problem can be written as

Jﬁ‘[q"} =H\‘”°"\} *;('7[ L]]{ﬁ,} (2.26)

Here, 1/92 represents the eigenvalues of the matrix on the
right hand side of Equation (2.26). Next, making use of the
familiar matrix property that the sum of the eigenvalues of a
matrix is equal to the trace of the matrix, it must be that

N-| N=i
-L l = La l ’
Nids T T T It w4 2-27)

k=o i=0
Recall that the nominal reference blade in the absence of
aerodynamic forces vibrates at the nondimensional fregquency
2= 1. Since the unsteady aerodynamic forces are small
compared to the elastic and inertial forces, we expect that
the complex nondimensional eigenfrequencies @ will be very

close +to unity. For convenience, 12+ j = 3. This gives the

SRR P

~ I
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familar s-plane interpretation of the poles or
eigenfrequencies. If any pole lies in the right half of the
complex plane, then the system is unstable.

In the remainder of this section, necessary conditions
for stability will be derived. For stability, all poles must
lie in the left half of the complex s-plane. Since Q is
approximately equal to unity, s will be nearly equal to j.
Let s be represented by s = j + % where s is a complex number

much less than unity. Then

aQ = -"Js
e e {2.28)
==-3()+3)
so that
A owmt
0 (-lez2i3+ 3%
. (2.29)

=/ 2.J:;' « 0(3%)

Next the centroid of the poles in the complex plane, denoted
by <s>, is found. Substitution of Eguation (2.29) into (2.27)

gives

i -
— M ~ Lc
NER (I«-:._,.sk) ~ [+ """‘,.;"" Iz é,
{

- . | Le c (2.39)
<3> -~ J(I —-’_-ﬁ‘—ﬁ.f)

—al A Imoco

et b e B
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The centroid of the poles is <s» so that from Equation {2.30@)

(2.31)

Equation (2.31) shows, at least for small amounts of
mistune and large urz, that the centroid of the poles lie in
the left half of the complex plane if and only if Im(LO) is
less than zero. This is equivalent to saying that a necessary
but not sufficient condition for stability is that the Dblades
must be self damped. Or said another way, if all the blades
were perfectly rigid except for a single flexible reference
blade, that blade must not flutter. This condition is the
fundamental limitation to the usefulness of mistuning as a
mechanism for stabilizing a bladed disk. Note that Re<s> is
independent of €; Physically, ¢this is because mistuning
does not introduce any damping into the system.

On the other hand, 1Im<s> does depend on € The
lowering of the centroid by <€ >/2 in the complex plane just
reflects the fact that the natural fraquency of each blade 1is
inversely proportional to the square root of 1 + g;.
Similarly, the term Re(IO/ﬁrz) can be thought of as an
effective mass "added to the blade due to the unsteady
aerodynamics, or alternatively, as an aerodynamic destiffening

of the blade.

e e
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2.5 EXAMPLES OF TUNED AND MISTUNED ROTORS

As an example, consider the unsteady loads acting on a
typical asection of a blade. The aerodynamic model usec in
this example and throughout this inveatigation is that of
Adamczyk and Goldstein's [4]. In this model, linearized
theory is used to obtain the unsteady loads on flat plate
airfoils undergoing small amplitude harmonic oscillaticns.
Shocks are modelled as isentropic Mach waves and there is no
steady pressure rise across the cascade. The typical section
has a single torsional degree of freedom and pitches about its
midchord. 1In this example, the reduced frequency, k, is equal
to 9.495, the Mach number, M, is equal to 1.317, the solidity,
o, is equal to 1.489, and the number of blades, N, is egual to
14. These rotor parameters are tabulated in Table 2.1. The
unsteady moments for this model are plotted in Figure 2.3 as a
function of interblade phase angle. Note that for interblade
phase angles 25.71°, 51.43°, 77.l4°, and 162.860, the
imaginary part of IBn is positive. Therefore, the rotor will
flutter at this reduced velocity and Mach number in its tuned
position. However, the average value of 1Bn is 1less than
zero. This indicates that the centroid of eigenvalues lies in
the left half of the s-plane and hence, it may be possible to
achieve aeroelastic stability through the use of mistuning.

Next, Equation (2.24) is used to tranaform the unsteady

moments from interblade phase coordinates to influence

coefficient form. These influence coefficients are plotted in
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Figure 2.4. Several interesting features of the influence
coefficients deserve mention. First of all, the term L, has
a negative imaginary part. This again reflects the fact that
the average value of the imaginary part of lBn is nggative, or
that the blade self damping is stabilizing, and hence, the
potential for stability exists. Secondly, the largest
coefficients are seen to be Ly, Lj, and Lj3. It is clear that
only the near field neigﬁbora of a given blade exert a
significant influence on the blade. The L; and Ljjterms are
the first off diagonal terms of [L]. Examination of Equation
(2.25) reveals that a dominantly tridiagonal [L] results in an
1Bn which has a strong first harmonic dependence in Bn-
Figure (2.3) shows that this is in fact the case.

The previous discussion suggests that alternate mistuning
may be an effective mistuning arrangement since one would
expect such a pattern to reduce the influence adjacent blades
have on each other. Figure 2.5 shows the eigenvalues of the
tuned system plotted in the s-plane. Figure 2.6 shows the
eigenvalues of the alternately mass mistuned rotor. The even
numbered blades have €;= @ while the odd numbered blades have
€y = g.1 . This mistune pattern does in fact stabilize this
rotor. However, it remains to be seen whether or not
alternate mistuning is a near optimal mistuning arrangement.

This discussion is deferred to Chapter 5.

T PR
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3. EVALUATION OF EIGENVALUES AND THEIR DERIVATIVES

In the previousa chapter, the stability of a rotor was
found to be dependent on ﬁhe eigenvalues of the aercelastic
eigenvalue problem. In the next chapter, an optimization
procedure will be described. The goal of this optimization
will be to find the mistune pattefn which provides the most
stability for the least amount of mistuning. In this
optimizaton, it will be necessary +to identify each of the
eigenvalues uniquely. The technique used is this
investigation to evaluate the eigenvalues while insuring
unique identification will now be described.

Consider £for the moment the tuned rotor under the
influence of unsteady aerodynamic forces. For this system,
there are N eigenvalues. Corresponding to each eigenvalue is
an eigenmode. The nth eiéenmode is a travelling wave with an
interblade phase angle of 2wn/N. Howaver, as soon as the
system is mistuned, the eigenmodes are no 1longer pure
travelling waves of a single interblade phase angle. The
problem is to in some sense identify each eigenvalue of the
subseguent mistuned system with the eigenvalues of the
original tuned systen. |

As an analogy, consider that the mistune introduced into
the system is a gain and that the eigenvalues in the complex
s~-plane are the poles of a control system. As the gain is
increased, i.e., as the level of mistune is increased in a

continuous way, the poles, or eigenvalues, trace out root loci
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in the complex plane. Hence, in some sense, one of the
eigenvalues of the mistuned system will be identified with the
nth eigenvalue of the tuned system since they both are on the
same root locus.

It is not, however, an easy task to identify in this
sense the nth mistuned eigenvalue. In general, the eigenmode
of the nth mistuned eigenvalue will be composed of travelling
waves of all N interblade phase angles. It is not generally
possible to identify the the loci of roots that a 'partieular
root belongs by inspection of the eigenmodes. For these
reasons, routines such as EJISPACK [15] are not acceptable for
the purposes of_this investigation.

Therefore, before the optimization of Chapter 4 could be
performed, a scheme had to be developed which could evaliuate
the eigenvalues of the aeroelastic eigenvalue problem while
uniquely identifying the root locus to which each eigenvalue
belongs. That method of determining the eigenvalues and
eigenvectors of the aeroelastic equations of motion is the
topic of this chapter. 1In Section 3.1, it is shown how the
derivatives of the eigenvalues and eigenvectors with respect
to the mistune parameters are determined. Once the
derivatives of the eigenvalues and eigenvectors are known, one
can integrate these quantities from one mistune level to
another through the use of an explicit fourth-order
Runge-Kutta operator. The details of such an integration are

given in Section 3.2. Finally, an illustrative example is
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Presented in Section 3.3 which demonstrates the use of this

technique.

3.1 NONDEGENERATE PERTURBATION THEORY APPLIED TO THE
NON-SELF-ADJOINT EIGENVALUE PROBLEM

In this section, the derivatives of the N eigenvalues of
the aeroelastic eigenvalue will be found with respect to the

mistune parameters €y -

First, some properties of the
eigenvalue problem will be reviewed. These properties will
then be used in a perturbation analysis of the eigenvalue
problem. At a given level of mistune, a pertubation parameter
will be introduced into the problem. The end result of the
perturbation analysis will be that the derivatives of the
eigenvalues and eigenvectors of the mistuned system will be
known with respect to the single perturbation parameter.
Finally, the derivatives will be generalized to produce the
derivatives of the eigenvalues and eigenvectors with respect

to each and every mistune parameter.

The eigenvalue problem

[A]{"Iﬂn} = Aﬂ[B]{%} (3.1)

is known as a non-self-adjoint eigenvalue problem whenever one
or both of the matrices A and B are not symmetric. Under
these circumstances, the eigenvectors of Eguation (3.1) are

not 1in general the same as the eigenvectors of the adjoint

- ar
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eigenvalue problem [16]:

L ‘fan[A] = Anl- quJ[B] {3.2)

However, both eligenvalue problems have the same set of
eigenvalues since they both have the same characteristic

equation
det(EA]-)[eJ)= o (3.3)

The eigenvectors of Equations (3.1) and (3.2) are known as the
right and left eigenvectors respectively. To obtain the
relationship between the right and left eigenvectors, Equation
(3.1) is premultiplied by the mth left eigenvector qLﬁ ]
Equation (3.2) is postmuitiplied by the nth right eigenchtor
SR: » and the resulting equations are then subtracted one from

another to obtain

('ﬂm-h)Lqu[B]{qR,}= o (3.4)

It is assumed at this time that there are no repeated
eigenvalues. Therefore, the only way for Equation (3.4) to be

nontrivially satisfied is if

L c,mJ[B]{q“} = 0 ;:;}; (3.5)
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This is known as the biorthogonality condition [[16] and will
be useful in the perturbation analysis which follows.

In Chapter 4, a procedure for optimally mistuning a rotor
is described. As will be shown, it will be necessary to
evaluate the derivatives of the eigenvalues and eigenvectors
to perform this optimization. The remainder of *his section
deals with the determination of these derivatives through a
perturbation analysis.

Suppose that the eigenvaluea and eigenvectors of the
general eigenvalue problem (3.1) are known. Next the matrices
Q and E are changed slightly. These changes are due to the
introduction of. a perturbdtion parameter Y. It is assumed
that the matrices Q and g can be expressed in terms of a

Taylor series in Y. Then

A=AT+PA" w P A, . (3.6)
B = B”+1ra" + ra*. .. (3.7)
where 3(0)' 2(0), Q(l), 2(1), and so on are known quantities.

Next it is assumed that the eigenvalues and eigenvectors of
the problem can also be represented in terms of a Taylor

gseries in Y.

/PRSI b NEES S Par (3.8)
() M= )
a'ln = q_ln +f‘1§a.,,, i" | R {(3.9)
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. ” ‘.
3en = q,i..’ rf?: b,,,c}“,’ (3.10)

where all the terms appearing in Equations (3.6) to (3.16) are

of order unity except for Y.

0)
The terms like lanl in

Equations (3.9) and (3.19) represent a convenient change of

basis for representing the changes 1in the eigenvectors.

Substitution of Equations (3.6) to (3.9) into Equation (3.1)

gives the following asymptotic relationship:

(A" " -'-)(3_'.'.’.
(e Pan e -

+F;Q‘"$:;o- o) ~
D (-0 -¥ '-—Yq.-—*f‘;ax.ﬂ,‘;'. '

(3.11)

Collecting terms in Equation (3.11) of equal order gives

tO) =) aﬂ) bl I)

A" Qe -

""Am Bh) m i H ¢-)

+ o(r“)

For this asymptotic

f(*A a) m"dd)-‘a-"‘iﬂ

qﬂ B E Jl?.li

relationship to hold true, each

coefficient of every order of Y must vanish. This results in

the equalities

o b @ (o)

r . ﬁ q,ln = n
“)ﬁ" + A

)] b) b)

1 g +

Q.

=)y ()
#I’u

(3.13)

[CD]

Qsn q,lj =

- o (3.14)
amB :E tnﬂ.‘ni

PR
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‘Solving for the unknown quantity A
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Equations (3.13) and (3.14) give the =zeroth and first
order perturb™ .on relationships betwesn the known quantities
n 1) " (o)m " n
lé - %Rn LT T Notice that the zeroth order equation is

(0) (0)
An and gR

and the unknown quantities '

just the unperturbed eigenvalue problem, and n

can be found from its solution. This indicates that this is a
regular perturbation problem.

To determine the first order changes in the eigenvalues,
Equation {(3.14) is premultiplied by qég) and the
biorthogonality condition is imposed to elimina:e terms equal
to zero with the result that

w7 _0y &

9 e aT (e (s)
MTA” () =A2}3{) B“ﬁ_:)n + A ‘J-‘-" 8 ?Rh : (3.15j

w A gﬁn PR

(1)

n gives

A0 = 1'1’: (4”3 8")9.

'] ' (3.16)
9% 2% qan
Hence, if A and B are perturbad about some point A(O) and

n " ~

B(G), the value of the nth eigenvalue can now be estimated

[4"]
with errors of order Y2 by substitution of egquation (3.16}

into Equation (3.8).

The perturbed eigenvectors are found in a similar fashion.
Equation (3.13) is premultiplied by qég)T
biorthogonality relations are used with th: result that

. Again, the

e o e s - P e 4 o e
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s T L&) ® 7 ™ M m‘r " ) l°‘ @7 01 ) (3.17)
9. A Qan + apnd, -} B‘ Gue t “P' QL,E Tap

Or solving for apn gives

Qpn = 9‘::03( m _:; gm)z;” (3.18)
(3n -3)9p B Gy

The left eigenvalue perturbation terms are found in a

completely analogous tashion.

T . -u hy m
brn: u! (A - B )3"
ﬂ ] -~ _i»)
(2 J)g"’ 8%q.,
Note that Equation (3.18) is wvalid only if p#n and
3 (0) ” AéO)

P . This analysis is therefore known as nondegenerate

perturbation theory [17] since the eigenvalues must |Dbe

(3.19)

distinct.

The scalar a, indicates the degree to which the pth
eigenvector 1is coupled +to the nth eigenvector through the
introduction of a small perturbation. Note that eigenvectors
with c¢losely spaced eigenvalues are more easily coupled than
those whose eigenvalues are far apart due %o the (léo)- 1;0))
term appearing in the denominator of Equation (3.18). From
Equation (3.16) it is observed  that the eigenvalue
perturbations do not exibit this amplification due to the
proximity of other eigenvalues.

The range of validity of this perturbation analysis is

that range for which Ylél) ’ Yqéi) , and Yq( ) are less than

T T

[
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order unity. Hence, from Equations (3.18) and (3.19), it is
clear that for this +to hold, it must be that Y is small
compared to min(AéO)- 1;0)5, the spacing of the closgest
eigenvalues. It is this fact which ultimately limits the
usefulness of such an approximation.

An inceresting feature of this first order perturbation
analysis is that ar, and b, are not determined. This is
due to the fact that there is some degree of freedom in
chooaihg an eigenvector. Recall an eigenvector specifies a

direction in N-space but not a length. Purthermore, to order

Yy » a small perturbation of the eigenvector in the directicn

‘of the eigenvector only produces a change in direction of

order 72 . Hence, one is free to choose any values for a,,

and bnn so long as they are no greater than 0(1). For

convenience, the values of 3nn and bnn are taken to he zero.

Although the first order coefficients Aél) ; qéi) ., and
y
qéi) were derived from a perturbation analysis, Plaut and
4"

Huseyin [18] have shown that these are in fact <the first
derivatives of the eigenvalues and the right and left
eigenvectors with respect to the variable Y . In the mass
mistuning problem, there are N independent variables denoted
by the mass mistune vector i . The results of the previous

section can be generalized to give the derivatives with

respect to every mistune variable:

% - 9n(3 - A 32Yqz, | (3.20)
¢ gI'Q 9 an

i mEenk g M
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-S%_::_IZH ]-:ﬂﬂ_,_,aa_" %‘
r (3.22)
PACERS PP O

&

3“" ; (M"):\q;t §_§,u

3.2 INTEGRATION QOF EIGENVALUES AND EIGENVECTORS FROM THEIR
DERIVATIVES

In the previous section, the derivatives of the
eigenvalues and eigenvectors were found with respect to the
mistune parameters. Equations (3.28) through (3.22) make up a
system of Nz + 2N3 first order, coupled, partial differential
equations for the N unknown eigenvalues and 2N unknown
eigenvectors. There are N independent variables Ege If the
derivatives of the eigenvalues and eigenvectors are known
everywhere along a line, then a 1line integration can be
performed to evaluate the eigenvalues and eigenvectors at a
point along this 1line. This method of solving for the
eilgenvalues and eigenvectors has two advantages. First, if
the‘ matrices Q and 2 are changed slightly, then the new
eigenvalues and eigenvectors can be evaluated by integrating
over a short distance with less computational effort than the
effort required to completely re-solve the eigenvalue problem.
Secondly, the eigenvalues are automatically kept track of in
the root locus sense. The problem of eigenvalue identity

discussed in the introduction to this chapter is completely

eliminated. This was the main reason for choosing this method
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of eigenvalue evaluation.

Now that the derivatives are known, they may be used in a
line integration of the eigénvalues and eigenvectors. Assume
the line of integration to be the line in parameter space that
connects some old value of the independent variable ig to

the new value Exel The path of integration can then
n

described in terms of a single scalar variable h:

[ = {ed +n{ed - ()
- (&, » n[oe,

where h is a scalar value which varies from zero to one along

(3.23)

the path of integration. Equations (3.20)} through (3.22) can
be reduced to a system of N + 2N2 coupled, first order,
ordinary differential equations by the chain rule.

d = dé. 2 d__é_n.._}_ v & Ev D
dh dn e, T dh €. * 'fﬁ &, (3.24)

The derivatives of the dependent variables along the 1line of
integration and the distance along the path of integration can
now be expressed in terms of a single scalar variable h. For

example, the derivative of A, with respect to h is

o

_.)_'l = L A‘;’JK

h (3.25)

,_._

o )v |
o3’
T

&R
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where the terms Bkn/asi are given by Equation (3.28).

The numerical scheme used to compute the 1line integrals
is a fourth order Runge-Kutta scheme [19]. Truncation errors
are then of the order of step size to the fifth power. This
type of scheme is one of a class of explicit

predictor-corrector methods. The method is carried out in

four steps:

) ("
a’“.h‘u= i"‘.(ﬁl* _lb'( J-?Kn -2 J- 2.\#“ ~an

o
ﬁ_l.n = q_u““'- %.(gk ZJ- P 2-9:1“ 7“3

n= d‘,

(3.26)

J‘J IJ ceey, N -]

J';:) - é}ﬁ-( f-,ax,'l.,ﬂ.’...) aR'J q’“,) _..)
Jf:" = 3[_%1( Ei riat ) Aot J’;:’ A -4 B-J
"')9)“"%{13.) "')

{2) )
f 1
'I-Z-LAélu))c'-"'_'J;.J]l*i'J;' J

; )
o0y Gret 7 Tguey -o-) (3.27;
@) 8)
T ddaf i e 080, Ao BT, 00 3

u) )
“‘Jaﬂ- --‘M-) i

%‘lihf-'[ ):\°Ja'J"‘J ﬁh:‘ﬂau"‘)

To integrate over larger distances, say from €1 to
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€;r -+ the path of integration is divided into some number of
"]
intervals, I, as shown in Figure 3.1. These intervals are

picked sufficiently small to avoid significant truncation
error but large snough to keep the amount of computation
required at a reasonable level. The line integration is tﬁen
carried out using I fourth order Runge-Kutta integration
steps.

This method of evaluatiﬁg the eigenvalues and
eigenvectors of the equations of motion is not efficient when
the number ¢f integration intervals is large. However, when I
is small, this method requires computatiocn time on the same
order as EISPACK. Generally, when evaluatirg the eigenvalues
and eigenvectors of the mistuned system in the constrained
optimization procedure discussed in Chapter 4, I is less than
or equal to two. Under these circumstances, this procedure is
reasonably efficient. But more importantly, the identities of
the eigenvalues are determined in the process of the
integration. This is a requirement for the constrained

optimization of the flutter problem.

3.3 EVALUATION OF THE ALTERNATELY MISTUNED ROTOR BY
RUNGE-KUTTA INTEGRATION

In the previous section, it was shown how to evaluate the
eigenvalues and eigenvectors of the aerocelastic eigenvalue
problem by a Runge-Kutta integration. In this se-ction, a

numerical example of that technique is presented which
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demonstrates the accuracy of this technique.

The example will proceed as follows: £first the exact
eigenvalues of an alterhately mistuned Jvotor will be found.
Then the Runge-Kutta integration technique will be used with
the path of integration divided into 1, 2, 3, and 19 intervals
as described in the previous section. |

The aerocelastic properties of this rotor are 1listed in
Table 2.1. This is the same l4-bladed rotor first introduced
in Chapter 2. The rotor was alternately mistuned in mass.
The masses o0f the even numbered blades was increased by 12
percent while the masz>»s of the odd numbere@ blades were
unchanged. EISPACK was used to determine the exact values of
the 14 eigenvalues.

Next, the Runge~Kutta schenme was used to evaluate the
eigenvalues of the system described above. The tuned
eigenvalues and eigenvectors were use as the starting point of
the integration since the eigenvalues and eigenvectors are
easily determined at this point. Of cou. ‘& the accuracy of
the integration will be determined by the step size of the
intervals {inversely proportional to the number of intervals)
used in the integration. The step size controls the level of
truncation error. Hence, a smaller step size produces smaller
total integrated errors. However, one must balance accuracy
with computational efficiency. Integrations with small step
sizes generally imply many steps and, hence, a large amount of

caﬁputatiou.

o
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Figures 3.2 through 3.5 show graphically the effect of
step s8ize on integration accuracy. Figures 3.2, 3.3, and 3.4
show the results of the integration where the path of
integration has been divided into one, two, and three
intervala respectively. Notice that some 0f the eigenvalues
evaluated by this approximate integration are very different
than the exact eigenvalues as determined by EISPACK. This is
due to the large step size used in the numerical integration.
If the number of intervals is increased to 19, the approximéte
eigenvalues found from integration are virtually
indistinguishable from the exact eigenvalues as indicated in
Figure 3.5. _

The most useful feature of this method of evaluating the
eigenvalues is not its efficiency 8since in fact for an
integration which requires many intervals, this method is
computationally very expensive. Its utility is in its ability
to to retain the identities of the eigenvalues no matter how
severe the mistuning. For this reason, this is the method
used for evaluating the eigenvalues in the optimization

procedure described in the next chapter.
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4. OPTIMAL MISTUNING OF A BLADED DISK TO PREVENT FLUTTER

When mistuning a rotor to prevent flutter, one would
like, in some sense, to minimize the amount of mistuning while
maximizing the stability of the rotor. Not only does such an
optimization make the production of a mistuned xotor more
attractive but the results of this minimization may provide
some insight into the nature of mistuning.

In this chapter, such an optimization procedure 1is
outlined. The objective of the optimization is to determine
that mistune pattern which delivers the most stability for the
least amount of mistuning. A cost function is devised which
is a measure of the level of mistune in the rotor. This cost
function is to be minimized subject to c¢ertain physical
constraints on the problem. Although the desired effect is to
maximize the stability of the rotor, it is more appropriate to
modify the above optimization statement to make stability a
constraint rather than a maximized guantity. The problem is
then to minimize the level of mistuning in the rotor while
meeting some minimum requirement of stability. Although.these
conditions may be stated very easily in mathematical terms,
the solution to the problem is a computationally difficult
task.

Other authors have shown the useful benefits of alternate
mistuning [1-3]. It has been suggested that the alternate

mistune pattern may be nearly optimal [3]. The results of the

optimization procedure presented in this chapter will be

b m——— e o o
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presented in Chapter 5. It will be shown that in fact,
alternate mistune 1is not nearly optimal, but does have other
favorable properties that optimal mistuning does not always

have.

4.1 FORMULATION OF THE MISTUNING PROBLEM AS A NONLINEAR
CONSTRAINED OPTIMIZATION

In this section, the mistuning problem is formulated as a
nonlinear constrained minimization problem. The steps to be
taken are: first, chose an appropriate cost function which
represents the level of mistuning in the rotor. Second,
define the set of minimum requirements which must be met.
These are known as constraints. Together, the objective cost

function and the constraints form the constrained optimization

problem.

The first task in formulating the formal c¢onstrained
optimization problem is to define the objective cost function.
The objective cost function will be chosen to be a measure of
the amount of mistuning in the rotor. As a simple case,
suppoge the cost of mistuning, ¢, 1is chosen to be the
absolute value of the mass fraction added to the blade with

the greatest amount of mistuning. Then

¢[§) = ma-’f{léol, ’ét,,le:h cee) Ié#-'l) (4.1)

This cost function, although conceptually meaningful, is not
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amenable to many nonlinear programming methods due to the
discontinuities in the gradient of the cost at various
locations in the domain. Note, however, that this cost
function is equivalent to the cost function

-
$ s

L30

N

¢(§) =r (4.2)

I—e

where I is a positive even integer. For large but finite I
this function closely approximates the cost function in
Equation {(4.1) but has no discontinuities anywhere. For this

investigation, I was taken to be 4.

(4.3)

Originally, I was chosen to be 2, making the cost the
root mean square value of the mass mistuning. In this case,
the cost function is then just proportional to the length of
the mass mistune vector E . However, it was found that this
cost function, when optimized, does not penalize strongly
enough large amounts of mistune in a single blade. The result
is that the mass of one of the blades may Dbecome much too
large to be practical. 'For this reason, I was increased to 4.
This gave a more physically realizable distribution of
migtuning. -

As will ke shown, the optimization procedure outlined_ in

this chapter requires that the derivatives of the cost
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function and the constraints be evaluated. The gradient of

this cost function is

-3 :5
- (4.4)
Wl

Having defined the cost function, the next step in
formulating the constrained optimization problem is to define
the appropriate set of constraints. As previously mentioneg,
the cost function will be minimized subject to minimum
stability requirements. There stability requirements are
interpreted as constraints. The measure of stability will be
the damping ratio of the eigenvalues of the eigenvalue problem
given by Equation (2.6). Recall that these damping ratios are
not the physical damping ratios of the eigenmodes but rather
are damping ratioe in the sense of a V-g analysis. If the
eigenvalue of the ith mode of Equation (2.6) is
jﬂi = 8, = u, +jvi, then the damping ratic of the ith mode is

i
given by

)’. - - Uy .
¢ - = Lt = o, /,2,,.., VN~ 4.5
! U-;‘ "' V_r" ~ / A e J ( )

One set of constraints is then that each and every mode of the
rotor must have a damping ratio greater than or equal tc some
minimum damping ratio, 7, as shown in Figure 4.1. This is

expressed in the standard inequality form

—— . e
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B;le) = J;-F 20, im0 2., M (4.6)

which gives N constraints to be satisfied, represented by the
functions Bi'

Anothear seﬁ of constraints used in this investigation 1is
that mass can be added to a blade to mistune the blade but
masa cannot be removed. This constraint was used because it
was felt that a practical way to mistune blades would be to
add mass tc the tip of the blade or to reduce the stiffness of
the root. Both of these methods tend to lower the natural
frequency of the blade. In this problem, the stiffness of
each blade was held fixed. It is believed that the natural
frequencias of the individual blades dominates the mistuning
effects. Hence, one may work with either mass or stiffness
mistuninga or a combination of the twe with iittle difference

in the resulting natural frequencies of the mistuned blades.

This second set of constraints is expressed simply as

O, n(€) = &€ 20, (=0 1,2 .. ~y (4.7)

which gives an additional N constraints to be satisfied.

Together these two sets of constraints provide a total of
2N inequality c¢onstraints for the ninimization of a cost
function of N variables. There were no equality constraints
used in this investigation.

The first derivative of the eigenvalue <constraints
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(Equation (4.6)) are

Q.Q{ = _:..!i"-———- [V"M - U;'.)_V.:‘]
Y N 1/ tahaR T T 2] (4.8)
é_‘il. = :'—.-l_-_ (U'}_ﬁ_u_‘;. + V. 2-2..:'_‘:
where 26; (U vt ¢ 06 ‘ LK )
We =1 ;3w — v A
aéj Z.(U"‘o-vg‘)( ¢ )6‘5 Sé_) )

where recall that A = 92 and the derivatives of A are given

by Equation (3.28). The derivatives of the mass inequality

constraints (Equation (4.7)) are

[+ %4

v .
il (4.9)

|

%4

where Aij is the Kronecker delta.

To summarize, the purpose of the optimization piocedure
is to provide the most stability for a given rotor at its
aeroelastic operating point for the lowest level of mistune.
The formal mathematical statement of the problem is slightly
different. The mistuned rotor must meet dJdamping ratio
requirements at a minimum cost which reflects the amount the
rotor is mistuned. Furthermore, mass changes or mistunings in

each blade must, in this investigation, be positive.

4 2 FORMULATION OF THE CONSTRAINED OPTIMIZATION PROBLEM USING
LAGRANGE MULTIPLIERS

The general problem of nonlinear programming is to find
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the minimum of soine cost function subject to constraints. The

cost function ¢ is a function of the n variables x :
¢ = ¢ (%) (4.18)

In general, there may be two types of constraints which
must be satisfied: equality and inegquality constraints.

Equality constraints are of the form

Flg)=o , c¢= 42, p p<nN (4.11)
while inequality constraints are of the form

g (xy20, j=142...,9 gEFh (4.12)

As indicated above, there may bte any aumber of inequality
constraints but there must e fewer aquality constraints than
the number of independent variables, n. The region in x-space
where these constraints are satisfied is called the feasible
region. The cost function ¢ is said to have a constrained

minimum (18] at x if there exists some positive o such that
P (2) £ P(r+4%) (4.13)

for all Ax in the set -
{AZ' ollaylf<x; txvary=o, ispa . ps

Q“X‘Az)éo)d=ﬁﬁw'uﬁ}

e g e e e e
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Or said another way, a constrained minimum exists at a point x
if x is in the feasible region and a small change in x in any
direction in the feasible region causes an increase in ¢. 1If
at such a minimum an inequality constraint functicn satisfies
ei = @, then that constraint is said to be active. 1If on the
other hand, B; ? @, then the constraint is said to Dbe
inactive.

Mathematically, it is convenient to add p+q additional
variables to the problem by introducing Lagrange multipliers.

Let the Lagrangian cost be

J=¢ +y'¥ + 7’8 (4.14)

where
x = the vector of equality Lagrange multipliers
n = the vector of inequality Lagrange multipliers
A

It can be shown [18), except for rare circumstances Kknown as
abnormal cases, that the neceasary conditions for a

constrained minimum are given by

VT = o (4.15)
Y, =0, (= 5, 2,0,p (4-16)
%_ 5= o (4.17)

- 4.18
’7; =0 J= 1, %, 29 ( )
6 % o (4.19)
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These conditions are known as the Kuhn-Tucker conditions.

The addition of the product of the Lagrange multipliers
and the constraint functions to the objective cost function ¢
results in the Lagrangian cost J which has a slope of zero at
the constrained minimum. In other words, the Lagrangian cost
has a stationary point at the ccnstrained minimum. Since the
value of the constraint is zero at the constrained minimum,
the Lagrangian cost. J egquals the cost ¢ at that point.
However, the stationary point which is a constrained minimum
will not necesgsarily be a minimum of the Lagrangian cost. In
fact, this point may be a saddle point or even a maximum of
the Lagrangian cost. In other words, the Hessian of the
Lagrangian cost (the Hessian is the matrix of second
derivatives) will not necessarily be positive definite at the
constrained minimum. This means that one cannot look for a
stationary point by searching for a minimum of J. This
problem is easily remedied by adding penalty functions to the
Lagrangian cost, J, to form the augmented Lagrangian cost,
J, - For the moment, consider only equality constraints. We
wish the augmented Lagrangian cost to equal the Lagrangian
cogt everywhere along the constraints. But the Hesaian of the
new cost should be positive definite at the stationary point.
This suggests - adding a gquadratic~like quantity to the
Lagrangian cost which is zero everywhere along the constraint.

Hence, we let

e ek L
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» 1
J.= ¢+ VP o+ F:PZK’ (4.20)

(n}

where P must bz greater than some minimum value to ensure
that the Hessian of J3 will be positive definite at the
minimum.

Figure 4.2 shows graphically the concepts discussed
abova. Consider the one-dimensional problem  where
$ (x) =2 -x and ¥(x) = x -~ 1, The cost, Lagrangian cost,
and augmented Lagrangian cost functiong are plotted versus x.
By inspection the s8olution is x = 1 and the Lagrange
multiplier is easily found to be v = 2. The Lagrangian cost
is seen to have a stationary point at x = 1. However, the
Lagrangian cost is a maximum at the constrained minimum.
Next, the penalty function is added to the Lagrangian cost.
In this case, we let P = 5. Now the augmented Lagrangian cost
has a stationary point at the constrained minimum and the
second derivative is positive. Note that all three costs nave

the same value at the constrained minimum.

4.3 SIGHNIFICANCE OF THE LAGRANGE MULTIPLIERS

Not only are Lagrange multipliers an effective and
elegant method of including constrainfs into the optimization
problem, but as with many problems solved with Lagrange
multipliers, they provide special information about the system
being optimized. To show this, consider the optimization

problem with egquality constraints only. At the constrained

& owE v
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minimum
vl = v¢+y v¥=o (4.21)
Hence, it must be that
Vs{ - ".)./TVI (4.22)

But the change in cost for a small change in x is
T
ap = V¢ A% (4.23)

Substitution of Equation (4.22) into (4.23) gives the result

that
(4.24)

Therefore, it is seen from Equation (4.24) that the Lagrange
multiplier indicates the sensitivity of cost to a change in
constraints. A similar result holds for the inequality

constraints.

4.4 UNCONSTRAINED MINIMIZATIONS
Optimization problems can be divided into two distinct
categories: constrained function minimizations and

unconstrained function minimizations. In Section 4.6, the
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method of mathematical programming via augmented Lagrangians
[10] will be discussed. With this technique, the constrained
optimization problem is solved as a series of unconstrained
optimization problems. In this section, and in Section 4.5,
the methods used for solving the unconstrained portion of the
congtrained optimization problem are discussed.

Suppose one wishes to minimize the cost function ¢ not

subject to any constraints. The gocal is to find that x which

Y]
produces a minimum ¢. A necessary condition for function

minimization is that the gradient of the function be equal to
zerco. The simplest method of searching for a minimum ¢ in

x-gpace 1is to first start at some point Xy and evaluate the
Y

gradient at this point. Since we are looking for a minimum,

and hence a decrease in ¢, the negative of the gradient is
taken as the search direction. Then along tﬁis semi-infinite
line, a minimum will e¢xist. A line search is carried out to
find the location :K+l of this minimum. Then the gradient of
EK+li5 found at this new point and the entire process is
repeated until V¢ is approximately equal to zero. This 1is
known as a steepest descent gradient search.

Although the steepest descent search is very simple to
implement, the convergence to the minimum can be very slow,
especially when usad in conjunction with the method of
mathematical programming via augmented Lgarangians. Hence, a
more elegant search routine is needed. The method chosen for

this research is attributed to Broyden [28] and is one of a
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class of variable metric methods, also know as quasi-Newton
methods. The motivation for these methods is illustrated by

the Taylor series expansion of the gradient of the cost.
VP, ® Tk * TTHu AR : (4.25)

where 43« = Z“’ "'Zn

The vector operators in Equation (4.25) are

- {9
v = {ﬁ‘,} (4.26)
and
3 ]
VV = [_.._-.
XY (4.27)
The matrix VVé¢ is the so-called Hessian matrix, A. To

determine the location where the gradient of the cost is zero

in this Taylor series approximation implies taking a step Ag

where
-1
A% = =4 Vi
- (4028)
= —,ﬁ 3”‘.
Notice that this is just a Newton—-Raphson step. Figure 4.3

shows graphically the benefits of using quasi-Newton procedure

e b A e
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near the minimum. First of all, the gradient is the vector
which points in the direction of greatest slope. It does not
point in the direction of the minimum. Secondly, the gradient
contains no information about the step size one should take to
get to the minimum along the gradient search -direction. On
the other hand, near a minimum, a Newton-Raphson search
direction vector points direct.y to the minimum, both in
direction and magnitude. Hence, a search which uses &
variable metric procedu;e is usually much more efficient,
albeit more complicated, than a simple gradient search.

There exist many schemes for determining the inverse
Hessian matrix H by iteration. These achemes use the position
vector and the ;radients at current and previous steps to
iterate on the H matrix. The method used in this study is
attributed to Bro;;en [20] and is one in a 4general class of
variable metric methods formulated by Broyden. To perform a
minimization of ¢ using Broyden's method, one first chooses

some positive definite matrix H, as an initial guess. Often,

K
~
for convenience, this is a multiple of the 1identity matrix.

Next the search direction 4 is found.

K

dk = -Hkg_K (4.29)
K

This direction and the point x define the line
LY

X = X+ cdi c 2o (4.30)

ol
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where c is the scalar step size. Along this semi-infinite

line, a minimun is found, or at least a significant

improvement in ¢ . This new point is Xerl The gradient at
¥

this position is gk+l . The new H matrix is then taken to be
n

Huw = Hi v 1+ 28t “)“‘““

AX A
} (4.31)
H,‘ ﬂgfl"uf AX, Azz Hx
- A'EJ‘: A?u - AZK‘&gk

where
BFxT Jum™ Jx
This equation is known as the Broyden~Fletcher-Shanno (BFS)
formula. If tte cost function ¢ is quadratic, it can be
shown that E and the minimum will be found exactly in n or
fewer steps if exact line minimizations are performed during
each line search. It is assumed that these good qualities
will apply to a non-~quadratic function sufficiently near a
minimum.

There are several useful qualities of the BFS variable
metric search routine. First, only the value of ¢ and its
first derivatives need to be found. This saves both
analytical work and computation time since second derivatives
are not explicitly evaluated as in a true Newcon-Raphson
search. Secondly, unlike other variable metric methods,
notably the method of Davidon, Fletcher, and Powell (DFP)
[11], exact line minimizations need not be found. 1In the DFP

method, the H matrix may become semi-definite near a minimum
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if 1line minimizations are not performed very precisely. To
£ind the exact minimum along a 1line can be computationally
expensive and, hence, the BFS routine was chosen since line
minimizations need not be computed exactly to insure a

pogitive definite H matrix and a finite convergence rate [21].
n

4.5 E":TEPS IZE CONTROL

At every step of the search routine a search direction
is determined. Then, along this 1line, the vector i is a
function of the step size ¢ as given by Equation (4.38). Along
this line, ¢ may be considered a function of the single
scalar c. F .'ire 4.3 shows the contours of a sample cost
function in x-space. The vector starting at xK is the search
vector. One must search, that is vary ¢ through a dicrete set
of wvalues, to find a step size which produces an acceptable
reduction in ¢(c). Naturally, one would 1like to determine
that step size with the least amount of computational effort.
A line search for a local minimum of $ can be very time
consuming since ¢ must be evaluated many times to find the
mirimum precisely.

Dixon [21] has shown that exact line minimizations may be

unnecessary to achieve good convargence times when using the

W
t
10
m.
o

BFS method. In fact, some of the best results {i.e., fa
convergence to the minimum) were obtained while using an
acceptable step size rule. The Armijo rule [22] used in this

investigation is nearly identical to the rule used in Dixon's

I T L
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astudy.

The Armijo rule says that step size used at each

iteration will be ¢ such that

(4.32)

where Y is a positive number less than unity and c¢ satisfies

the conditions that

(10 = $Hr Tda) < - mETHL A

>0

(4.33)

and m is the smallest nonnegative integer which satisfies the

condition that

$(1) - $(X+TPH) > ~TE Y VH(2) d (4.34)

For this study, Y = #.35 and ¢ = 8.45.

Figure 4.4 shows graphically the interpretation of the
Armijo rule. The curved line is the eft hand side of
Equation (4.34) while the straight 1line is the right hand
aide. For © to be an acceptable step size, the difference
betwaeen ¢ (c) and ¢(0) at the point ¢ muﬁt be less than the
value of a line drawn through the origin with a slope equal to
o times 3¢ (0)/3c . This can always be satisfied if the step
size ig made small enough. One can sea clearly that although

this rule does not attempt to find an exact line minimum, it
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does force the search routine to move closer and closer tu a
minimum with each succesive iteration since only improvements
in the cost function are accepted.

In summary, the method of solving for the unconstrainad
minimum has t«» main pafts: the search diraction phase and the
line search phase. At each step of the Bsearch, a search
direction is found by premultiplying the negative of the
gradient with the current estimate of the inverse Hessian.
Once the search direction has been determined, the Armijo rule
is used to find the stepsize in that direction which provides
a significant reduction in the cost function. This procedure
is repeated until the gradienv of the cost is zero, indicating

a minimum has been found.

4 6 CONSTRAINED OPTIMIZATIONS

As mentioned earlier, the constrained optimization
Problem can be solved as a gseries of unconstrained problems.
The general procedure is to form the augmented Lagrangian cost
function by adding penalty functions to the Lagrangian cosat.
These penalities, in essence, add a large cost to the
Lagrangian cost if the constraints are not met. This tends to
force the solution to satisfy the constraints.

The augmented Lagrangian cost J_, is

r T
= ¢+ Yt §e r£P1Y
8 ~18:])6,
+ zwg‘f ¢ FWlnmlede (4.35)
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where i, indicates active inequality constraints
iy indicates inactive inequality constraints
P is a positive number
W is a positive number

Hence the gradient cf the augmented Lagrangian cost is

Vii= vgeyTvy + 27v8 + PYVY
+ WY 6,70 + WX (a-teif)ve;

f‘b._ i€y

(4.36)

The procedure for solving for the constrained minimum is

as follows. Initial guesses are chosen for the Lagrange

multipliers v and n . Initial wvalues for the penalty
T y

function coefficienta P and W are also selected. The

augmented Lagrangian cost function is then considered an
unconstrained function of x only. This function is then
minimized by an appropriate unconstrained minimization
procedure. What 18 meant by appropriate will be discugsed
shortly. Once the minimum of Ja is found for the given values
of v, n, P, and W, the Lagrange multipliers and penalty
function zsefficientq are then updated and the entire process
is repeated until convergence.

The iterative updating of the Lagrange multipliers occurs
immediately , after each unconstrained minimum of the augmented
Lagrangian cost. To demonatrata how thiz procedurs works,
corjzider the gradient of the Lagrangian and augmented

Lagrangian costs with equality constraints only. The gradient

of the Lagrangian cost is

RN DU



ORIGAL [RAE 1F

69 OF POOR QUALITY
The gradient of the augmented Lagrangian cost is
V.= +YTvY +PY vy
=V$+(y+PY)v? (4.38)

In the limit of infinite P, with the Lagrange multipliers set
to zero, the minimum of the augmented Lagrangian cost is a
constrained minimum of the objective cost function. The value
of P% acts like a Lagrange multiplier and in fact will equal
the true multiplier in the limit of infinite P. For large but
finite P, we expect that the guantity x + Pi will be
approximately equal to the true Lagrange multiplier at the
minimum of Ja' Hence, the update for the equality Lagrange

multipliers is

E‘flw = onp F P;” (4-39)

Similarly, the update for the inequality constraint
multipliers is
w(e:-]e:) it <o
For 7,'0“ = 0 Nivew =

f) o'ﬂaerun'sc
7‘.“' + WB‘- ¢ 1‘. <o (4 4“)
For Wiy <° Nivew = )
o o'ﬂ:ertw:-e.
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Immediately after each update satage, the Kuhn-Tucker
conditions for optimality are checked. If these conditions
are satisfied, then the iteration procedure is stopped since
the neceasary conditions for optimality have been met. Of
course, this does not guarantee that the constrained
stationary point will be a minimum. But in practice, this is
generally the case.

Note that to solve the constrained minimization problem,
one need not work with Lagrange multipliers at all. One can
simply pick P and W to be very large. Then the minimum of the
cost plus the penalty function will be approximately equal to
the constrained minimum of the cost function. This method of
solution, however, will not work well due to the extremely
slow counvergence rates one encounters in the search for a
minimum. In a two-dimensional problem, one can imagine that
the augmented cost function is an elevation map. The valleys
created by ‘the use of penalty functions can be very narrow
with steep walls. Gradient methods tend to search across the
valleys and not aldng them. Hence, convergence to a minimum
can be very slow. Even the variable metric methods will not
work well except for regions very close to the minimum.

However, if the Lagrange multipliers are known
approximately, the penalty functions need not be so severe and
the variable metric methods tend to converge faster. This is
the motivation for the technique of nonlinear programming via

augmented Lagrangians. Note that a'steepest desirent search is

e o HETT e M

T EEL e . LN



e 4

71
still not appropriate, however, because the augmented cost
stili will show some of the poor conditioning of contours as
dicussed above. A variable metric method is reguired for good
convergence.

The values of the penalty functions can be increased with
each iteration to further increase the requirement that the
constraints be met. By starting the values of W and P at
moderate levels at the start of the optimization° and
increasing them at each iteration, one takes full advantage of
the method of augmented Lagrangians. A simple scheme for the

update for P and W is given in [1l1l]:

ﬁvm’ kP—,,_, (4.41)

Wow = KW, (4.42)

where k is a number greater than or equal to one.

In summary,. the rotor optimization problem was formulated
and the method of solution was outlined. A cost function was
defined which is a measure of the severity of mistune in the
rotor. The atability requirements of the problem were
introduced as constraints which must be satisfied. The cost
function is to be minimized subject to these contraints.
Finally, a review of the optimization theory used in this

study was presented. The results of this optimization
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procedure will be given in Chapter 5.
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5. RESULTS OF THE CONSTRAINED OPTIMIZATION PROCEDURE

In this chapter, the optimization procedure described in
Chapter 4 ia used to determine optimal mass mistune patterns.
When implemented, these patterns provide the greatest
stability margin at the aercelastic design point for the least
amount of mistuning. In Section 5.1, the procedure for
optimizing the rotor is outlined and the behavior of the
optimized rotor at its aeroelastic design point is presented.
In section 5.2,- the off-design behavior of the rotor is
analyzed. The next two sections address the 1issue of the
actual implementatioii of mistuning in a rotor. Although the
designer may specify a certain mistune pattern, the actual
mistune pattern of the rotor will be different due to
manufacturing tolerances and changes in the natural
frequencies of the blade which occur over the life of the
blade, due to its operating environment. In Sectior 5.3, the
gengitivities of the stability margin to small errors in
mistune are examined. Finally, the use of optimal mistune
patterns as a guide to design of near-optimal rotors is
considered in Section 5.4. For a 1l4-bladed rotor, the
optimally mistuned rotor will in general have 14 different
natural frequencies of the 14 blades. In this section, the
optimal mistune pattern is approximated by two, three, and

four tones or freguencies of blades.
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5.1 OPTIMAL MISTUNE PATTERNS FOR A ROTOR AT ITS AEROELASTIC
DESIGN POINT

The rotor which was optimized in this study is the same
rotor which was first introduced in Section 2.5. The
geometric and aerodynamic properties at the typical (85
percent span) section are given in Table 2.1.

The procedure for optimizing the rotor in this

investigation was as follows. First, an initial guess was
chosen for the optimal mass mistune pattern. .Also, initial
guesses were chosen for the Lagrange multipliers. A

constrained minimum was then found for the case requiring a
minimum damping ratio greater than or equal to T=-~5.605. A
second set of constraints reguires that all mass changes be
positive. It should be noted that there are in fact many
constrained local minima. Which minimum found depends on many
factors including the initial guess of the optimal mistune,
the initial choice of Lagrange multipliers, 2, the values of
the penalty function coefficients, W, the details of the step
size rule, and the method used to perform the unconstrained
optimization phase of the algorithm. Only one local minimum
was found in the search for optimal mistune patterns of the
l14-bladed rotor studied in this report. No attempt was made
to find other local minima. However, a 1l3-bladed case and a
12-bladed case were also examined. In the ]2-bladed case,

several local minima were discoveread. That work will not be

'presented in this report except to say that the minima found

in these casgses had approximately same level of mistune as the
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optimally mistuned 14-bladed case. It does not appear,
therefore, that a rotor with an odd number of blades performs
significantly better or worse than a rotor with an even number
of blades when the roters are optimally mistuhed.

As the next step, the optimal mistune pattern for a
minimumn damping ratio greater than Z = -2.084 was found. The
initial guesses for the optimal mass mistune and the Lagrange
multipliers were takeﬁ to be the result of the optimization of
the 7 = -0.995 optimization problem. The optimal mistune
patterns for the cases of [ = -0.0¢03, -0.982, -£.0082, 8.4,
@.081, 9.802 were found sequentially in a completely analogous
fashion, using the preceding optimization results for the
initial conditions of the next successive optimization. of
these cases, the 7 = 0.002 case did not fully converge. The
Lagrange multipliers at this point were not found, and the
actual damping ratio produced by the partially converged
solution was I = £.99188.

It was not possible to obtain converged solutions to the
constrained optimization problem for stability margin
requirements greater than 7 = 0.0@1. The difficulty arises in
the evaluat;on of the eigenvalues by integration of the
derivatives of the eigenvalues and eigenvectors. As the
system is mistuned, some of the eigenvalues of the system may
become very close to one another. This is especially true of
those eigenvalues which 1lie on the stability margin

constraint. When the eigenvalues become very closely spaced,
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the first order approximation to the eigenvalue derivatives is
valid in a very small region of mass miastuning space and the
accuracy of the integration becomes poor. Furthermore, if two
eigenvalues should become equal or very nearly equal, the
integration will break down altogether. The integration
scheme was not sophisticated enough to avoid these pitfalls by
dynamically adjusting the integration step size or to avoid
singularities by rerouting the integration path around them.
This turned out to be the limiting factor on the usefulness of
the optimization procedure.

As stated in Chapter 4, the goal of this analysis is to
determine the ‘0ptimal mistune pattern which produces a
required minimum damping ratio. Figure 5.1 shows the mistune
patterns found for the eight cases described above:
Z=-0.005, -0.604, ..., 8.001, ©.09188.

Consider the case of L = -@.005 (see Figure 5.1). This
type of mistune pattern is called almost alternate mistuning.
Notice that the odd numbered blades have no change in mass
from their nominal mass (i.e., g, = P). The even blades all
have nearly nearly equal masses except for blade 2, which has
a mass mistune of zero, and blade 14, which has a mass mistune
of about half that of the other even numbered blades.

This almost alternate mistune pattern grows in magnitude
for increasing T but does not change in nature until

T = @.9. At this value of required damping ratio, the mass of

blade 9 becomes nonzero. At .= 3.001, the mass of blade
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number 2 becomes nonzero but still very small compared to the
mass of the other even numbered blades.

Notice that the mistune patterns shown in Figure 5.1 all
regemble, to some degree, the truly alternate mistune pattern
where all the odd numbered blades have é-ﬂ @ and all the even

i
numbered blades have egqual nonzero ¢.. One might expect,

i
therefore, that although the mistune patterns found in this
investigation ﬁay be optimal, they are not :.__nificantly more
cost effective than the truly alternate mistune pattern.
However, as dJdemonstrated by Figure 5.2, this is clearly not
the cage. The figure shows the cost of mistuning (as defined
by Equation (4.3)) versus the stability margin achieved by the
mistuning. The upper curve is the cost of the truly alternate
mistune pattern and the lower curve is the cost of the optimal
mistune pattern. The optimal mistune pattern is seen to
deliver much more astability for a given level of mistune or,
alternatively, a much lower cost for the same level of
stability. To achieve a damping ratio of 9.00188, the optimal
mistune pattern requires about 45 percent less mistuning than
alternate mistuning.

Some insight into why the optimal mistune patterns are so
effective can be gained by looking at the eigenvalues in the
complex plane. Figures 5.3a-i show the eigenvalue for
z = -0.00602 (tuned), -~9.005, -0.004, -9.083, ..., 0.001,
@.2¢183. As the stability margin becomes greater, more and

more eigenvalues just barely satisfy the constraint that all



)

78

eigenvalues lie to the left of the ray emanating from the
origin with a damping ratio of Z-. For a damping ratio of
E = 3.00188 (see Figure 5.3i), four of the 14 eigenvalues lie
on the stability margin constraint. This indicates that the
mistune pattern is very elficient, 8since it does not do
unnecessary work by pushing some of these eigenvalues further
to the left than required. In contrast, only one of the 14
eigenvalues of the alternate mistune pattern will, in general,
lie on the constraint.

As a Dby-product of the optimization procedure, the
Lagrange multipliers of the active constraints are determined.
Recall from Section 4.3 that the Lagrange multipliers indicate
the change in the optimal cost' for a small change in the
constraints. Hence, by summing the negative of the Lagrange
multipliers associated with the damping ratio constrainta, the
local slope of the cost versus damping ratio curve (see Figure
5.2) is determined. To check this result, the slope of the
optimal cost curve was determined by using second order finite
difference operators. These results are plotted in Figure
5.4, along with the slope predicted by the Lagrange
multipliers. Note the generally good agreement between the
two. The difference between the two can be attributed to the
relatively large AZ used in the differencing and the limited

accuracy to which the Lagrange multipliers were computed.
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5.2 OFF DESIGN PEFORMANCE OF OPTIMALLY MISTUNED ROTOR

The rotor has been mistuned to achieve given stability
requirements at the aeroelastic design point of the rotor. It
remains to be seen if this mistuned rotor will be stable over
the entire operating ranée. To determine this, a modified V-g
diagram was constructed. The negative of the damping ratio of
the rotor is plotted versus the reduced velocity. For
atability, the damping ratio must be positive, i.e., the curve
must lie below L = @. Two cases were examined. In the first
case, the reduced velocity was varied while all other
parameters, including the Mach number, were held constant. 1In
the second case, the Mach number énd reduced velocity were
varied together to simulate a fan rotor running up its
operating line.

Plotted in Figure 5.5 are three important stability
curves for the constant Mach number case. The upper curve is
the tuned damping ratio plotted against the relative reduced
velocity of the rotor. Bendiksen [3] has shown that for
rotors which can be modelled well with only one degree of
freedom per blade, the tuned position is always the least
stable. The lower curve is the damping ratio of the the
centroid of the tuned eigenvalues. Recall from Section 2.4
that this is to first order the best damping ratio that one
can achieve by mistuning. Hence, the mistuned damping ratios
should lie between thiéue two curves. Finally, the center
curve 1is the rotor which has been optimally mistuned at the

aeroelastic design point. As expected, this curve lies

[
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between the tuned damping ratio curve and the blade self
damping curve. |

As Figure 5.5 clearly shows, the rotor has been
s-abilized for all reduced velocities less than or equal to
the aercelastic design reduced velocity. For the worst case
(the tuned case), the rotor flutters at a reduced velocity of
V =1.7. The best case {the 'centroid of the eigenvalues)
produces a flutter speed of V = 2.9. The use of optimal
mistuning has increased the flutter speed from the worst case
to V= 2.085. Hence, the flutter speed has been increased by
about 20 percent over the tuned flutter speed. In the best
possible case, one could mistune the rotor to achieve a 78
percent increase in flutter speed.

In this example, the flutter speed of the rotor has Dbeen
increased by 20 percent. This increase in flutter speed can
prevent a rotor which would flutter in its tuned state from
fluttering at its aerodynamic design point. On the other
hand, if a rotor does not flutter in its tuned state, the
increage in flutter speed could be used to reduce the chord of
the blades without inducing flutter due to the subsequent
increase in reduced velocity.

As a second example the case of a given fan running up
an operating line was considered. In this case, the Mach
number and the reduced velocity were held proportional to one
another. Figure 5.6 shows a "V-M-g diagram" (damping ratio

versus reduced velocity and Mach number). Again the upper arnd
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lower curves are the tuned damping ratios, and the damping
ratio of the centroid of the tuned eigenvalues, respectively.
The middle curve is the optimally mistuned rotor. Notice that
again, the misturied damping ratios 1lie between the tuned
damping ratio and the centroid damping ratio. In this
example, however, although the rotor was stabilized at a
reduced velocity of 2.82 and a Mach number of 1.317, the rotor
appears unstable at reduced velocities and Mach numbers Jlower
than the aerocelastic design point. Note that there is a
single region of instability juat before the operating point
is reached. It is possible that if the rotor had been more
severly mistuned, the mistuned damping ratio curve would not
have gone from positive to negative before the operating point
is reached. Unfortunately, as previously dicussed, the
optimization procedure failed to converge for damping ratios

greater than [ = ¢.901.

5.3 SENSITIVITY TO ERRORS IN MISTUNING

An important issue, which must be addressed before an
optimally mistuned rotor is actually used in aercelastic
experiments, is the question of senaitivity to manufacturing
errors. Although the designer may specify a certain mistune
pattern, he must accept the fact that in the manufacturing
process there wil)l be certain tolerances which cannot be
obtained. Hence, the actual mistune pattern  which is

implemented will be somewhat less than optimal. The actual

-
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ORIGINAL PARGE 13
mistune pattern will be OF POOR QUALITY

£i° Livpeitd * 1 (5.1)

where e, is the error in mistuning the rotor.

Tominvestigate this problem, errors in mistuning were
iucroduced into the optimally mistuned rotor with a stability
margi: of 9.00188. The gradient of the damping ratio of each
eigenvalue was found with respect to the mistune variables

€y * The actual mistune patterns were then taken to be
Y]

Ei = & "m‘.“‘ - EjN VI. n=o i N/ (5.2)
e’
In Equation (5.2), the term -V;n/”V;n" is the vector which

points in the most destabilizing direction of the nth

eigenvalue. This vector is normalized to have a length of

unity. The vector is multiplied by E/N, where E is the root

mean square of the entries of the mistune error vector, then

added to the nominal mistune pattern. A typical vaiue of E
for an actual rotor is about 9.91. The rotor was mistuned
using the pattern specified by Equatjon (5.2) with the N
different gradients corresponding to the N different
eigenvalues. Then the case with the worst damping ratio after
the errors had been introduced ias, to first order; the worst
possible case for a given value of E.. It was found that for

E = 8.91, the stability is reduced from &.66188 to -9.80317
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(see Figures 5.7). Hence it is seen that the optimal mistune
pattern for r = 9.08188 is very sensitive to small changes in
mistuning.

The eigenvalues of the perfectly mistuned and the worst
case imperfectly mistuned systems aire plotted in Figure 5.8.
In this case, the eigenvalue which moves the most to the right
in the complex plane is the eigenvalue on the root locus of
the tuned 77.14° interblade phase angle eigenvalu-. Before
the intrcduction of mistuning error, this is one of the
eigenvalues which lies on the stability margin ccnstraint.

In a sense, the optimal mistune pattern is very sensitive
to errors because it is an optimal mistune pattern. Figure
5.7 shows that the optimal cost curve has a very shallow slope
at [ = @.08188. This implies that for a small increase in
mistuning, a large improvement can be made in the stability
margin. But for this same reason, a =mall change in mistuning
can groatly reduce the stability margin.

This same sort of sensitivity analysis was carried out on

the alternately mistuned rotor with a perfectly mistuned

stability margin of z @.20171. Again the error vector was
chosen to be 1in the worst possible direction for an error
vector with a root mean square of 0.91. The stability margin
in this case was degraded from @.00171 to @.00047 as shown in
Figure 5.7. As it turns out, alternate mistuning is less

sensitive +to mistuning errors than optimal mistune. By the
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symmetry of the problem, the gradierts of the damping ratios
all are in the direction of an alternate mistuning direction.
Since alternate mistuning'does not give large improvements in
the minimum dJdamping ratio for a2 small change in mistune, one
would not expect the errors in mistuning to produce a large
change 1in the stability margin since the worst errors are in
an alternate mistune direction.

An interesing result of the perturbation analysis
presented in Chapter 3 is that small amounts of mistuning do
not significantly change the stability of the system from the
originally tuned configuration. To show this, recall that the

derivatives of the eigenvalues of the system are:

g%: * g _a"ig)q‘ (5.3)

Gin B 9un

For the case of mass mistuning, Equation {(5.3) becomes

T a8
%‘l‘"‘. = T An Len 57 GAr (5.4)
' a.zméq.ﬂh

It can be shown that, for the tuned case, the quantity on the
right hand side of Equs+ion (5.4) is equal to -1/N. Hence,
for small mass perturbations about the tuned position, the

change in an eigenvalue is equal to
vl

An = An NZE— (5'5)

Fuwad is0

Therefore, *he eigenvalues of the slightly mistuned system
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depend only on the net mass added to the system, and not on
the mistune pattern. But if equal masses are added to all the
blades, one would not expect the damping ratios of the
eigenvalues to change significantly since the system is =still
tuned. Therefore, the stability margin of the tuned system is
insensitive to small amounts of mistune, no matter what
mistune pattern is used. This is shown clearly in Figure 5.7.
Both the optimal mistuning and the alternate mistuning cost
curves are very steep at the Funed postion. Relatively large
amounts of mistune are required to cause small changes in

stability about the initially tuned position.

5.4 TWO, THREE, AND FOUR TONE APPROXIMATIONS TO OPTIMAL
MISTUNE PATTERNS

The cost function minimized in this optimization reflects
the practical difficulty associated with reaching a certain
magnitude of mistuning. However, the difficulty with
constructing a mistuned rotor is not only in the level of
mistuning, but also in the complexity of the mistune pattern.
For example, for the rotor examined in this study, the optimal
mistune pattern required that there be nine different Dblade
natural frequencies for the 14 blades on the rotor. Hence, to
actually construct an optimally mistuned rotor, one would have
to construct approximately N/2 different types of blade for a
single rotor. This would prove to be very costly. In this

section, several suboptimal mistuning patterns are created by
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approximating the optimal mistune patterns by two, three, and
four tone mistune patterns, and the performance of these
mistune patterns are presented.

The procedure for picking the approximations to the
optimal miatune was to use the 7 = 0.96188 optimal pattern as
a guide to provide insight for picking suboptimal mistune
patterns. First, the two tone approximations were chosen. In
Table 5.1, the optimal mistune pattern and the two tone
approximations which were investigated are given. Of course,
the goal of these suboptimal patterns is the same as the gcal
for the optimal patterns, i.e., to providz the greatest
stability margin for the lowest cost. Figure 5.9 shows the
cost versus satability margin of the two tone patterns. LUote
that two of the patterns result in costs which lie between the
optimal and alternate mistune costs. The third is abcut the
same cost as the alternate mistune pattern.

Next, several three tone approximations were examined.
These patterns are presented in Table 5.2. All of the mistune
patterns tried had a lower cost per stability margin than the
alternate mistune pattern as seen in Figure 5.10, although not
dramatically lower. This is an indication that the fine
detail of the optimal mistune pattern is important. Large
amounte of mistune will not be effective in preventing flutter
if this detail is misgsing.

‘Finally, four tone approximaticns were examined. Table

5.3 1lists the four tone patterns used to approximate the
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optimal mistune pattern. In Figure 5.1l1, it is seen that
again, the four tone patterns perform slightly better than
alternate mistuning, but not as well as optimal mistuning.
Even with four tone approximations, there is not sufficient
similarity to the optimal mistune pattern to achieve results
that are nearly optimal.

In this chapter, it has been shown that optimal mistune
patterna can achieve a given stability margin for a relatively
low level of mistuning- Approximations tc these optimal
mistune patterns using two, three, and four discrete blade
frequencies, however, perform only slightly better than
alternate miatuning. Furthermore, optimal mistuning is not
very robust to small mistuning errors. Alternate mistuning,
on *+he other hand. is relatively insensitive to errors in
mistuning. For these reasons, it appears that a practical

mistune pattern for implementation is the alternate mistune

pattern.

[
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6. CONCLUSIONS

1. The aeroelastic poles or eigenfrequencies can be thought
of as forming a pattern around their centroid. The location
of the centroid is controlled by the average blade machanical
properties and the aerodynamic blade self damping. It was
shown that a necessary but not sufficient condition for

aeroelastic stability is that the bladgs be self damped.

2. The distribution of the poles about the centroid is due to
the unsteady aeroelastic¢ influence of the neighboring blades.
This pattern of poles can be modified by mistuning the rotor,
increasing the stability of the less stable poles. However,
mistuning does not introduce additional damping into the
system, since the damping ratio of the centroid is unaffected.
Mistuning makes use of the existing damping to stabilize the
t3w0r by decreasing the blade %o blade aerodynamic influences,

whizteby increasing the stability of the least stable poles.

3. There are two main mechanisgms which can lead to the onset
of flutter in transonic fans: The first is the losc of the
blade self damping, as in the case of high incidence stall
flutter. In such instances, the centroid and the entire
pattern of poles shifts to the right in the complex plane
eventually causing the least stable poles to become unstable.
The second mechanism is due to the increasing destabilizing
effect of the neighboring blades with increasing reduced

velocity. The off diagonal influence coefficients, which

B ]



89

reflect the influence of one blade in the cascade on its
neighbors, cause the eigenvalues to spread out away from the
centroid of the poles. Séme of the eigenvalues will become
more stable than the centroid, and some wili become less
stable than the centroid. Hence, in the presence of cascade
effects, the least stable eigenvalue will necessarily be less
stable than the centroid of the eigenvalues, the value of
which is determined only by the blade self damping terms of

the influence coefficient matrix.

4., The unsteady aerodynamic forces, derived in terms of
travelling wave c¢oordinates, can be transformed into a form
which expresses the force on each blade explicitly in terms of
the motion of the other blades in the cascade. This linear
transformation is simply a PFourier decomposition of the forces
as expressed 1in the travelling wave coordinates. The use of
this transformation on both analytical cascade models and
experimentally measure unsteady aerodynamic coefficients
generally reveals that the dominant forces acting on a blade
arise from the motion of the blade itself and its two adjacent
neighbors. Hence, one would expect that any effective
mistuning scheme will minimize the influence one blade has on
its neighbors. This heuristic argument suggests that the

alternate mistune pattern should be effective.

3. In an effort to better understand the mechanisms of
mistuning, an inverse design procedure was developed which

determines the optimal pattern of blade structural mistuning
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for a required increase in aeroelastic stability margin. The
optimal mistune pattern can achieve a given stability margin
with a significantly lowef level of mistuning than with the
simple alternate mistuning. The success of optimal mistuning
does not depend on an even number of biades being present, as
similar results are found for rotors with odd and prime

numbers of blades.

6. The optimal mistune pattern appears to have three salient
features: First, in all optimal mistune patterns there is
seen to be some features of the alternate mistune pattern,
i.e., nearly every other blade is mistuned. This componant of
the optimal mistune pattern serves to disrupt the dominant
aerodynamic effects of the neighboring blades. Second, there
are "break points" around the rotor which disrupt the
alternate mistune pattern. It 1is thought that thesaz break
points prevent longer wavelength disturbances from travelling
around the =seor. Third, those blades that are mistuned do
not all have exactly the same amount of mistune. Rather,
there is a subtle structure to the mistuning which is not

possible to predict a priori.

7. The subtle detail in the mistune pattern appears to be
very important to the effectiveness of the optimal mistuning.
The optimal mistuning patterns were found to be very sensitive
to small errors in mistuning due to the loss of this detailed
structure. Alternate mistuning, on the other hand, was found

to be relatively insensitive to errors in mistuning.
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8. Another consequence of the importance of the subtle detail
in the optimal mistune pattern is that any practical
implementation of the mistuﬁe pattern wusing only a small
numbear of different blade fregquencies will not faithfully
reproduce all the important features of the optimal mistune
pattern. It was found that the practical suboptimal mistune

patterns do not perform significantly better than alternate

mistuning,

9. Three distinct regions of mistuning influence were
identified. Starting from the tuned configuration, there is a
first region were the stability boundary is insensitive to tha
addition of mistuning. It is thought that most present stages
operate in this initial insensitive region, which explains why
they behave similarly and can be analyzed as tuned rotors.
After several percent of mistuning has been introduced, a
region of approximately linear increase in stability with
increasing optimal mistune is entered. Finally, an asymptotic
limit on the ability of mistuning to increase stability is
reached. It is apparent that to provide uniformity of
performance of rotors 1in service, rotors should be designed
assuming small amounts of mistuning (i.e. in the initial
insensitive region), or if the rotor is to be deliberately
mistuned for stability, a large amount of mistuning should be
introduced so that the rotor operates in the latter region of

insensitivity.

10. When studying the off design performance of a mistuned
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rotor, it is wuseful to construct diagrams similar to the
traditional V~-g diagrams. The stability of the mistuned
rotor, at least if the rétor can be iodelled with a single
degree of freedom per blade, will 1lie between two limiting
curves. The worst possible case is the case of the turied
rotor. The mistuned rotor cannot be any less stable than
this. On the other hand, the most stability one can achieve
through the use of mistuning is limited by the blade self
damping. This is the fundamental limitation to the usefulness

of mistuning.

1l. In order to perform the optimization discussed in Chapter
4, it was first necessary to develop a method of evaluating
the eigenvalue and eigenvectors of the equations of motion
which retains the identity of each eigenmode in a root locus
sense. This was done by first determining the derivatives of
the eigenvalues and eigenvectors as a function of the mistune
of each blade. These derivatives were then integrated to
determine the eigenvalues and eigenvectors of a given mistune
pattern. This method of evaluating the eigenvalues and
eigenvectors is reasonably efficient when wused in the
optimization procedure. Furthermore, the identities of the
eigenmodes are not lost in their evaluation as the system is
mistuned. The principle drawback of the method 1is that the
integration scheme breaks down whenever two or more
eigenvalues become nearly equal. This turned out to be the

limiting factor in the ability to optimize the rotor. For
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damping ratios of 0.002 and greater, the optimization routine
did not converge due to problems in evaluating the eigenvalues

and their derivatives.
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Table 2.1 Parameters of rotor at typical section

aeroelastic design point.

Number of Blades

Solidity

Mach number

Recuced frequency

Location of pitch axis

Mass ratio of reference blade
Radius of gyration of blades

Stagger angle at typical section

=

=

=

»

14
1.4089
1.317
3.495
6.0

181.9
.4731

58.99°

at the
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Table 5.1

and 2c were picked to approximate optimal mistune pattern.

Blade number
i=1

OO0 b W

Two tone mistune patterns.

Percent mass mistuning of ith blade, €.

Optimal
2.090 %
2.94
9.09
4.27
.99
5.81
2.0¢
5.89
3.47
7.95
g.09
4.76
2.00
6.26

98

2a
g.00 %
.00
g.00
6.00
g.09
6.00
2.00
6.09
&.00
6.80
0.02
6.02
g.09
6.080

2b
0.90 %
a.00
.00
6.00
2.98
6.09
ﬂlgg

" 6.00

GIGQ
6.40
8.28
6.00
0.09
6.89

Patterns 2a,

1

2¢c
.00 %
6.00
g.89
6.90
3.00
6.00
Q.20
6.90
6.00
6.00
0.92
6.00
2.00
6.90

2b,
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Table 5.2

3b, 3c, 34, 3e, 3f, and 3g were picked %o approximate optimal

mistune pattern.

Blade number
i=1

VOO W

Blade number
i=1

2
3
4
5
6
7
8
9
19
11
12
i3
14

99

Three tone mistune patterns.

Percent mass mistuning of ith blade, ¢,

Optimal
.00 %
g.94
E'Gg
4.27
0.80
5.81
2.900
5.09
3.47
7.05
a.90
4.76
9.00
6.26

3d
2.00 %
0.90
Q.02
6.00
2.09
7.08
g.09
6.00
6.2d
7.00
2.c9
6.0¢
.00
7.99

3a
5.00 %
Q.00
g.90
5.09
7.90
6.00
2.00
5.09
5.00
6.09
9.09
5.00
2.00
6.00

3e
a.090 %
3.00
2.9
6.00
@.09
8.09
2.09

. 6.00

5.090
8.09
a.a0
6.90
.99
8.9008

3b
.00 %
g.00
0.00
6.92
0.08
7.008
2.9¢
6.009
0.099
7.900
0.89
6.00
2.90
7.80

3f
g.29 %
6.00
2.90
6.90
Q.90
8.00
GCag
6.00
6.09
8.09
2.00
6.00
2.00
Blgﬂ

Patir.emrns

1

3c
.80 %
6.00
g.09
G.00
?.29
7.80
g.ag
6.00
2.09
7.00
0.00
6.00
a.30
7.99

3g
.00 3
5.00
o.00
6.00
9.09
9.00
9.00
6.09
6.90
9.00
9.0
6.082
2.90
9,00

3a,

T T B



AR T

-l

Table 5.3

Four tone mistune patterns.

100

Patterns 4a, 4b,

4¢, and 44 were picked to approximate optimal mistune pattern.

Blade numbher
i=1

CO-d0Und Wk

Percent mass mistuning of ith blade,

Optimal
2.9 %
@.94
2.0
4.27
o.08
5.81
g.00
5.99
3.47
7.85
a.08
4.76
g.90
6.26

4a
2.99 %
2.00
3.9
6.00
2.09
9.09
g.9a9
6.09
2.90
9,80
@ .00
6.00
9.080
6.09

41b
0.00 %
4.00
a.a0

4c
.99 %
4.00
2.900
6.00
8.0
8.98
2.99
&.00
4.09
8.00
Q.30
6.08
0.29
9.00

€.

1

44
g.990 %
5.0
a.aa
6.90
0.9¢
5.09
a.03
6.09
5.92
9.0¢
g.a9
6.90
0.9
9.04a
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Figure 2.1 Geometry of the ith biade., Blade is modelled with a

single torsional degree of freedom about the elastic axis.

TP P UL

e mwe g

A i S LTl



v
.

102
ORIGINAL PACE — e
OF PNOR QUALITY 3
B —————
2
-
Qr Vaxial i>§/ 42 1
AT . mepime O .
Urel 0 X
— T ——
N-1
)\m
S N-2

Figure 2.2 Geometry of the roteor at the typical section. Note
the stagger sngle and blade numberiny definitions. The solidity of
the rotor, o, is equal to 2b/s.
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2.00

1.00

)
8

f. 00

Re(1

.00 300,00 350,00 400,00
INTEHBLRDE PHASE ANGLE, EGREES

L Q0 50,00 0.00 150.00 200,00 é‘s

.00

-1
1

-2.00
[l

2.00

.o

1

UNSTEADY MOMENT COEFFICIENTS

Im(lB )
$.000

Yoo 59. 00 .00, 150.00  200.00  260.00 300,00 35600  400.00
INTEHBLHDE HHSE ANGLE, . DEGREES

.00

w

-2.00

Figure 2.3 Unsteady moment coefficients acting on a reference
blade for travelling wave motion of the blades.

TP . Ehii e

R S

B A




S =

1.0

0.5

Re(L,}

]
b
-

104

ORIGINAL PAGE 1
OF POOR QUALITY

Moment Influence Coefficients

4 8 ] 7 8 9 10 11 12 13 14

-1.0
"J
2
i 100
I
»
M -
—
x
]
"‘FE o
-o.s =1
-t.0t
}

Figure 2.4
form. Note the four largest coefficients are le, L13, L14, and Ll,

1 —1 :

v l

4 5 8 7 8 9 W0 11 12 13 ’T

Blade Number, K

Unsteady moment coefficients in influence coefficient

indicating that only neighboring blades have a significant influence on

FL

iy

a given blade.

Note also that L. = L_,.
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1,00

1,03

STABLE | UNSTABLE

1,02

-LnUE. l!|ll

[
'1

.
g_gmfr {:FB!ET UFOEa GENV

1MAG
0.

0,06

0,85

-0.0% -0, 04 -0.03 -0.02 -0.01 9. 00 0.01
REAL PART OF EIGENVALUE, RE(S)

=
-]
Q

Figure 2.5 Efgenvalues of the tuned rotor. |Notice that four

of the 14 eigenvalues are unstable,
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g ]
1.00

1.03

STABLE UNSTABLE -

1.2

1.01
INIS

(]
=
0.98

INAGINARY PRAT DF E1GENVALLUE,

0.85 6.87

.85

«0. 05 0.0y -0 '“'J

-0.03 -0, 02 -0.0t -
REAL PART OF EIGENVALUE, RE ()

ooy

0 0.a1

Figure 2,6 Eigenvalues of the alternately mistuned rotor. The
even numbered blades have E 1" 0.0 while the odd numbered blades have
a mass mistune of Ey ™ 0.1. For this case, the mistuning has stabilized

an otherwvise unstable rotor.
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€, OF POOR QUALITY
A fourth-order ﬁuuge—Kutta
scheme is used to integrate J)*,§1|
over each interval s

R

Figure 3.1 The path of integration for the evaluation of the
eigenvalues and eigenvectors 1s chosen to be the straight line connecting
the end points, g1 and Rit° The path is then subdivided into I intervals.

Over each interval, a fourth-order Runge-Kutta integration is performed.
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Figure 3.2
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Eigenvalues of Alternately
Mistuned Rotor

X EISPACK

I=1

ORIGINAL PAGE (G
OF POOR QUALITY

m
[=]
]

1.02

Y
MIS)

1

0 Runge-Kutta scheme
a
- §
|
xd
x
@ ]
u]
x
x
o B
B u!

T
1.00

0.99

0.98
IMAGINARY PART OF ETGENVRLUE,

0.97

96

0.95

-
o

-0, 04 -0.03 -0.02 -0.01 -
REAL PART OF EIGENVALUE, RE (S}

0500 0.01

Evaluation of eigenvalues of alternately mistuned rotor

via fourth-order Runge-Kutta integration. Number of integration steps = 1.

Nete the very poor agreement between the values determined by integration
and those determined by EISPACK.
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1.03

Eigenvalues of Alternately
Mistuned Rotor

1.02

X EISPACK

(S)

0 Runge-Kutta scheme
I=2

.01

1
1

]
.00

IMAGINARY PRART OF EIGENYALUE,

a
r 4
x
0.97 0" 98 0,99 1.

0.%96

0.95

o
(=]
[~

600 0.01

X

-0.05 -0. oM -0.03 -0.02 -0.01 -
REAL PART OF EIGENVALUE, RE (S)

Figure 3.3 Evaluation of eigenvalues of alternately mistuned rotor
via fourth-order Runge-Kutta integration. Number of integration steps = 2,
Note the very poor agreement between the values determined by integration

and those determined by EISPACK.
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m
i
Eigenvalue of Alteinataly
Mistuned Rotor P
X EISPACK
@O Runge-Kutta scheme 5‘3 '
I=3 (~X
wi
[ ] ?23
n [
. z
a )
3-—
X I-Q‘u
7.
[ S
Jor
9 (8E
o Chay
’_
[+~
=
~Z
iy
oc
Ir
a
8 [s
n
o
x [}
" [ ]
n '.
&
I T T u) -
-0.05  -0.04 -0 o0 0.o1

.03 -0.02 -0.01 = -0
REAL PART 0OF EIGENVALUE, RE(S)

Figure 3.4 Evaluation of eigenvalues of aiiarnately mistuned rotor
via fourth-order Runge-Kutta integration. Number of integration steps = 3.
Ten of the 14 eigenvalues determined by integration are in excellent
agreement with those determined by EISPACK. However, four of the
eigenvalues are not predicted well with three integration steps.
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[

Eigenvalues of Alternately
Mistuned Botor

1.02

X EISPACK

M Runge-Kutta scheme
I =10

1.01
IMI(S)

[}
r
1.00

]
¥
0.99

| ]
0.98

IMAGINARY PART OF EIGENVARLUE,

0.97

0.96

L ]
-0.058 0.0t

-0.04 -0.03 -0.02 -0.01 -0S
REAL PART OF EIGENVALUE, RE(S)

Figure 3.5 Evaluation of eigenvalues of alternately mistuned rotor
via fourth-order Runge-Kutta integration. Number of integration steps = 10.
With ten integration steps, the eigenvalues are correctly predicted using
the Runge-Kutta integration scheme.
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v % Im(s)
\l g
t‘ . |
A A i
& A\

& EIGERVALUES

a
a
A 1
Al
A 1
a . b
1
||
i
STABILITY MARGIN jﬁ\.
CONSTRAINT \
‘l
1
1
i
]
]
)
\
1
]
\
i
\

Rels)

Figure 4.1

Graphic interpretation of stability margin constraint
Every eigenvalue must have a damping ratio greater than or equal to E?
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ORIGINAL FAGE 19
OF POOR QUALITY

—_——— ¢, objective cost
function
—————— J, Lagrangian cost

— Jﬂ, augmented
Lagragian cost

Figure 4.2 Relationship between cost, Lagrangian cost, and
augmented Lagrangian cost. The constrained minimum is 2t x = 1. Note
that at this point, all three cost functions have the same value.
Furthermore, the slopes of the Lagrangilan cost and the augmented
Lagrangian cost curves are both zero. The augmented Lagrangian cost

is pogitve definite at x = 1.
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r
Steepest descent Conrours of cost function

search direction

d

= ~g
mk qk

Newton-Raphson

:k search direction
-1
d, = -A 7g
’\Jk ny ‘\,k

Figure 4.3 Near a minimum, a Newtoun-~Raphson search vector points
directly to the minimum of the cost function, both in direction and
magnitude. On the other hand, a steepest descent search vector points
in the direction of largest change in cost, which is not toward the
minimum unless the cost contours are circular. Furthermere, the steepest

descent vector contains no stepsize information,
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| ARMIJO STEPSIZE RULE

—

0
A A

Stepsize, c

Cost Function, $(c) - ¢(0)

0
AN 2 :L ? de
AN
]‘dQ 0)
\\\ dé ~\‘\\
\ \

Figure 4.4 Graphical interpretation of the Armijo rule (from
Reference [22]). The stepsize ¢ = ¢ Y2 13 chosen since m = 2 is the

smallest positive interger which results in a value of ¢(¢) - ¢(0) which

is less than ccgiigl .
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Mass MISTUNING VECTORS OF OPTIMALLY

MisTuneD RoToRr

0,03

0,00

BLUDE MRS5S

0,08

0,02

D,01
b
I=—=——
",

s

= K
ra F 3 oF
& & &

§ 7 8 8 10 1!
BLADE NUMBER

0,00
L]
%

Figure 5.1 Mass mistuning vectors of the optimally mistured rotor.
Note that both the level of mistuning and the character of mistuning changes

for increasing stability margin requirements.
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01

Cost Effectiveness: of
Mistuning

=—O=— DPTIMAL WISTUNING
o ALTERNATE MISTUNIHE

COST OF WISTUNING, ¢
.08

ot
-
J
-
ad
Il

g L o

~0,008 -0.004 —0.002 0 0,002
STABILITY MARGIN, T

Figure 5.2 Cost effectiveness of optimal mistuning. Note that
optimal mistuning can achieve a given stability margin for a low level

of mistuning compared to the alternate mistune pattern.
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OF POOR QUALITY

E1GENVALUES. oF TUNED RoToR
DaMpinG RaTiO T = -0,00602

Stable

Unstable

D' os

Figure 5.3a

Eigenvalues of tuned rotor,

eigenvalues are unstable.
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1,00

E1GENVALUES OF OpTIMALLY MIsTUNED RoToR
DaMpinG RaTio = -0.005
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RERL PART OF EIGENVALUE, RE (3)

Figure 5.3b Eigenvalues of optimally mistuned rotor. The required
stabllity margin is T = -0.005.
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E1GENVALUES OF OpTIMALLY MISTUNED RoTor
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Figure 5.3c
stability margin is ¢ = ~0.004.
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Figure 5.3d Eigenvalues of optimally mistuned rotor.
stability margin is [ = -0.003. ‘
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E1GENVALUES oF OPTIMALLY MISTUNED
DampinG RaTio U= -0,002
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Figure 5.3e Eigenvalues of optimally mistuned rotor. The required
stability margin 1is [ = -0.002.
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Figure 5.3f Eigenvalues of optimally mistimed rotor. The required
stability margin is ¢ = -0.00l.
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ORIGINAL PACGE
OF POOR QUALITY

E1GENVALUES OF OPTIMALLY MISTUNED RoToR

Damping Ratio =0
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Eigenvalues of optimally mistuned rotor. The required
stability margin is T = 0. Note that four of the 14 eigenvalues lie on
the neutral stability line.
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Figure 5.3h Eigenvalues of optimally mistuned rotor. The required

stability margin is Z = 0.001.

e e ety i

e -

S Y PR



126 ORIGINAL PAGE [

OF POOR QUALITY

S
EigenvaLUEs OF OptiMaLLy MisTunep RoToRr
"
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Figure 5.31 FEigenvalues of optimally mistuned rotor. The required

stability is Z = 0.002. However, for this case, the optimization procedure

did not completely converge. The stability margin of the partially
converged solution 1s £ = 0.00188.
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° p—
Slope of Optimal .
Cost Curve
[+ B o
bap
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L1
—=O— FINITE DIFFERENCE wr
S
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!
y 1 ] ] ot 1
-0.006 -0.004 -0.002 0 0.002
' STABILITY MARGIN, &
§
5; Figure 5.4 Slope of optimal cost versus stability margin curve.
; The slope of the optimal cost curve was evaluated from the Lagrange
multiplies of the stability margin constraints, and by finite differncing
*; the optimal cost curve.
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STABILITY DIAGRAM
Mach number = 1.317

Tuned rotor,
2

g
- Optimally mistuned
5" rotor
Y
o
| RN
=
ES
& Unstable
- }
a‘ L Y /] + 1
b a0 0.50 1 10~ _LS0 100 3.00 3.50 X.00
Reduced Velocity, V
= Blad 1f d
24 Stable ade se amping
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Figure 5.5 Stability margin of a rotor versuo reduced velocity for

the case 0. . ane_arit Mach number. Note the optimally mistuned rotor darmping

ratio lies between the blade self damping and the tuned rotor damping

ratios.
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Figure 5.6 Stability margin of a rotor operating on its operating
line. In this case, the Mach number is proportional to the reduced
velocity.
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SENSITIVITY OF STABILITY
MARGIN To ERRORS IN MISTUNE

— Optimal Miscuning

memss e Alternate Mistuning

|-—-—| Reduction in Stability Margin

due to worst case 1% RMS
Error in Mistuning
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Figure 5.7
to errors in mistuning.

direction.
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errors than alternate mistuning.

0
Stability Margin, E

Sensitivity of the stability margin of a mistuned rotor
The arrows indicate the loss in stability due to
mistuning errors of 1% root mean square introduced in the worst poosible

Note that optimal mistuning is much more sensitive to these
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Sensitivity of Eigenvalues to
Errors in Mistuning
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Figure 5.8 Sensitivity of eigenvalues of optimally mistuned rotor

to errors in mistuning.
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The errors introduced intc the system have a

root mean 'square value of 0.0l, and are introduced in the direction in

mistune space which 1is most destabilizing.
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Figure A5.9 Cost effectiveness of two tone mistune patterns. Mistune

patterns 2a, 2b, and 2c were chosen to approximate optimal mistune pattern
for £ = 0.0018,
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Figure 5.10 Cost effectiveness of three tone mistune patterns. ’

Mistune patterns 3a, 3b, 3¢, 3d, 3e, 3f, and 3g were chosen to approximate

the optimal mistune pattern for Z = 0,0018.
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Cost effectiveness of four tone mistune patterns.

Mistune patterns 4a, 4b, 4c, and 4d were chosen to approximate optimal

| mistune pattern for L = 0.0C18.
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