575 research outputs found

    Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions

    Full text link
    We have investigated low-temperature transport properties of two-dimensional arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has been found that in two-dimensional arrays of SNS junctions (i) a change in the energy spectrum within an interval of the order of the Thouless energy is observed even when the thermal broadening far exceeds the Thouless energy for a single SNS junction; (ii) the manifestation of the subharmonic energy gap structure (SGS) with high harmonic numbers is possible even if the energy relaxation length is smaller than that required for the realization of a multiple Andreev reflection in a single SNS junction. These results point to the synchronization of a great number of SNS junctions. A mechanism of the SGS origin in two-dimensional arrays of SNS junctions, involving the processes of conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure

    Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    Get PDF
    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north-south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory (STEREO) mission with coronagraphic observations from the SOlar and Heliospheric Observatory (SOHO) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as "raining inflows." This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.Peer reviewe

    Proximity effects and Andreev reflection in mesoscopic SNS junction with perfect NS interfaces

    Full text link
    Low temperature transport measurements on superconducting film - normal metal wire - superconducting film (SNS) junctions fabricated on the basis of 6 nm thick superconducting polycrystalline PtSi films are reported. The structures with the normal metal wires of two different lengths L=1.5 μ\mum and L=6μ\mum and the same widths W=0.3μ\mum are studied. Zero bias resistance dip related to pair current proximity effect is observed for all junctions whereas the subharmonic energy gap structure originating from phase coherent multiple Andreev reflections have occurs only in the SNS junctions with short wires.Comment: ReVTex, 4 pages, 4 eps figures include

    Two-dimensional array of diffusive SNS junctions with high-transparent interfaces

    Full text link
    We report the first comparative study of the properties of two-dimensional arrays and single superconducting film - normal wire - superconducting film (SNS) junctions. The NS interfaces of our SNS junctions are really high transparent, for superconducting and normal metal parts are made from the same material (superconducting polycrystalline PtSi film). We have found that the two-dimensional arrays reveal some novel features: (i) the significant narrowing of the zero bias anomaly (ZBA) in comparison with single SNS junctions, (ii) the appearance of subharmonic energy gap structure (SGS), with up to n=16 (eV=\pm 2\Delta/n), with some numbers being lost, (iii) the transition from 2D logarithmic weak localization behavior to metallic one. Our experiments show that coherent phenomena governed by the Andreev reflection are not only maintained over the macroscopic scale but manifest novel pronounced effects as well. The behavior of the ZBA and SGS in 2D array of SNS junctions strongly suggests that the development of a novel theoretical approach is needed which would self-consistently take into account the distribution of the currents, the potentials, and the superconducting order parameter.Comment: RevTex, 5 pages, 5 figure

    The first widespread solar energetic particle event of solar cycle 25 on 2020 November 29 : Shock wave properties and the wide distribution of solar energetic particles

    Get PDF
    Context. On 2020 November 29, an eruptive event occurred in an active region located behind the eastern solar limb as seen from Earth. The event consisted of an M4.4 class flare, a coronal mass ejection, an extreme ultraviolet (EUV) wave, and a white-light (WL) shock wave. The eruption gave rise to the first widespread solar energetic particle (SEP) event of solar cycle 25, which was observed at four widely separated heliospheric locations (similar to 230 degrees). Aims. Our aim is to better understand the source of this widespread SEP event, examine the role of the coronal shock wave in the wide distribution of SEPs, and investigate the shock wave properties at the field lines magnetically connected to the spacecraft. Methods. Using EUV and WL data, we reconstructed the global three-dimensional structure of the shock in the corona and computed its kinematics. We determined the magnetic field configurations in the corona and interplanetary space, inferred the magnetic connectivity of the spacecraft with the shock surface, and derived the evolution of the shock parameters at the connecting field lines. Results. Remote sensing observations show formation of the coronal shock wave occurring early during the eruption, and its rapid propagation to distant locations. The results of the shock wave modelling show multiple regions where a strong shock has formed and efficient particle acceleration is expected to take place. The pressure/shock wave is magnetically connected to all spacecraft locations before or during the estimated SEP release times. The release of the observed near-relativistic electrons occurs predominantly close to the time when the pressure/shock wave connects to the magnetic field lines or when the shock wave becomes supercritical, whereas the proton release is significantly delayed with respect to the time when the shock wave becomes supercritical, with the only exception being the proton release at the Parker Solar Probe. Conclusions. Our results suggest that the shock wave plays an important role in the spread of SEPs. Supercritical shock regions are connected to most of the spacecraft. The particle increase at Earth, which is barely connected to the wave, also suggests that the cross-field transport cannot be ignored. The release of energetic electrons seems to occur close to the time when the shock wave connects to, or becomes supercritical at, the field lines connecting to the spacecraft. Energetic protons are released with a time-delay relative to the time when the pressure/shock wave connects to the spacecraft locations. We attribute this delay to the time that it takes for the shock wave to accelerate protons efficiently.Peer reviewe

    Stationary Flows of the Parabolic Potential Barrier in Two Dimensions

    Full text link
    In the two-dimensional isotropic parabolic potential barrier V(x,y)=V0mγ2(x2+y2)/2V(x, y)=V_0 -m\gamma^2 (x^2+y^2)/2, though it is a model of an unstable system in quantum mechanics, we can obtain the stationary states corresponding to the real energy eigenvalue V0V_0. Further, they are infinitely degenerate. For the first few eigenstates, we will find the stationary flows round a right angle that are expressed by the complex velocity potentials W=±γz2/2W=\pm\gamma z^2/2.Comment: 12 pages, AmS-LaTeX, 4 figure

    Molecular Plasmonic Silver Forests for the Photocatalytic-Driven Sensing Platforms

    Get PDF
    Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor’s performance when exposed to prostate cancer cells’ media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.</p

    Symmetric, gated, ballistic rings as tunable electron interferometers

    Get PDF
    Abstract In the present work we investigate the coherent electron transport in a symmetrically designed ballistic ring uniformly covered by a top metal gate. We ÿnd that as the Fermi energy is varied, the phase of Aharonov-Bohm (AB) oscillations near zero magnetic ÿeld switches between 0 and . It seems unlikely that this behaviour can be explained by some accidental asymmetry in the structures. We give a qualitative explanation of our results using a model where the ring is considered to be weakly coupled to the leads and the conductance is calculated on the basis of an exact energy spectrum of an ideal ring. This model predicts that a variation of the phase of AB oscillations with gate voltage may be observed in a symmetrical ring. ? 2000 Elsevier Science B.V. All rights reserved. Ever since the start of the mesoscopic physics, the properties of quantum ring interferometers have been intensively studie

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
    corecore