1,091 research outputs found

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take

    All-charm tetraquarks

    Full text link
    We investigate four-body states with only charm quarks. Working in a large but finite oscillator basis, we present a net binding analysis to determine if the resulting states are stable against breakup into a pair of c-cbar mesons. We find several close-lying bound states in the two models we examine.Comment: 24 pgs, 10 table

    Nonperturbative Light-Front QCD

    Full text link
    In this work the determination of low-energy bound states in Quantum Chromodynamics is recast so that it is linked to a weak-coupling problem. This allows one to approach the solution with the same techniques which solve Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative effects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses rather than the zero masses of the current picture. The use of constituent masses cuts off the growth of the running coupling constant and makes it possible that the running coupling never leaves the perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian, but with a coefficient that vanishes at the physical value of the coupling constant. The weak-coupling approach potentially reconciles the simplicity of the Constituent Quark Model with the complexities of Quantum Chromodynamics. The penalty for achieving this perturbative picture is the necessity of formulating the dynamics of QCD in light-front coordinates and of dealing with the complexities of renormalization which such a formulation entails. We describe the renormalization process first using a qualitative phase space cell analysis, and we then set up a precise similarity renormalization scheme with cutoffs on constituent momenta and exhibit calculations to second order. We outline further computations that remain to be carried out. There is an initial nonperturbative but nonrelativistic calculation of the hadronic masses that determines the artificial potential, with binding energies required to be fourth order in the coupling as in QED. Next there is a calculation of the leading radiative corrections to these masses, which requires our renormalization program. Then the real struggle of finding the right extensions to perturbation theory to study the strong-coupling behavior of bound states can begin.Comment: 56 pages (REVTEX), Report OSU-NT-94-28. (figures not included, available via anaonymous ftp from pacific.mps.ohio-state.edu in subdirectory pub/infolight/qcd

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis

    Get PDF
    We tested whether inhibiting mechanically responsive articular chondrocyte mitochondria after severe traumatic injury and preventing oxidative damage represent a viable paradigm for posttraumatic osteoarthritis (PTOA) prevention. We used a porcine hock intra-articular fracture (IAF) model well suited to human-like surgical techniques and with excellent anatomic similarities to human ankles. After IAF, amobarbital or N-acetylcysteine (NAC) was injected to inhibit chondrocyte electron transport or downstream oxidative stress, respectively. Effects were confirmed via spectrophotometric enzyme assays or glutathione/glutathione disulfide assays and immunohistochemical measures of oxidative stress. Amobarbital or NAC delivered after IAF provided substantial protection against PTOA at 6 months, including maintenance of proteoglycan content, decreased histological disease scores, and normalized chondrocyte metabolic function. These data support the therapeutic potential of targeting chondrocyte metabolism after injury and suggest a strong role for mitochondria in mediating PTOA

    Motivational interviewing for low mood and adjustment early after stroke: a feasibility randomised trial

    Get PDF
    Background Management of psychological adjustment and low mood after stroke can result in positive health outcomes. We have adapted a talk-based therapy, motivational interviewing (MI), and shown it to be potentially effective for managing low mood and supporting psychological adjustment post-stroke in a single-centre trial. In the current study, we aimed to explore the feasibility of delivering MI using clinical stroke team members, and using an attention control (AC), to inform the protocol for a future definitive trial. Methods This parallel two-arm feasibility trial took place in north-west England. Recruitment occurred between December 2012 and November 2013. Participants were stroke patients aged 18 years or over, who were medically stable, had no severe communication problems, and were residents of the hospital catchment. Randomisation was to MI or AC, and was conducted by a researcher not involved in recruitment using opaque sealed envelopes. The main outcome measures were descriptions of study feasibility (recruitment/retention rates, MI delivery by clinical staff, use of AC) and acceptability (through qualitative interviews and completion of study measures), and fidelity to MI and AC (through review of session audio-recordings). Information was also collected on participants’ mood, quality of life, adjustment, and resource-use. Results Over 12 months, 461 patients were screened, 124 were screened eligible, and 49 were randomised: 23 to MI, 26 to AC. At 3 months, 13 MI and 18 AC participants completed the follow-up assessment (63% retention). This was less than expected based on our original trial. An AC was successfully implemented. Alternative approaches would be required to ensure the feasibility of clinical staff delivering MI. The study measures, MI, and AC interventions were considered acceptable, and there was good fidelity to the interventions. There were no adverse events related to study participation. Conclusions It was possible to recruit and retain participants, train clinical staff to deliver MI, and implement an appropriate AC. Changes would be necessary to conduct a future multi-centre trial, including: assuming a recruitment rate lower than that in the current study; implementing more strategies to increase participant retention; and considering alternative clinical staff groups to undertake the delivery of MI and AC

    Constraints on the Mass and Mixing of the 4th Generation Quark From Direct CP Violationϵ/ϵ\epsilon^{\prime}/\epsilon and Rare K Decays

    Full text link
    We investigate the ϵ/ϵ\epsilon^{\prime} /\epsilon for KππK\to \pi\pi in a sequential fourth generation model. By giving the basic formulae for ϵ/ϵ\epsilon^{\prime}/\epsilon in this model, we analyze the numerical results which are dependent of mtm_{t^{\prime}} and imaginary part of the fourth CKM factor, ImVtsVtd{Im}V^{*}_{t^{'}s}V_{t^{'}d} (or VtsVtdV^{*}_{t^{'}s}V_{t^{'}d} and the fourth generation CKM matrix phase θ\theta). We find that, unlike the SM, when taking the central values of all parameters for ϵ/ϵ\epsilon^{\prime}/\epsilon, the values of ϵ/ϵ\epsilon^{\prime}/ \epsilon can easily fit to the current experimental data for all values of hadronic matrix elements estimated from various approaches. Also, we show that the experimental values of ϵ/ϵ\epsilon^{\prime}/\epsilon and rare K decays can provide a strong constraint on both mass and mixing of the fourth generation quark. When taking the values of hadronic matrix elements from the lattice or 1/N expansion calculations, a large region of the up-type quark mass mtm_{t^{\prime}} is excluded.Comment: 18 pages, 4 eps figure
    corecore