7,371 research outputs found

    Rational invariants of even ternary forms under the orthogonal group

    Get PDF
    In this article we determine a generating set of rational invariants of minimal cardinality for the action of the orthogonal group O3\mathrm{O}_3 on the space R[x,y,z]2d\mathbb{R}[x,y,z]_{2d} of ternary forms of even degree 2d2d. The construction relies on two key ingredients: On one hand, the Slice Lemma allows us to reduce the problem to dermining the invariants for the action on a subspace of the finite subgroup B3\mathrm{B}_3 of signed permutations. On the other hand, our construction relies in a fundamental way on specific bases of harmonic polynomials. These bases provide maps with prescribed B3\mathrm{B}_3-equivariance properties. Our explicit construction of these bases should be relevant well beyond the scope of this paper. The expression of the B3\mathrm{B}_3-invariants can then be given in a compact form as the composition of two equivariant maps. Instead of providing (cumbersome) explicit expressions for the O3\mathrm{O}_3-invariants, we provide efficient algorithms for their evaluation and rewriting. We also use the constructed B3\mathrm{B}_3-invariants to determine the O3\mathrm{O}_3-orbit locus and provide an algorithm for the inverse problem of finding an element in R[x,y,z]2d\mathbb{R}[x,y,z]_{2d} with prescribed values for its invariants. These are the computational issues relevant in brain imaging.Comment: v3 Changes: Reworked presentation of Neuroimaging application, refinement of Definition 3.1. To appear in "Foundations of Computational Mathematics

    Constitutive modeling of two phase materials using the Mean Field method for homogenization

    Get PDF
    A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent phases. Different homogenization schemes that exist in the literature are implemented in efficient algorithms to be used in full-scale FE simulations. These schemes are compared with each other in terms of efficiency. Additionally two new schemes are proposed which are both computationally efficient and compare in accuracy with the more physically based approaches. Finally the algorithms are demonstrated on FE simulations of sheet metal forming operations and compared with experimental results

    Extensions of Noether's Second Theorem: from continuous to discrete systems

    Get PDF
    A simple local proof of Noether's Second Theorem is given. This proof immediately leads to a generalization of the theorem, yielding conservation laws and/or explicit relationships between the Euler--Lagrange equations of any variational problem whose symmetries depend upon a set of free or partly-constrained functions. Our approach extends further to deal with finite difference systems. The results are easy to apply; several well-known continuous and discrete systems are used as illustrations

    Surface properties of ocean fronts

    Get PDF
    Background information on oceanic fronts is presented and the results of several models which were developed to study the dynamics of oceanic fronts and their effects on various surface properties are described. The details of the four numerical models used in these studies are given in separate appendices which contain all of the physical equations, program documentation and running instructions for the models

    Light Elements and Cosmic Rays in the Early Galaxy

    Full text link
    We derive constraints on the cosmic rays responsible for the Be and part of the B observed in stars formed in the early Galaxy: the cosmic rays cannot be accelerated from the ISM; their energy spectrum must be relatively hard (the bulk of the nuclear reactions should occur at >>30 MeV/nucl); and only 1049^{49} erg/SNII in high metallicity, accelerated particle kinetic energy could suffice to produce the Be and B. The reverse SNII shock could accelerate the particles.Comment: 5 pages LATEX using paspconf.sty file with one embedded eps figure using psfig. In press, Proc. Goddard High Resolution Spectrograph Symposium, PASP, 199

    Dimensional analysis using toric ideals: Primitive invariants

    Get PDF
    © 2014 Atherton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units M, L, T etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer K matrix from the initial integer A matrix holding the exponents for the derived quantities. The K matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by A. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of K, is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.The third author received funding from Leverhulme Trust Emeritus Fellowship (1-SST-U445) and United Kingdom EPSRC grant: MUCM EP/D049993/1

    Dynamics of apparent horizons in quantum gravitational collapse

    Get PDF
    We study the gravitational collapse of a massless scalar field within the effective scenario of loop quantum gravity. Classical singularity is avoided and replaced by a quantum bounce in this model. It is shown that, quantum gravity effects predict a threshold scale below which no horizon can form as the collapse evolves towards the bounce.Comment: Contribution to the Spanish Relativity Meeting in Portugal 2012 (ERE2012), Guimaraes, Portuga

    Recurrence in generic staircases

    Full text link
    The straight-line flow on almost every staircase and on almost every square tiled staircase is recurrent. For almost every square tiled staircase the set of periodic orbits is dense in the phase space
    • …
    corecore