190 research outputs found

    Dynamics of Bianchi type I elastic spacetimes

    Full text link
    We study the global dynamical behavior of spatially homogeneous solutions of the Einstein equations in Bianchi type I symmetry, where we use non-tilted elastic matter as an anisotropic matter model that naturally generalizes perfect fluids. Based on our dynamical systems formulation of the equations we are able to prove that (i) toward the future all solutions isotropize; (ii) toward the initial singularity all solutions display oscillatory behavior; solutions do not converge to Kasner solutions but oscillate between different Kasner states. This behavior is associated with energy condition violation as the singularity is approached.Comment: 28 pages, 11 figure

    A critical dimension for the stability of perfect fluid spheres of radiation

    Full text link
    An analysis of radiating perfect fluid models with asymptotically AdS boundary conditions is presented. Such scenarios consist of a spherical gas of radiation (a "star") localised near the centre of the spacetime due to the confining nature of the AdS potential. We consider the variation of the total mass of the star as a function of the central density, and observe that for large enough dimensionality, the mass increases monotonically with the density. However in the lower dimensional cases, oscillations appear, indicating that the perfect fluid model of the star is becoming unrealistic. We find the critical dimension separating these two regimes to be eleven.Comment: 18 pages, 5 figures; v2 reference and footnote added; v3 slight reordering of content, new section added with further analysis; v4 Final version - small changes, including a new title, accepted for publication in CQ

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Observers in an accelerated universe

    Get PDF
    If the current acceleration of our Universe is due to a cosmological constant, then a Coleman-De Luccia bubble will nucleate in our Universe. In this work, we consider that our observations could be likely in this framework, consisting in two infinite spaces, if a foliation by constant mean curvature hypersurfaces is taken to count the events in the spacetime. Thus, we obtain and study a particular foliation, which covers the existence of most observers in our part of spacetime.Comment: revised version, accepted in EPJ

    Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses

    Get PDF
    Phosphorus (P) is an essential and often limiting element that could play a crucial role in terrestrial ecosystem responses to climate warming. However, it has yet remained unclear how different P cycling processes are affected by warming. Here we investigate the response of soil P pools and P cycling processes in a mountain forest after 14 years of soil warming (+4 °C). Long-term warming decreased soil total P pools, likely due to higher outputs of P from soils by increasing net plant P uptake and downward transportation of colloidal and particulate P. Warming increased the sorption strength to more recalcitrant soil P fractions (absorbed to iron oxyhydroxides and clays), thereby further reducing bioavailable P in soil solution. As a response, soil microbes enhanced the production of acid phosphatase, though this was not sufficient to avoid decreases of soil bioavailable P and microbial biomass P (and biotic phosphate immobilization). This study therefore highlights how long-term soil warming triggers changes in biotic and abiotic soil P pools and processes, which can potentially aggravate the P constraints of the trees and soil microbes and thereby negatively affect the C sequestration potential of these forests

    Static perfect fluids with Pant-Sah equations of state

    Full text link
    We analyze the 3-parameter family of exact, regular, static, spherically symmetric perfect fluid solutions of Einstein's equations (corresponding to a 2-parameter family of equations of state) due to Pant and Sah and "rediscovered" by Rosquist and the present author. Except for the Buchdahl solutions which are contained as a limiting case, the fluids have finite radius and are physically realistic for suitable parameter ranges. The equations of state can be characterized geometrically by the property that the 3-metric on the static slices, rescaled conformally with the fourth power of any linear function of the norm of the static Killing vector, has constant scalar curvature. This local property does not require spherical symmetry; in fact it simplifies the the proof of spherical symmetry of asymptotically flat solutions which we recall here for the Pant-Sah equations of state. We also consider a model in Newtonian theory with analogous geometric and physical properties, together with a proof of spherical symmetry of the asymptotically flat solutions.Comment: 32 p., Latex, minor changes and correction

    The SEURAT-1 Approach towards Animal Free Human Safety Assessment

    Get PDF
    SEURAT-1 is a European public-private research consortium that is working towards animal-free testing of chemical compounds and the highest level of consumer protection. A research strategy was formulated based on the guiding principle to adopt a toxicological mode-of-action framework to describe how any substance may adversely affect human health. The proof of the initiative will be in demonstrating the applicability of the concepts on which SEURAT-1 is built on three levels: (i) Theoretical prototypes for adverse outcome pathways are formulated based on knowledge already available in the scientific literature on investigating the toxicological modes-of-action leading to adverse outcomes (addressing mainly liver toxicity); (ii) adverse outcome pathway descriptions are used as a guide for the formulation of case studies to further elucidate the theoretical model and to develop integrated testing strategies for the prediction of certain toxicological effects (i.e., those related to the adverse outcome pathway descriptions); (iii) further case studies target the application of knowledge gained within SEURAT-1 in the context of safety assessment. The ultimate goal would be to perform ab initio predictions based on a complete understanding of toxicological mechanisms. In the near-term, it is more realistic that data from innovative testing methods will support read-across arguments. Both scenarios are addressed with case studies for improved safety assessment. A conceptual framework for a rational integrated assessment strategy emerged from designing the case studies and is discussed in the context of international developments focusing on alternative approaches for evaluating chemicals using the new 21st century tools for toxicity testing

    Mixmaster: Fact and Belief

    Full text link
    We consider the dynamics towards the initial singularity of Bianchi type IX vacuum and orthogonal perfect fluid models with a linear equation of state. Surprisingly few facts are known about the `Mixmaster' dynamics of these models, while at the same time most of the commonly held beliefs are rather vague. In this paper, we use Mixmaster facts as a base to build an infrastructure that makes it possible to sharpen the main Mixmaster beliefs. We formulate explicit conjectures concerning (i) the past asymptotic states of type IX solutions and (ii) the relevance of the Mixmaster/Kasner map for generic past asymptotic dynamics. The evidence for the conjectures is based on a study of the stochastic properties of this map in conjunction with dynamical systems techniques. We use a dynamical systems formulation, since this approach has so far been the only successful path to obtain theorems, but we also make comparisons with the `metric' and Hamiltonian `billiard' approaches.Comment: 34 pages, 10 figure
    corecore