8,914 research outputs found

    Report of the Higgs Working Group of the Tevatron Run 2 SUSY/Higgs Workshop

    Get PDF
    This report presents the theoretical analysis relevant for Higgs physics at the upgraded Tevatron collider and documents the Higgs Working Group simulations to estimate the discovery reach in Run 2 for the Standard Model and MSSM Higgs bosons. Based on a simple detector simulation, we have determined the integrated luminosity necessary to discover the SM Higgs in the mass range 100-190 GeV. The first phase of the Run 2 Higgs search, with a total integrated luminosity of 2 fb-1 per detector, will provide a 95% CL exclusion sensitivity comparable to that expected at the end of the LEP2 run. With 10 fb-1 per detector, this exclusion will extend up to Higgs masses of 180 GeV, and a tantalizing 3 sigma effect will be visible if the Higgs mass lies below 125 GeV. With 25 fb-1 of integrated luminosity per detector, evidence for SM Higgs production at the 3 sigma level is possible for Higgs masses up to 180 GeV. However, the discovery reach is much less impressive for achieving a 5 sigma Higgs boson signal. Even with 30 fb-1 per detector, only Higgs bosons with masses up to about 130 GeV can be detected with 5 sigma significance. These results can also be re-interpreted in the MSSM framework and yield the required luminosities to discover at least one Higgs boson of the MSSM Higgs sector. With 5-10 fb-1 of data per detector, it will be possible to exclude at 95% CL nearly the entire MSSM Higgs parameter space, whereas 20-30 fb-1 is required to obtain a 5 sigma Higgs discovery over a significant portion of the parameter space. Moreover, in one interesting region of the MSSM parameter space (at large tan(beta)), the associated production of a Higgs boson and a b b-bar pair is significantly enhanced and provides potential for discovering a non-SM-like Higgs boson in Run 2.Comment: 185 pages, 124 figures, 55 table

    In situ measurements of ship tracks

    Get PDF
    It has long been known that cloud droplet concentrations are strongly influenced by cloud condensation nuclei (CCN) and that anthropogenic sources of pollution can affect CCN concentrations. More recently it has been suggested that CCN may play an important role in climate through their effect on cloud albedo. A interesting example of the effect of anthropogenic CCN on cloud albedo is the so-called 'ship track' phenomenon. Ship tracks were first observed in satellite imagery when the ship's emissions were evidently needed for the formation of a visible cloud. However, they appear more frequently in satellite imagery as modifications to existing stratus and stratocumulus clouds. The tracks are seen most clearly in satellite imagery by comparing the radiance at 3.7 microns with that at 0.63 and 11 microns. To account for the observed change in radiance, droplet concentrations must be high, and the mean size of the droplets small, in ship tracks. Researchers describe what they believe to be the first in situ measurements in what appears to have been a ship track

    A Parallel-Plate Electrochemical Reactor Model for the Destruction of Nitrate and Nitrite in Alkaline Waste Solutions

    Get PDF
    A parallel-plate electrochemical reactor model with multiple reactions at both electrodes and anolyte and catholyte recirculation tanks was modeled for the electrochemical destruction of nitrate and nitrite species in an alkaline solution. The model can be used to predict electrochemical reaction current efficiencies and outlet concentrations of species from the reactor, given inlet feed conditions and cell operating conditions. Also, predictions are made for off-gas composition and liquid-phase composition in the recirculation tanks. The results of case studies at different applied potentials are shown here. At lower applied potentials, the model predictions show that the destruction process is more energy efficient, but the time required to destroy a given amount of waste is increased

    Introducing a Calculus of Effects and Handlers for Natural Language Semantics

    Get PDF
    In compositional model-theoretic semantics, researchers assemble truth-conditions or other kinds of denotations using the lambda calculus. It was previously observed that the lambda terms and/or the denotations studied tend to follow the same pattern: they are instances of a monad. In this paper, we present an extension of the simply-typed lambda calculus that exploits this uniformity using the recently discovered technique of effect handlers. We prove that our calculus exhibits some of the key formal properties of the lambda calculus and we use it to construct a modular semantics for a small fragment that involves multiple distinct semantic phenomena

    Atlantic Coast and Inner Shelf

    Get PDF
    The continental margin of Virginia, and of North America more broadly, is the physical transition from the high elevation of the continent to the low of the ocean basin. This transition was created as rifting pulled apart the ancient supercontinent Pangaea to create the Atlantic Ocean basin. Tectonic forces fractured and stretched the bedrock to create a stair-step ramp that subsequently would be mantled with sediment built up by erosion and transport off the continent. The Coastal Plain and Continental Shelf of Virginia are contiguous and discrete physiographic provinces of the continental margin delimited by the present elevation of sea level. On geologic time scales of thousands to millions of years, the coastal zone—the boundary between the coastal plain and shelf—is dynamic and migrates hundreds of kilometers landward and seaward. Today, the Atlantic shore of Virginia lies just past halfway across the margin: about 150 km (93 mi) from the edge of the Piedmont at the Fall Zone, and about 100 km (62 mi) from the seaward edge of the shelf (Figure 1). The modern coastal zone occupies nearly the same position as during several previous interglacial highstands of sea level that have recurred at approximately 100,000-year (abbreviated 100 ky, for “kilo year”) intervals since the middle Pleistocene (about the last 750 ky). more ...https://scholarworks.wm.edu/vimsbooks/1116/thumbnail.jp

    Monte Carlo simulation of ice models

    Full text link
    We propose a number of Monte Carlo algorithms for the simulation of ice models and compare their efficiency. One of them, a cluster algorithm for the equivalent three colour model, appears to have a dynamic exponent close to zero, making it particularly useful for simulations of critical ice models. We have performed extensive simulations using our algorithms to determine a number of critical exponents for the square ice and F models.Comment: 32 pages including 15 postscript figures, typeset in LaTeX2e using the Elsevier macro package elsart.cl

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs

    Interaction of quasilocal harmonic modes and boson peak in glasses

    Full text link
    The direct proportionality relation between the boson peak maximum in glasses, ωb\omega_b, and the Ioffe-Regel crossover frequency for phonons, ωd\omega_d, is established. For several investigated materials ωb=(1.5±0.1)ωd\omega_b = (1.5\pm 0.1)\omega_d. At the frequency ωd\omega_d the mean free path of the phonons ll becomes equal to their wavelength because of strong resonant scattering on quasilocal harmonic oscillators. Above this frequency phonons cease to exist. We prove that the established correlation between ωb\omega_b and ωd\omega_d holds in the general case and is a direct consequence of bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur
    corecore