7,412 research outputs found

    Multiple axis reticle

    Get PDF
    A reticle permits the alignment of three orthogonal axes (X, Y and Z) that intersect at a common target point. Thin, straight filaments are supported on a frame. The filaments are each contained in a different orthogonal plane (S sub xy, S sub xz, and S sub yz) and each filament intersects two of the three orthogonal axes. The filaments, as viewed along the frame axis, give the appearance of a triangle with a V extending from each triangle vertex. When axial alignment is achieved, the filament portions adjacent to a triangle vertex are seen (along the axis of interest) as a right-angle cross, whereas these filament portions are seen to intersect at an oblique angle when axial misalignment occurs. The reticle is open in the region near the target point leaving ample space for alignment aids such as a pentaprism or a cube mirror

    Stabilization of aerodynamically excited turbomachinery with hydrodynamic journal bearings and supports

    Get PDF
    A method of analyzing the first mode stability and unbalance response of multimass flexible rotors is presented whereby the multimass system is modeled as an equivalent single mass modal model including the effects of rotor flexibility, general linearized hydrodynamic journal bearings, squeeze film bearing supports and rotor aerodynamic cross coupling. Expressions for optimum bearing and support damping are presented for both stability and unbalance response. The method is intended to be used as a preliminary design tool to quickly ascertain the effects of bearing and support changes on rotor-bearing system performance

    Design and application of squeeze film dampers for turbomachinery stabilization

    Get PDF
    The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed

    Reliability and reproducibility of Atlas information

    Full text link
    We discuss the reliability and reproducibility of much of the information contained in the Atlas of Finite Groups

    The effect of support flexibility and damping on the dynamic response of a single mass flexible rotor in elastic bearings

    Get PDF
    The dynamic unabalance response and transient motion of the single mass Jeffcott rotor in elastic bearings mounted on damped, flexible supports are discussed. A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied. Plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer and the performance curves were plotted by an automatic plotter unit. Curves are presented on the optimization of the support housing characteristics of attenuate the rotor synchronous unbalance response

    From individual features to full faces: combining aspects of face information

    Get PDF

    Dynamic analysis of flexible rotor-bearing systems using a modal approach

    Get PDF
    The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response

    Diffusion-annihilation dynamics in one spatial dimension

    Full text link
    We discuss a reaction-diffusion model in one dimension subjected to an external driving force. Each lattice site may be occupied by at most one particle. The particles hop with asymmetric rates (the sum of which is one) to the right or left nearest neighbour site if it is vacant, and annihilate with rate one if it is occupied. We compute the long time behaviour of the space dependent average density in states where the initial density profiles are step functions. We also compute the exact time dependence of the particle density for uncorrelated random initial conditions. The representation of the uncorrelated random initial state and also of the step function profile in terms of free fermions allows the calculation of time-dependent higher order correlation functions. We outline the procedure using a field theoretic approach.Comment: 26 pages, 1 Postscript figure, uses epsf.st

    Whirling of the single mass rotor

    Get PDF
    Motion equations for whirling mass rotor on damped elastic shaf
    • …
    corecore