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WHIRLING OF THE SINGLE MASS ROTOR
ABSTRACT

The general equations of motion for a single mass, unbalanced
rotor on a massless elastic shaft with damping are presented and analyzed
for various conditions of synchronous and nonsynchronous precessionor
whirling. The analysis shows that the introduction of the external
damping considerably influences the rotor characteristics and yields
results different from those previously reported for the case of no
damping. External damping in general, suppresses certain motions and
permits only forward synchronous precession. Withlight rotor damping,
a whirl ratio of 1/ 3 is predicted when the rotof is operating at three times

the rotor critical speed.



BACKGROUND AND INTRODUCTION

The first recorded article on '"whirling' or precessing of a
shaft was presented in 1869 by Rankine (1) who introduced the concept
of indifferent rotor equilibrium. Because he neglected the influence
of the Coriolis force he concluded that; motion is stable below the first

critical speed, is neutral or in'

‘indifferent' equilibrium at the critical
speed, and unstable above the critical speed. The neglect of the Coriolis
term has caused several writers to deduce a fictitious critical condition
at 1/\/2 times the critical speed.

During the next half century, this analysis led engineers to
believe that operation above the first critical speed was impossible.
It was not until 1895 that De Laval demonstrated experimentally that
a steam turbine was capable of sustained operation above the first
critical speed.

Although both Dunkerly (2) in 1894 and Chree (3) in 1904 did
extensive studies on the natural lateral vibrations of shafts, it was
not until 1919 that H. H. Jeffcott (4) explained the motion of the single
mass rotor (see Fig. 1). Jeffcott demonstrated that a rotor could
operate at the critical speed if sufficient damping on the rotor is
present. Assuming that the angular velocity of the rotor is constant,
Jeffcott arrived at the conclusion that the center of the rotor revolves

or precesses at the same angular velocity as the disc. This condition

of the rotor centerline moving with the same angular velocity as the



FIGURE |

SINGLE MASS FLEXIBLE ROTOR
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mass center is defined as synchronous precession.

Newkirk (5, 6), in 1924, discovered several instances of rotor
whirling or nonsynchronous precession in which the plane of the bent
shaft rotated at the shaft critical speed while the shaft itself rotates at
a higher speed. The cause of this whirl motion was later identified to
be due to influences such as internal rotor friction and fluid film bearings,
and represents a self-excited vibration (7,8). Works of Hagg (9), Hori (10),
Poritsky (11) and others furnish considerable insight into this phenomenon.

Robertson (12) in 1935 conducted an experimental and theoretical
investigation on the transient whirling of the single mass Jeffcott rotor.
Robertson observed that the rotor elastic centerline could possess both
forward and backward precessive motion depending upon the initial
conditions. The influence of external damping causes the transient motion
to die out until only the steady-state synchronous component caused by
unbalance remained. He observed that only in the case where the deflection
of the rotor was sufficient to cause it to strike the guard ring was it
possible to develop a sustained transient motion.

Although there is considerable material in the literature on rotor
dynamics and whirling, there is still a lack of understanding of the whirl
behavior of even fundamental systems such as the Jeffcott model. Kane (13),
in his recent paper on rotor whirling, has attempted to analyze the various
whirl motions possible with the single mass Jeffcott model. Since Kane

assumed a conservative system, he predicted various modes of forward



and backward precessive motion which are not generally observed in
practice.

In this analysis, the influence of external damping and gravity
is considered on the general whirling motion of the shaft. The results
show that there is a considerable difference in the behavior of the
conservative and dissipative systems.

Equations of Motion

Fig. 1 describes the system under consideration in which the
Z-axis in a conventional right-handed coordinate system coincides with
the axis of the rotor in the undeformed or undeflected position (i.e.,
position of axis with no dynamic or gravity forces acting) ""C'" describes
the geometric center of the rotor; '"M', the mass center of the rotor,
the two being separated by a distance, '"e', the eccentricity. It is
assumed for the system that the coordinates X, Y, Z, are fixed in space.
The angular position of the rotor is given by two quantities, the
precession angle, ¢, and the phase angle, 3. The total angular velocity
of the system, then, is given by w = [.3 + q.‘.>, in which the dot over a
quantity indicates the derivative of the quantity with respect to time.
In Fig. 1, the direction of deformation of the shaft is given by the line
OC, noted by ?r(ﬁr and —r\1¢ are orthogonal unit vectors moving in
space).

The system under consideration possesses three degrees of

freedom. The two sets of generalized coordinates which may be

employed to describe this system are:




(a) 6 - deflection of rotor center from origin 0.
¢ - precession angle

B - phase angle
or

(b) X,Y - Cartesian coordinates of the displaced rotor center

B - phase angle

In this analysis, the first coordinate system will be used. Jeffcott (4) in
his analysis used the Cartesian coordinate representation, which does
not readily allow evaluation of whirling in general. Since the system has
three degrees of freedom, there will be three equations of motion; one

for each generalized coordinate.

Lagrange's Equations of Motion

The three required equations of motion will be derived by means

of Lagranges Equations which state:

4 (8L} . 8L _ g [1]
dt 3¢ 3 qr
9 9y
Where:
L = Lagrangian = T-V

qu Generalized force for the q. coordinate.



Kinetic Energy

The kinetic energy of the system is given by
- 2
T = 1/2MVm + I/Zwiwj 4’13'

A position vector to the rotor mass center M from the fixed point

0 is given by:
_ISM/0=[6 +ecosB]_ﬁr+eSinB;¢. (2]

The velocity of the mass center M is given by:

Ra gmo) . Xla pMby | RgR  gMA (5

dt dt

RyM/0 _

Expanding Eq. 3 results in

RVM/O [5—esian]_r;R+[6$+ecost]—£¢. [4]

If the disc is constrained to move in the X-Y plane only (no gyroscopic

forces), then the total kinetic energy of the system is given by

T = %m[RVM/O . RpM/0, +—;—w cw 1
- L {m[é - ew sinB]Z+m[6&>+ewcosB]2+IwZ} [5]
2



Potential Energy - V

The potential energy of the rotor is composed of the strain energy

of deformation of the rotor and the vertical position of the rotor mass

center.
1
V=->-K 62 + mgh [6]
where
K = rotor stiffness coefficient
= —15M/0 -—r;y = & sind + e sin (B + ¢)
V=%K62+mg[6sin¢+esin(ﬁ+¢)]. (7]

Generalized Forces

The external forces and torques acting on the system which have
not been taken into consideration is the rotor damping force acting at C

and the rotor drive torque T. The damping force acting at C is given by:

=C =-[c5‘£r+cé¢'£¢] (8]

ext.

The generalized forces for each of the coordinates are given by

F=) Fl A AR R KT
qr £ ext. 34 r
i=1 r



(2) Gj; Fe =—[C6nr+C6 ¢n¢]-nR=—C6
(b) B; Fg=-T Do . g
9B
. [10]
_ ® * . — —>. w
(c) ¢; F¢—-[C6 nr+C6¢n¢] 6n¢—T _8¢
=-C8%4-T
The Lagrangian of the system is given by
Ll2=—%1—{[é—ewsinB]Z+[64.>+ewcosB]z+kzw2+
- 2g (6 sinq>+esin[5+4>])}.-_%—KasZ . [11]

The equations of motion of the system are thus given by the following:

(2) &; Tdd'z{m[é - esian]}+m[gsin¢—6&32- ewcosfB] +

+K&6=-C3d

. . [12]
() B; -2 {melwe[l1+(<)?]-5sinp + 6 cos Bl}+

me[w(é cosB +56 &sinB) +gcos(B+e)] =-T



() ¢;m —ad?[ﬁ"&-eé sinf +efw+eb cosf(w+d)+Kw] +
mg [§ cosdtecos (B+9) = - Cﬁzé- T

If the total angular velocity @ of the system is assumed to be constant

€
"

¢ + B = constant

0; and B = - & .

e.
H

Hence, the equations of motion reduce to

S CR 2 2) 5= ew? o si
(a) 6; 6 + = 6 +(ch-¢)5—ewcosB g sin¢

(b) B; e{[6+25¢] cosB- [5-6&] sinB}
[13]

= - eg cos (B + ¢) - —
(c) ; 62$+[%6 +2816¢+e[(66+25¢)cos B +
- sin B (g+5[‘*’z-‘.ﬂ)]=-g[5cos¢+ecos(3 +9)] _%

The torque T will be eliminated between [12b and c] to yield the system:

(2) g+Ksé+(wir— $2) 6 = ew? cos B - g sin ¢

" [14]
(b) & ¢+(K86 +26)p=ew*sinf - gcos ¢ .

10



ANALYSIS OF ROTOR MOTION

Specific cases for the governing equations of motion will be

considered:

Case I - Synchronous Precession

Synchronous precession implies that the precession rate ¢
of the rotor is equal to the total angular velocity of the system w . The

equations of motion are:
(2) 6+Ks.6+(wzcr-wz)6=ewzcos6 - g sin ¢ [15]
(b) 6$+(K86+26)¢=ewzsin[3-gcosd:. [16]

Assume a condition of steady-state whirling of a vertical rotor. This

condition implies:

constant ¢ = w = constant

[og)
1

™
H

constant g=0.

The governing equations reduce to:
(2) (wéR - w?) & =me w? cos B

[17]

(b) KSS w = ew? sin f

11



Solving for the phase angle fB:

sz
tan 8 = ————————r [18]

Solving for the rotor deflection &

2 .
_ ew“sinf _ e
§ = o = — [19]
s

The force transmitted to each bearing is given by:

F = (L Ke)a
2
1
where A = amplitude factor = [20]
© 2 2 k \2
cr IR S
w W

The amplification factor A is in agreement with the results obtained
by Jeffcott. Fig. 2 represents a plot of the rotor amplification factor
for various values of damping.

The critical speed is defined as the speed at which

12
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If we assume that the denominator will be non-zero, the actual

system resonance frequency is given by

w = W K A 2 . [22]

From the above equation, it can be seen that only for the case of
zero damping (KS = 0) will the system resonance frequency (critical speed)
correspond to the natural lateral frequency wcf . In general, the effects
of damping will increase the system resonance frequency as can be seen
from Fig. 2.

The maximum force transmitted to the bearings during the system

resonance is given by:

Kew
F___ = = i [23]
S SR AT (_iw )z
cr

14



In general, the ratio w__ /KS >> 1,0, In this case the maximum force

transmitted may be expressed by:

Thus, it is seen that with the perfectly balanced rotor (e = 0), the
force transmitted to the bearings will be zero. In actuality a finite
value will exist for e depending upon the rotor balancing equipment

used.

Case Il - Zero Precession

The condition of zero precession implies that the rotor vibrates

in a plane. This is given by the precessional angular velocity ¢ =0

(a) § + Ksé +wzr6=ewzcosﬁ - g sin ¢

(b) 0=ew?sinfB - gcos ¢ . [25]

The above condition is possible only if the eccentricity e (unbalance)
or the total angular velocity @ is zero. In either case the resulting

equation of motion is

§ +K 6 +w2 & =0 [26]

15




which is the equation of free, damped lateral vibrations, It is important

to note that the majority of present methods for calculating critical speeds
are based upon finding the natural lateral frequencies of undamped motion.
From this simple model it is seen that the normal unbalanced rotor doesn't

vibrate in a plane but revolves or precesses to form an orbit.

Case III - Secondary Critical Speed (Effect of Gravity)

Assume rotor synchronous precession

(a) & +K_ + (w3 -0?)8= cw?cosB - gsin(ut - B)
(b) 2wé+sz6=ewzsinB - gcos (wt-B). [27]

Solving [27b] for a particular solution we obtain

& = ZeD sinf8 - m[sin(wt-ﬁ)+Dcos(wt-B)] [28]

where

K
s

2w

D =

[28] must also represent a particular solution of [27a]. Substitution of

the above into the first equation of motion results in the following conditions

16



to be met in order that 6 be a valid solution.

(2) sin B ——J—%—- cos B =0
=l
W - w2
.__.g__ _5_. ___—__Cr~ in {(wt - =
(b) 201407 [3+ > DZ+( = ” sin (wt-B8)=0 [29]
w? - w
) —82 [1+ ( cr)J cos (wt -B) =0
2[1+D? w?

The first condition, Equation [29] is satisfied by the requirement

that the rotor phase angle 3 be given by

—_ [30]
2 2

the above is identical to Eq. [18] obtained for synchronous precession

in general. The second relationship requires that

or

17



The above condition represents the system secondary critical speed.
Note that the last two conditions are identically satisfied if g = 0 and
w may be any speed.

Eq. [29c] requires that either

wz— wz

1
(@) 7 + —r—— =0

or [32]

() —E2—=0
2[1 + D%

The first condition leads to the contradictory statement that

which is in conflict with Eq.[31] . Thus it is necessary that

8D

2[1+D?%
. _ . . _ Mg
Substitute 5st = rotor static deflection = K
Ks C

and D= 55 Mo

18



Q

w . wK § Cwbd
. ( I‘) s st st [33]

2w [1+D?¥ m

The third condition implies that the rotor damping force
C- wd divided by the bearing mass M must be a small quantity

or

Fdarrnnging -0
in order to observe a secondary system critical speed. This
criterion may help to explain why secondary critical speeds have
sometimes been observed with heavy, massive low speed
turborotors, but seldom with light-weight high speed rotors. If
the system damping characteristics are too high, this phenomenon

is completely suppressed.

The rotor deflection at the secondary critical speed ( @ = ____;:r
for light damping) is given by
e 2 6st “er
5 = - sin t-B ]+
[28] [30] 2 [ ( 2 )
e ( Loy L1+D

D cos (wgr‘ t - [3)] [34]

19



Hence we conclude that when the rotor angular velocity is equal
to one half the first critical speed, a horizontal rotor is capable of
processing a secondary critical speed. The radius of the whirl orbit
is equal to twice the static deflection (or initial rotor sag). Note that
gravity is not the only cause of secondary critical speeds. Rotors with
unsymmetric shaft properties can cause excessive rotor deflection (14).

The investigation of the possible occurrence of subcritical
resonance vibrations has been discussed by several authors. Rankine, (1)
in his early publications on vibrations of rotors, stated that a resonance
vibration at 1/2 w_ . was possible. This value was later shown to be
erroneous since Rankine neglected the Coriolis acceleration term in his
equations of motion. Stodola (15) was the first to demonstrate that the
disc weights of a horizontal shaft can create disturbing forces which at
a certain speed can produce considerable shaft vibration. Timoshenko

gives a simplified explanation of the secondary critical speed effect,

developed along the lines of Stodola, in his text Vibration Problems in
Engineering (16). The actual observation of the secondary critical speed
phenomenon was reported as early as 1919 by FOPPL (17).

An extensive article on the subcritical speeds of a rotating shaft
was presented by Soderberg (18) in the past decade. Soderberg examines
and compares the resonance amplitudes at the critical speed to the rotor
subcritical vibrations caused by gravity and by variable rotor elasticity
for an undamped rotor. In his investigation of the secondary critical

speed due to gravity, he arrives at the following equation

20




d?r 2 2 2 _. 2
+ - + =
s (w"cr w? + 2p w? sinwt) r wi . e [35]
where r is the displacement of the rotor mass center from the steady-
state position,

The Eq. [ 29] of Ref. (18) is 2 nonhomogeneous Mathieu equation

of the form

2
% +[6+€ cosz]W=C

and its solutions and regions of stability are discussed in detail in
Stoker (19). Soderberg approximates the solution by solving the
equation considering the term (2pr w?) sin wt as a forcing function
independent of r, which results in
2 2 (.2 2
ew 2€ w (wCr - w?)

r = —SI {1+ sin wt|. [36]
w2 (W - 4wd)
cr' cr

He then concluded that since r becomes unbounded when the
rotor speed is exactly one-half the rotor critical speed, then the rotor

precession angle must be of the form

0 = wt+ x wt sin wt [37]

which leads to a higher order Mathieu Equation. The solution he obtains

when w =wcr/2 is given by

i

21



4

r = —g—e[l-3/8€ (2 sin wt + @t cos wt)] [38]
where
W N2
€ =ey, (—Ew—c-) ; p = radius of gyration

Even though the term € 1is a small quantity, Soderberg
predicts that the vibration amplitudes of an undamped rotor will
become unbounded if operated continuously at one-half the rotor
critical speed. This finding is in contrast to Eq. (34) which shows
that the subcritical vibration amplitude of an undamped rotor is
bounded and also that the inclusion of sufficient rotor damping will

suppress this phenomenon,

Case IV - General Whirling (Non-Synchronous Precession)

Let

B = no

B = nwt+f
B+i>=w

The equations of motion (neglecting gravity) are,
< . 2 2 2 — aw?
(a) 6 +K+ [c»).::r +(l -n)w?] & =ew®cos (nwt+[30) . [39]

(b) [26+K_6] @ [1-n] = ew®sin (nut +§,) . ,

22



Solving for &

ewcos (B-a)

O (L L

K
where 8 - « =n<»>t+Bo—ta,n—1 (ZniJ) .

Applying the initial condition of

§(0) = 60
5§, = A-Rcos(Bo—a/)
where
_ ew
R = Ks 7
2[1-n] {\—= + n? w?
2
Hence
K
) Zst 2,2 KS
2 —_—
e [wcr - (1-n)® w* - T [60+

R cos (Bo—a)] + Rcos (B8 - a)[n?w?+

- w? +(1-n)zw2]+nwKsR sin (B -a@) - ew?cosB =0
cr

23
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(The above equation represents an extension of the work of Kane (13)
who neglected the effects of damping in his equations. It will be seen
that even for the case of light damping, the nature of the solutions

is considerably altered.)

Problem:
Do any values of n exist such that the above equation is
satisfied for all time t?

If we consider light damping then

e
s e ——————————————————
an"'O, R 2n{l1-n]
K

2 2 2,2 PR e - ] +
e [wCI‘ - (l—n)w ] [50 + ——-[-———J-an_n cos(Bo Q)
-ZH[El—:—r—l]-[(Zn—l)?‘ wz—w_?‘cr]cosB =0 . [43]
Consider values of n (other than 0 or 1) which will make the
above equation identically vanish.

Let

wt - (1-n)?w?=0 [44]
L cr

24



and

[2n - 1]%2 w?* - w? =0

Solving for n

n=2/3.

Hence

w =3w_  and ¢ [45]

It
€

cr

The above condition implies that if the rotor angular velocity
w of the system is three times the natural lateral critical frequency w ,
one possible motion is for the system to precess at a rate equal to the
critical speed. This has been reported to occur with an externally
pressurized gas bearing rotor (20) and has been referred to as ""Fractional
frequency whirl, ' (Although the single mass Jeffcott model is physically
unlike a rigid rotor or externally pressurized bearings, the equations
of cylindrical precession are similar.)

As a second case consider the less stringent condition that the

transient whirl dies out. The steady state equation (t — oo) is

ooy cos B [(Zn-l)z- (w—fl)] wi=0 . [46]

25



Consider the case where w > w_. or the angular velocity is

much higher than the first critical speed. In this case [46] reduces

to

(2n - 1)2=0 [47]
or n=1/2
Hence

& =w /2 .

Thus we have demonstrated that half-frequency whirling is
possible only in the limiting case as the rotor approaches speeds
considerably greater than the first critical. Note that it is impossible
to obtain this conclusion unless damping is retained in the equations
of motion.

Half-frequency whirling is usually associated with hydrodynamic
fluid film bearings. At least two bearing coefficients are required to
represent the bearing stiffness characteristics; a radial "spring' rate
and a tangential spring rate. It is the presence of the tangential or out-
of-phase bearing force which causes self excited half-frequency whirl
to occur at approximately twice the rotor critical speed (11). In the

absence of this force half-frequency whirling cannot occur.

26



SUMMARY AND CONCLUSIONS

In Table I are presented a summary of the various forms of rotor
whirling. For each particular case there are three subsections which
represent various degrees of rotor damping. Line A which represents
the rotor behavior with zero damping, was obtained from Ref. (13).

Line B represents the rotor performance with non-zero damping forces.

It is important to note the influence of even small damping on the
rotor characteristics. For example, in the first two cases which
represent synchronous rotor precession, the introduction of damping
eliminates the possibility of backward synchronous motion and also
causes the rotor phase relationship to be single valued. In case 1A and
1B, we see that if the rotor is running at the critical speed or resonance
frequency, then the rotor amplitude will increase continuously with time.
If the rotor damping is non-zero (10) then the rotor amplitude will be
bounded. The rotor deflection at the critical speed will be some multiple
of the rotor unbalance e. This amplitude factor is referred to as the
rotor critical amplification factor, Acr = w /Ks for a simple system,
and is an important parameter in the study of rotor stability. Case 2
represents rotor synchronous precession in general. The rotor deflection
given in 2C is identical to the results stated by Jeffcott (4) and Fig. 2
represents a plot of this function. Notice in 2C that damping causes the
rotor phase angle to be zero at low speed and increase smoothly with

speed to a maximum value of . For a single mass rotor in which the

27



TABLE I
DESCRIPTION OF VARIOUS MODES OF ROTOR MOTION

28

CASE ROTOR SPEED DAMPING ?ZicEEis;)oN ROTOR DEFLECTION, ) ROTOR PHASE ANGLE,B
A Ks=0!| ¢°=1 wy, S=8te wy/2t /2
B W = Wer Ks=>0 | ¢°=wer 5=8te wy/2t +7/2
c Ks #0 | ¢°=wer d=e we/Ks + /2
A Ks=0'" Tw *ew(wi-wld) (1xnm/2
8| wtew |Ke>0| w ewtl [T s eser
c Ks # 0 w ewwi-w) 2 +(Ksw)? TAN ! [Kgw/ (w2~ w?)]
A Ke=0"|  %w 3o+ 9/4 € [00S By—COS(Bo t 2w ] UNRESTRICTED
B | w=3w, [Ke>0 Wer 8o+ 9/4¢ [COS(Byt 2 wert)-COSB) UNRESTRICTED
Set i ew/2(1-n)((Ks/2)" +02 w22
c Ke#0?|  wer x [C0S(Bo + 2w, t +TAN ' (Ke/2wg,)) UNRESTRICTED
e (COS(BO+TAN"(KS/ch,)))](Z)
A Ke=0" (wtwe/2 | 2ewHwd-w?) COS[Be+1/2 (wEwet] | COS™!B, lwd ~w?)/2ew?)
B| wétwy |Ke—=0 |(otuwg)2=w SAME AS 1B SAME AS 18
c Ks #0 |(wtwe)/2=w SAME AS IC SAME AS IC
A Ks=0'""  ug ~9/4 ¢ COS(Bot 2wy, t) cos™ (-48,/9e)
B| w=3wy |Ke—>0| —— SUPPRESSED TRANSIENT  —
c Ks#0| —— SUPPRESSED TRANSIENT —
A | w>>wy | Ks=0|NN-EXISTENT NON -EXISTENT —_
B Ke= 0" t=, ¢ =w/2 —~2¢ COS w/2t UNRESTRICTED
Al w=l/2w, [Ks=0 w -2 8¢7 SIN (wg, t/2) + ¢/3! 0
w=1/2x . =2 8;/1+DA[SIN(we,t/2-B)
B SR Ks #0 w 10 €05 /2-B] o/ T T SAME AS 2C
(1) REF (13) (2) Ks/2w<<| (3) 3¢y = M6/K




motion is confined in a plane, there is only one phase angle. At the

rotor critical speed of this system the rotor phase angle is 90° and

the eccentricity vector is orthogonal to the rotor deflection. If

additional degrees of freedom such as conical modes or multi-masses

are introduced into the system, there will be additional rotor phase

angles corresponding to each mode.

From the examination of Cases 1, 2, and 7, the following
characteristics concerning rotor synchronous precession are summarized
as follows:

1. For small values of the damping parameter and (or)

w <<¢uCr , the phase angle 8 is zero. Thus, for small

damping and speeds below the first critical speed, the

unbalance is in phase with the maximum deflection and
the mass center rotates about the volume center.

2. As the rotor speed w approaches the critical speed w .
the phase angle 3 approaches T/2. At this speed, if no
damping is present, amplitudes of vibration of dangerous
proportions can result.

3. For the condition where w >>o.)Cr and low damping, the
phase angle approaches T as a limit. In this situation
the volume center is revolving around the mass center
and the force transmitted to the bearings reaches an

asymptote equal to Ke/2.

29




If large amounts of damping are present in the system,

a peak vibration is not observed at the system critical
speed. The rotor deflection increases smoothly from o
to e as the rotor speed w increases from 0 to w >> w
The system critical speed increases slightly with an
increase in viscous damping. The system critical
corresponds to the natural lateral frequency of vibration
©or only for the case when the damping is zero or the
damping forces are proportionate to the velocity squared (21),
The rotor phase angle is a single valued and continuous
function in a damped system.

Synchronous backward precession is not possible even in
a lightly damped rotor.

A lightly damped horizontal rotor may exhibit a secondary
critical speed effect when operating at one-half the rotor

first critical speed. The rotor whirl orbit will be approx-

imately twice the rotor static deflection (Case 7).

The cases 3 through 6 represent various modes of whirling or

non-synchronous precession. For example Case 3 shows that when

the rotor speed reaches three times the rotor critical speed, the rotor

is capable of forward or backward precession equal to the rotor critical

speed w . The inclusion of damping, however minute, eliminates the
cr

possibility of backward precession. If finite damping is considered,

this motion is possible only if the system damping is light, i.e., if

Ks/2 w << 1.0.
cr
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In all of the above cases of whirling in general, it was found
that the inclusion of sufficient damping will suppress all whirl tendency
and permit only synchronous forward rotor precession. The inclusion
of damping into the equations of motion considerably changes the
fundamental nature of the motion as described in Ref. (13). For
example, Case 4 reduces to Case 1 and Case 5 vanishes altogether
when damping is considered. Thus the only two distinct cases of
whirling are 3 and 6. Case 6 states that the rotor is capable of half-
frequency whirling (¢° = w/2) when the rotor speed becomes infinitely
high for a lightly damped system. Note that this conclusion, although
unrealistic, cannot be obtained from a system in which the damping
is excluded.

In conclusion we find that it is impossible to examine or explain
the occurrence of rotor whirling by means of a conservative system.

It is impossible with this system to completely explain the rotor whirling
as observed by Newkirk, Stodola, Pinkus and others. Whirling or
nonsynchronous precession can occur only in non-conservative systems

in which the system dissipation function possesses special characteristics (8). |
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NOMENCLATURE

Rotor amplification factor

Rotor volume center

Damping coefficient

Eccentricity of rotor unbalance mass
Force

Generalized force

Gravity

Rotor polar moment of inertia about C.
Rotor spring rate

Radius of gyration

Damping factor = C/m, Rad/ sec
Lagrangian

Rotor mass

Coefficient

Undeflected rotor position

Unit vector set fixed in reference frame R'

Position vector
Generalized coordinate

Fixed reference frame

Relative reference frame moving with angular velocity ¢°

Kinetic energy

Time
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Potential energy

Velocity of rotor mass center

Rotor phase angle

Rotor deflection

Rotor precession rate or whirl speed

Rotor angular velocity

Angular velocity vector of relative reference frame R!' in
R=¢ n,
K

Rotor natural lateral frequency = o

Rotor actual critical speed
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