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SUMMARY

A method of analyzing the first mode stability and unbalance response of

multimass flexible rotors is presented whereby the multimass system is modeled

as an equivalent single mass modal model including the effects of rotor flex-

ibility, general linearized hydrodynamic journal bearings, squeeze film bearing

supports and rotor aerodynamic cross coupling. Expressions for optimum bearing

and support damping are presented for both stability and unbalance response.

The method is intended to be used as a preliminary design tool to quickly

ascertain the effects of bearing and support changes on rotor-bearing system

performance.

INTRODUCTION

The purpose of this paper is to present a method that is easily applied

to a large class of industrial turbomachines which will predict the instabil-

ity onset speeds including the effects of shaft flexibility, generalized hydro-

dynamic journal bearings, squeeze film bearing supports and aerodynamic rotor

excitation. By restricting the analysis to the class of turbomachines which

have their mass centers inboard of the bearings and are relatively symmetric

about the mass center, a simplified rotor model is established that allows the

equations of motion to be manipulated analytically. The restriction to turbo-

machines of this class does not severely limit its usefulness or applicability

since the majority of industrial machines fall within this class. A major

advantage of the method is that it allows machine designers to quickly deter-

mine the effects of bearing changes, shaft modifications and bearing support

designs to determine appropriate system designs. Those designs deemed appro-

priate using the method can be further verified and finalized using more gen-

eral analysis tools. A large time and cost savings should be realized by

using the method to eliminate impractical designs without incurring the high

computer costs and large amounts of data reduction time required using more

general rotor dynamic analysis programs. The method is intended to supplement

the more general techniques, not to replace them.
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DAG 29-77-C-0009, NASA Lewis Research Center, Grant No. NSG-3105, Dept. of
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Specifically the method represents the rotor_ bearings and supports as a
linear dynamical system with the rotor represented by a generalized modal mass
and modal stiffness. The inclusion of aerodynamic effects using the Alford
model shows that an optimum bearing or support damping exists which will maxi-
mize the aerodynamic forces required to produce rotor instability for a given
rotor and bearing or suprort flexibility. Definite expressions for the optimum
dampingare derived which eliminates the requirement of a parametric variation
to find the optimumdamping.

A numberof instability mechanismshave been identified over the years.
Chief amongthese are hydrodynamic bearings and aerodynamic effects.

(I) Hydrodynamic journal bearings - Most industrial turbomachine rotors
are supported in fluid film bearings. Bearings with fixed geometries develop
forces within the lubricant film which couple the motion of the rotor in any
two orthogonal transverse directions and can produce instability under certain
conditions of rotor speed and bearing load. Recent emphasis has been placed on
determining the linearized fluid film force coefficients for various bearing
geometries which can be used for linear stability analyses (refs. 1-9).

(2) Interaction with working fluid flow (Aerodynamic cross coupling) -
The vibratory motion of a rotor within the machine working fluid can produce
differential pressures around the rotor which result in destabilizing forces
and moments. Becauseof the very complicated nature of the flows around tur-
bine blades and through centrifugal impeller pagsagesa general analysis
describing the working fluid forces as a function of rotor motion has not been
developed. The coupling between the working fluid and the rotor is commonly
referred to as aerodynamic cross coupling.

The most commonlyused approximation for predicting the magnitude of aero-
dynamic cross coupling assumesthat the radial deflection of the rotor produces
a variation in the thermodynamicefficiency around the impeller circumference
and hence a torque variation (ref. i0). The differential torque produces a
force on the impeller proportional to the displacement and perpendicular to
it in the direction of impeller rotation and thus tends to drive the rotor in
a forward (samedirection as rotation) whirl. The cross coupling force on each
impeller is a function of stage meantorque, pitch radius of the impeller, blade
length and impeller displacement. A damping force is not postulated. The force
is also proportional to a generally unknownconstant which is a function of
fluid mass flow rate, pressure, entha]py and other fluid properties (ref. i0).

Figure 1 showsthe frequency spectra for a 7-stage industrial centrifugal
compressor designed to operate at 13500 rpm. Originally mounted in rigidly
supported tilting pad bearings, the machine becameunstable when the rotor
speed exceeded 10500 rpm. The instability was due to aerodynamic cross coupling
and seal forces. The _pectra in figure la illustrates the subsynchronous fre-
quency representing the instability shownby the 4300 cpmcomponentof the
spectra. This frequency was identified as the first dampedfrequency of the
system and remained nearly constant as the machine speed was increased. The
synchronous unbalance excitation is indicated by the IN line and is seen to
peak at about 4300 rpm. The vibration at the subsynchronous frequency was
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sufficiently large to pervent sustained operation at 13500 rpm and the machine
operation was restricted to below i0000 rpm for a considerable period of time.
Monetary losses to the user due to reduced production capability were large.

Figure ib shows the spectra after installation of properly designed
squeeze bearings at the tilting pad bearing locations. The subsynchronous
instability has been entirely eliminated. The unit has been successfully
operated at full production capability for nearly four years with no indication
of instability (ref. ii).

SYMBOLS

a Constant

Bearing radial clearance, L

eb Tilting pad bearing assembled radial clearance, L
.thc.. Dampingcoefficient for i direction due to velocity in jth direc-

ij tion, FTL-I
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C
r
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C. °

lj

C
0

C
r

C
ro

Tilting pad bearing pad ground in clearance, L

Average radial damping coefficient, (c.. + c..)/2, FTL -I
11 jj

Optimum average radial damping coefficient, FTL -I

c..(2c_/W), dim.
lj

c (2c_/W), dim.
O

c (2c60/W), dim.
r

c (2c_/W), dim.
ro

Bearing diameter, L

D
1

D
2

k.

1

k..

lj

Defined by equation (19), dim.

Defined by equation (20), dim.

.th
Modal stiffness for i mode, FL -I

.th
Stiffness coefficient for force in i
in j-- direction, FL -I

direction due to displacement

k
r

k
rs

k
S

Average radial bearing stiffness (kii + kjj)/2, FL -I

Squeeze film bearing retainer spring stiffness, FL -I

Fundamental shaft modal stiffness, FL -I
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Ratio of total bearing principal stiffness to shaft stiffness, dim.

Average cross coupled bearing stiffness, dim.

kij(c/W), dim.

kr (c/W), dim.

Mass, FT2L -I

Rotor speed, rpm

Rigid bearing rotor critical speed, rpm

real part of eigenvalue, T-I

P/_d' dim.

-I

Aerodynamic cross coupling, FL

2cq/W, dim.

Maximum value of Q, dim.

Bearing radius, L

Complex eigenvalue, T-I

-I
Time, T

_t, dim.

Weight, F

Total rotor weight, F

Rotor modal weight, F

Displacement in x-direction, L

x/c, dim.

Vector of x displacements, L

Displacement in y-direction, L

y/c, dim.

W/Cks, dim.

Imaginary part of eigenvalue, _d/_, dim.



6o

6o
cr

6od

6o
o

6o
s

6o
sr

o

s

sr

Rotor speed, T -I

-I
Rotor rigid bearing critical speed, T

-I
Damped natural frequency, T

Rotor operating speed, T -I

Rotor instability onset speed, T -I

Rigid rotor instability onset speed, T -I

6o/c/g, dim.

6o /_/g, dim.
o

6o _cc/g, dim.
s

6o _-/g, dim.
sr

ANALY S I S

Equations of Motion

Consider the generic rotor-bearing system shown schematically in figure 2.

This system is representative of a large class of rotors supported in two bear-

ings with most of the mass between the bearings. These machines generally op-

erate above the first critical speed and the instability that occurs is gener-

ally associated with the first mode of the system (ref.12). The homogeneous

equations of motion for the system are

m xz + ks(X2 - xl ) + q Y2 = 0 (i)

m Y2 + ks(Yz - Yl
) - q x = 0 (2)

2

Cxx x + c Yl +k x
1 xy xx I

k

+ kxy Yl + __-_ (x - x ) -- 0 (3)
! 2

Cy x x + c Yl + ki yy yx

k

x + k Yl + z_ (Y_ - y ) = 0I yy z

(4)
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where q represents a destabilizing cross-coupled aerodynamic force acting at
the rotor center.

It is convenient to nondimensionalize t_e equations of motion using the
following variables

Xi = xi/c , i = i, 2 $ = mg
ck

s

2cq
Yi = Yi/c , i = i, 2 Q =

mg

2c _2 _2
Kij = m-_ kij , i = x, y = c/g

2c_
C.. =- c.. , i = x, y T = _t
lj mg z]

where c is the bearing radial clearance and _ is the rotor speed. Substitution

into equations (1)-(4) yields the following set of nondimensional equations

_2 x" + (x - x ) +_y = 0 (5)
2 2 I 2

n2 Y" + (Y - Y ) - _Q X = 0 (6)
2 2 1 2 2

X' + C Y' + K X + K Y + ! (x - X ) = 0 (7)
Cxx I xy I xx l xy , _ I 2

C X' + C Y' + K X + K y + 1 (y - Y ) = 0
yx 1 YY i yx 1 YY I _ 1 2

(8)

where the primes denote differentiation with respect to _t.
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This set of linear ordinary differential equations maybe solved to deter-
mine the stability of the rotor-bearing system subject to the bearing forces
and the equivalent aerodynamic force. The solution to these equations has the
form

sT
Xi = Ai e , i = I, 2

sT
YI B. e i= i, 2• 1 '

where s represents the system complex eigenvalues,

s= P+il

The stability of the system is determined by the sign of P. If P < 0, the

system is stable and small motions about the system equilibrium position will

decay with time. If P > 0, the system is pronounced unstable and the motions

will increase with time. If P = 0, the system is said to be at the onset of

instability or instability threshold. It is this condition that will be exam-

ined in greater detail. For any given set of conditions, % represents the

rotor whirl ratio, that is, the ratio of the rotating shaft damped natural

frequency to the rotor speed.

For any given combination of linearized bearing characteristics and aero-

dynamic excitation, there is a rotor speed where the real part of the eigen-

value, P, is zero. This rotor speed is the instability onset speed, and the

rotor is stable for speeds below this.

Since P = 0, by definition, at the instability onset speed, the solution

to the equations of motion becomes

±%t
X i = A i e , i = i, 2 at e = _s

i%t
Y. = B. e , i = i, 2 at _ = _
l 1 s

where e is the instability onset speed for the given bearing and aerodynamic
s

conditions. Substitution into equations (4)-(8) gives
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(i - _ _2 )2) X + _ Y - X = 0 (9)
2 2 I

(I - _ _2 X2) y - _Q X - Y = 0 (i0)
2 2 2 1

(Kxx + i X Cxx) X + (Kxy + i _ Cxy) Y + i (X - X ) = 0
1 1 _" 1 2

(ii)

(Ky x + i _ Cyx) X + (Kyy + i % Cyy) Y + _ (Y - Y ) = 0
I I _ I 2

(12)

Since equations (9) and (i0) are real, they may easily be solved for X
2

and Y in terms of X and Y giving
2 I I

(i- _ 9_2 X2) X - (_QI2) Y
I 1

X

2 (i - _ _2 k2)2 + ($Q)2/4

(13)

(I - _ _2 X2) y + (_q/2) X
I I (14)

y =

Substitution into equations (ii) and (12) gives

Kxx - (i - _ _2 %2)2 + (_Q) 214 xx I

+ [Kxy + Q/2 + i _ C ] Y
(i - _ _2 X2)2 + ($Q)2/4 xy I

--0
(15)
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Kyy- (i- _2 %2)2 + (_Q)2/4 YY I

q/2 + i X ¢ ] x = 0 (16)+ Kyx (I - _ _z X2)2 + (_Q)a/4 yx

A nontrivial solution to this set of equations exists only if the deter-

minant of the matrix of coefficients of X and Y is zero. Since the coeffi-

cients are complex, the determinant is also complex. The condition of a zero

determinant requires thatthe real and imaginary parts of the determinant
both be zero. Expanding equations (15) and (16) into matrix form and solving

for the real and imaginary parts of the determinant results in the following

two equations.

(Kxx - D ) - D ) + D ) (Ky x - D )I (Kyy I - (Kxy 2 2

_ %2 (Cxx Cyy - Cxy Cyx) = 0 (17)

Cyy (Kxx - DI ) + Cxx (Kyy - DI ) - Cxy (Ky x - D2 )

- C (K + D ) = 0 (18)
yx xy 2

where

D = (_ %)a (I - _ _z %2) _ _q2/4 (19)

z (i - _ _2 %2)_ + (_Q)214

and

D = q12

z (i - _ _2 %2)2 + (_Q)214

(20)

437



Equations (17) and (18) represent two equations in the two unknows (_%)2 and

%2. Once these variables are known, the instability onset speed for the given

conditions can be determined and is

(21)

or in dimensional terms

(_X) 4 (22)60 = --
s

The solution is obtained in the following way. First, write equation (18_

as

D
I

K + C K - C K - C K + D (Cxy - C )
Cyy xx xx yy xy yx yx my 2 yx (23)

C +C
xx YY

For hydrodynamic journal bearings, C = C (ref. 5) so the last term in
x yx

equation (23) is zero and D 1 is a function only of the known bearing coeffi-

C K +C K - C K - C K

D = YY xx xx yy xy yx yx xy

I C + C (24)
xx yy

cients,

Once DI is known, equation (19) may be solved for (_%)2,

(f2_,) 2 =
(i + 2_D ) +--V (i + 2_D )e - _ (I + _D ) {_Q2 (I + _D ) + 4D }

i 1 I I I

2_ (I + _D )
l

(25)

Now equation (20) is used to determine D 2 and equation (17) is rearranged to

give X2.

(Kxx - D I) (K - D ) - (Kxy + D ) (K - D )yy I 2 yx 2

C C - C C
xx yy xy yx

(26)

Finally, equation (21) or (22) is used to determine the instability onset

speed. The proper use of equation (25) requires some explanation. If the

entire term within the radical is positive, equation (26) gives two real value

for (_%)2 and, hence, two instability onset speeds are predicted. For the giv,
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bearing and aerodynamic conditions, the rotor will be stable only for rotor
speeds between the two predicted onset speed values. This condition occurs
only for the case when the aerodynamic excitation is greater than zero. As Q
approaches zero, the lower value of _ approaches zero and the rotor will be
stable for all rotor speeds below theSupper value of _ •s

It is apparent from examination_of the radical in equation (25) that for
a given level of shaft flexibility, 6, and a given set of bearing coefficients,
which uniquely determine DI, there is an upper bound to the level of aerodynamic
excitation, Q, that will allow the terms inside the radical to be positive.
Once this value of Q is surpassed, the radical term becomesimaginary. This
implies that the rotor will be unstable at any rotor speed. Thus, imposing the
condition that the radical term be zero in equation (25) will yield the maximum
value of aerodynamic excitation for which a stable operating speed exists.
Therefore, the maximumaerodynamic excitation the rotor can withstand occurs
when

(I + _ _ D )2 - _ (i + _ D ) {_ 2I I Qm (i + _ D ) + 4D } = 0- I I (27)

Rearranging gives

1

% = (28)
(I+_D)

1

Bearing Induced Instability

It is of interest to examine in detail the effect of hydrodynamic bearings

alone on the stability of flexible rotors. With aerodynamic excitation Q = O,

equation (19) gives

D

i + 6D (29)
I

where D I is calculated from the bearing properties using equation (24). The

whirl ratio, %, is given by equation (26) so the onset speed is

1 I DI

s = _ _i + _DI (30)

Noting that with Q = O, the wh_rl ratio at the instability onset speed is inde-

pendent of shaft flexibility, 6, the rigid rotor onset speed is

!f_ = _ID, (31)
sr

so that
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DI = _ 2_2 (32)
sr

Substitution into equation (30) gives the flexible rotor instability onset

speed as

= $r

s /l + _
sr

(33)

which clearly shows the reduction in stability with increasing shaft flexibility.

For a given flexibility parameter, 6, the rotor instability onset speed can be

increased by choosing bearings with a higher bearing instability threshold speed,

_sr' and lower whirl ratio, X. As _sr becomes very large, the limiting value

of instability onset speed becomes

I
= --_-= , Q >> i (34)

s i_4_ sr

or in dimensional terms

ca - _
s % ' sr

>> I (35)

Hence the instability onset speed of a flexible rotor is proportional to the

rigid bearing natural frequency of the rotor. From equations (24) and (26) it

is observed that increased bearing principal stiffness and damping and decreased

cross-coupled stiffness increase bearing induced instability onset speeds.

Further increases may be obtained from asymmetry in the principal stiffness and

damping.

Aerodynamically Induced Instability

If aerodynamic cross-coupling is present it was previously noted that a

maximum value of Q exists beyond which a particular flexible rotor-bearing

system will be unstable at all speeds. That value was shown to be

1

Qm = _(i + _D_) (36)

With Q = Qm' equation (25) becomes

i+2 _ D

(_t)2 = I (37)

2 # (i + # DI)

Substituting into equation (20) gives the effective cross coupling at the

bearings due to aerodynamic excitation
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m 2 =

(i + _ DI)
(38)

This value of D is then used to calculate _2
2

The instability onset speed becomes

i_ I+2 _ D_ I

sm %'7_71 +_" D )
1

(39)

It should be remembered that equation (38) represents the instability onset

speed with maximum aerodynamic cross-coupling present. With smaller values of

Q the actual onset speed may be higher or lower as will be subsequently shown.

Example i Single-Stage Centrifugal Pump in Plain Cylindrical Journal Bearings.

A single-stage centrifugal pump has the impeller centrally mounted on the shaft.

The rotor has the following characteristics:

Shaft Length = 107.32 cm

Shaft Diameter = 10.16 cm

Impeller Weight = 1800.0 N

Operating Speed = 4,000 rpm

The rotor is mounted in two identical plain cylindrical journal bearings
with the following characteristics:

Bearing Length = 5.08 cm

Bearing Diameter = 10.16 cm

Radial Clearance = 0.0508 mm

Oil Viscosity = 1.23 N-s/cm 2

The shaft weight is 667.2 N. Hence, the modal weight is approximately

half the shaft weight plus the impeller weight, or 2134.5 N. The effective

shaft stiffness is k = 420,283 N/cm which corresponds to _ = 1.0 The bearings
coefficients are

K = 2.55 C = 20.0

xx cXXK = i0.0 = -2.55

K xy = -I0.0 Cxy = -2.55

K yx = 1.27 C yx = 20.0
YY yY

The operating speed parameter is

= e_ = 0.953
0 _g

Equations (24), (36), (38), and (39) give the maximum aerodynamic excitation as

Qm = 0.344
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and the instability onset speed as

= 1.57
S

Since _ # _0' the rotor will be unstable with Q present. The variation ofm .

instability onset speed with Q is shown by the sol_d curve in figure 3. This

figure was obtained by varying Q is equation (25). The allowable aerodynamic

excitation is Q = 0.17. The dashed curve in figure 3 shows the effect of

changing the bearing length from 5.08 cm to 4.45 cm which increases the allow-

able aerodynamic excitation from 0.17 to 0.245.

Optimum Damping

The stability analysis presented in the preceding sections show that for

a given set of nondimensional bearing coefficients, the permissible aerodynamic

rotor excitation is a function of rotor operating speed and a maximum value is

indicated.

The fact that a maximum value of allowable aerodynamic excitation exists

may be construed as the existence of an optimum damping. This concept may be

visualized in the following way.

Since the nondimensional stiffness and damping coefficients are constant

for a given operating condition, increasing the nondimensional speed (the

ordinate of stability map) is equivalent to decreasing the dimensional dampfng

in the bearings since damping is inversely proportional to speed. The stability

map may be thought of as the effect of increasing the rotor speed assuming the

nondimensional bearing stiffness and damping coefficients are independent of

speed The optimum dimensional damping occurs when _ = _ and is
• s sm

W C
XX

Cxx0 2c
sm

(4O)

W C

= ___2_Z
C

yy0 2c _0
sm

(41)

where C and C are the actual nondimensional damping coefficients for the

operati_ conditions being considered and _sm is the dimensional speed at _Q
sm '

i.e.,

= _ _g (42)
sm sm _ c

This value of _ is obviously chosen as the optimum since the maximum
S

allowable aerodynamic excitation, Qm' occurs at this value. For values of

_s < _sm' the actual dimensional damping is excessive, and for _ > _sm' the
damping is insufficient. The optimum nondimensional damping coefficients are,

therefore,
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6O

C = o C (43)

xxo _sm xx

C = o C (44)
yyo oo yysm

If the bearings or supports are assumed symmetric, an explicit expression

for optimum damping may be obtained. Letting

K =K = K

xx = yy r
Kxy I yxl = Kc

C = C = C
xx yy r

C = C << C
xy yx r

the following relationships are obtained

D = K
I r

I

Qm = _(i + _K r)

I + 2_K

(_i)2 = r
2[(i + [K r)

= i + [(K r + Kc)

_C
r

The instability onset speed becomes

Cr ._[(I + 2[Kr )
= _- + Kc ) 2(1 + _Kr) (45)sm i + _(K r

For the system to tolerate the maximum aerodynamic excitation, the operating

speed must be the same as _sm'

=_q
0 sm

and the optimum damping is
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-C = _ (i + _(K + K )} + _K r
ro 0 r c (46)

_(i + 2_r)

It may be shown (ref.13,14,15) that the effective damping acting at the

rotor center is

C = C
e em

(47)

where a is the ratio of actual bearing damping to optimum bearing damping, i.e.,

a = c /c
r ro

and C is the effective damping with optimum bearing damping. Since the

allowe_le aerodynamic is proportional to the effective damping, an estimate

of the permissible aerodynamic excitation with non-optimum damping is

Q = 2(__ 0 n
(48)

\ !

Equation (46) can also be written in terms of the bearing (support) prin-

cipal stiffness to shaft stiffness ratio

C = __ro o cr (_) (i + _K + K) _ 2(I +K)c I + 2K (49)

where K = 2 k /k = _K
r s r

Flexible, Damped Bearing Supports

The equations previously presented may also be used to evaluate the effects

of squeeze film bearing supports in series with a hydrodynamic bearing. Such

a support is shown in figure 4 (ref. 16). In this particular application, the

squeeze film is used to support a ball bearing mounted rotor, although any type

of shaft bearing may be utilized. The particular values of the squeeze film

bearing parameters are, of course, dependent on the rotor-bearing system it

will support. The essential features of the squeeze film bearing include an

annular clearance between the squeeze film journal and damper housing, lubri-

cant supply grooves or holes, bearing end seals, and journal mechanical retainer

springs. Various combinations of these components are used to achieve appro-

priate stiffness and damping properties for a particular application. Since

the squeeze film journal does not rotate, the hydrodynamic squeeze film forces

result only from translational motion of the journal which squeezes the lubri-

cant.

Figure 5 schematically illustrates a flexible, damped bearing-support com-

ponent. The bearing and suppport are represented by general linearized stiff-
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tess and damping force coefficients. In many squeeze film bearing applications,

the inner bearing mass, mb, is statically supported in mechanical springs to

align and preload the inner bearing within the squeeze film annulus. Therefore,

the general support radial stiffness is represented by hydrodynamic stiffness

coefficients, k and k , and by the mechanical retainer spring stiffness

coefficients, k°xx and k°yy. The bearing and support can be combined to give
ran rs

overall effective stiffnes_ and damping properties (refs. 2, 13). However,

care must be exercised when doing so. The effective coefficients are functions

of the whirl ratio, %. Therefore, the use of the stability equations requires

an iterative process whereby a value of % is chosen, the effective coefficients

are calculated, and the value of % predicted by equation (26) is compared with

the chosen value. The process is repeated until the calculated and assumed

values of % are the same. A judicious first guess for % can be made since the

damped natural frequency will usually lie somewhere between the undamped natural

frequency of the rotor-bearing-support system and the undamped rigid bearing,

rigid support natural frequency. Also, the whirl ratio dependence will be much

less if either the bearings or supports have a large impedance due to high stiff-
ness or damping.

A further consideration is that under some conditions the effective damping

matrix will not be symmetric (c # c . With this condition, D given by
1 x

equation (23), is a function of 1_ aerodynamic cross coupling of th_ system as

well as the bearing coefficients. Equations (20), (23), and (26) must be solved
iteratively for D and D .

1 2

Example 2 ll-Stage Centrifugal Compressor

An ll-stage centrifugal compressor is shown in figure 6.
characteristics are

The rotor physical

Overall Length = 216 cm

Bearing Span = 175.3 cm

Rotor Weight = 5782.4 N

Operating Speed = i0,000 rpm

The first rigid bearing critical speed is N = 3894 rpm. The second critical

speed is above the i0,000 rpm operating spe_ with the bearings described above.

The rotor is very nearly symmetrical about the bearing midspan and gyroscopic

effects are negligible. The rotor modal weight is 2891.2 N, and the shaft stiff-
ness is k = 490350 N/cm.

S

The rotor was originally mounted in tilting pad bearings with the following
dimensions:

Length = 5.72 cm
Diameter = 11.43 cm

Radial Pad Clearance = 0.1016 mm

Bearing Radial Clearance = 0.0508 mm
Number of Pads = 5

Pad Arc Length = 60 °

Offset Factor = 0.50

Preload = 0.50
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Load Direction = Pad Pivot

Oil Viscosity = 1.38 x i0 -_ N-s/cm 2

The bearing stiffness and damping coefficients are shown in figure 7 (ref. 7).

At ]0000 rpm the bearing coefficients are K = K = 36.23, Cxx = Cyy = 43.63.
x x _y

Field experience indicated that the level o_ aero_ynamlc excitation at I0000

rpm was q = 35000 N/cm and rotor instability was observed.

Applying equations (36)-(39) the maximum permissible aerodynamic excitation

is Qm = 0.078 (qm = 11098 N/cm). This is considerably less than the anticipated

value of q = 350U0 N/cm. Since Qm occurs at _sm = 1.50 and the operating speed

parameter is _0 = 3.37, even less aerodynamic excitation can occur. The vari-

ation of _ with Q is shown in figure 8. For _ = _0 = 3.37, the allowable
s

aerodynamic excitation is Q = 0.055 (q = 7826 N_cm).

If the bearing clearance and pad clearance are increased and pad clearance

are increased to 0.1143 mm and 0.2286 mm respectively, the bearing coefficients

at i0,000 rpm are

Kxx = 8.83 K = 14.86
= 9.88 YY = 13.29

Cx x Cyy

For this condition _Qm = 0.970 (qm = 61340 N/cm) at _ = 1.40. The operating
speed parameter is _°0 5.06 (the change is due to t_ change in clearance.

The variation of _ with Q for this case is also shown in figure 8. The allow-

able value of aerodynamic excitation is Q = 0.59 (q = 37310 N/cm). This is

slightly larger than the anticipated value. Therefore, it is apparent that

large changes in stability can be achieved simply by modifying bearing clearances

CONCLUSIONS

(i) The single mass representation including generalized linearized bearings

and aerodynamic excitation yields equations which predict instability onset

speeds due to bearing cross coupling and aerodynamic effects.

(2) Expressions for the optimum bearing damping for given bearing stiffness

coefficients which will maximize the allowable aerodynamic excitation at a given

operating speed and predict the maximum aerodynamic excitation have been devel-

oped.

(3) The form of the optimum damping expressions for stability are applic-

able to first mode synchronous unbalance response and the optimum damping mini-

mizes that response.

(4) Optimum nondimensional bearing damping is a function of the rotr oper-

ating speed, rigid bearing undamped critical speed, bearing clearance and ratio

of principal bearing stiffness to the fundamental rotor modal.

(5) The effect of flexible, damped bearing supports can be incorporated

into the single mass modal representation using equivalent bearing-support

linear stiffness and damping coefficients.
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