

Research Laboratories for the Engineering Sciences

University of Virginia
Charlottesville

```
THE EFFECT OF SUPPORT FLEXIBILITY AND
    DAMPING ON THE DYNAMIC RESPONSE OF A
        SINGLE MASS FLEXIBLE ROTOR
            IN ELASTIC BEARINGS
                                    BY:
    R. G. KIRK AND E. J. GUNTER
                NATIONAL AERONAUTICS AND
                    SPACE ADMINISTRATION
        NASA GRANT *NGR 47-005-050
```

DIVISION OF MECHANICAL ENGINEERING RESEARCH LAZORATORIES FOR THE ENGINESRING SCIENCES SCHOOL JF ENGINEERING AND APPLIED SCISNCE UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA

REPORT NO. ME-4040-206-72U
APRIL 1972
COPY NO. 4

THE EFFECT OF SUPPORT FLEXIBILITY AND DAMPING ON THE SYNCITRONOUS RESPONSE OF A SINGLE

MASS FLEXIBLE ROTOR
By: R. G. KIRK ${ }^{1}$
E. J. GUNTER ${ }^{2}$

Abstract

This paper deals with the dynamic unbalance response and transient motion of the single mass Jeffcott rotor in elastic bearings mounted on damped, flexible supports.

A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied and plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the compieier and the performance curves were plotted by an automatic plotter unit. Curves are presented on the optimization of the support housing characteristics to attenuate the rotor synchronous unbalance response.

The complete transient motion including rotor unbalance was examined by integrating the equations of motion numerically using a modified 4 th order Runge-Kutta procedure and the resulting whirl orbits were plotted by an automatic plotter unit. The results of the transient analysis are discussed with regards to the design optimization procedure derived from the steady-state analysis.

[^0]
table of contents

Page
ABSTRACT. ii
LIST OF FIGURES iv
INTRODUCTION. 1
EQUATIONS OF MOTION 3
ROTOR AMPLIFICATION FACTOR. 4
ROTOR RESPONSE ON DAMPED FLEXIBLE SUPPORTS 6
FORCES TRANSMITTED. 10
ANALYSIS OF SYSTEM UNBALANCE RESPONSE-TUNED SYSTEM. 11
OPTIMLM DAMPING FOR TUNED SYSTEM. 15
OPTIMIZATION OF SUPPORT DAMPING FOR OFF-TUNED CONDITIONS 19
TRANSIENT ANALYSIS. 24
SUMMARY AND CONCLUSIONS 27
ACKNOWLEDGMENT 29
APPENDIX A-DIISCUSSION. 30
APPENDIX B--TRANSIENT COMPUTER PROGRAM FOR THE THREE MASS SYSTEM 36
NOMENCLATURE 54
REFERENCES. 57

LIST OF FIGURES

Page
Figure 1 Schematic Diagram of a Single Mass Rotor on Damped Elastic Supports. 60
Figure 2 Dimensionless Critical Speeds vs. Support Stiffness Ratio for Various Support Housing Mass Ratios 61
Figure 3 Dimensionless Relative Rotor Amplitude vs. Speed atio for Various Values of Support Damping for a Tuned Support System, K = M $=1$ 62
Figure 4 Absolute Rotor Motion with a Tuned Support System for Various Values of Support Damping, $K=M=1$, $A=10$. 63
Figure 5 Phase Angle of Absolute Rotor Motion Relative to Unbalance for Various Values of Support Damping 64
Figure 6 Support Amplitude vs. Speed for Various Values of Support Damping 65
Figure 7 Phase Angle of Support Motion Relative to Rotor Unbalance for Various Values of Support Damping 66
Figure 8 Dimensionless Force Transmitted to Bearings vs. Speed Ratio for Various Values of Support Damping 67
Figure 9 Dimensionless Fo se Transmitted to Foundation vs. Speed Ratio for Various Values of Support Damping 68
Figure 10 Amplitude of Motion vs. Speed with Light Rotor Damping $[A=100]$ for Various Values of Support Damping, $K=M=1$ 69
Figure II Optimum Support Damping and Maximum Rotor Amplitude vs. Mass Ratio for $A=10$ 70
Figure 12 Rotor Amplitude vs. Speed for a Low Mass Ratio Tuned Support System for Various Values of Support Damping, $K=M=.1, A=10$ 71
Figure 13 Rotor Amplitude at Critical Speeds vs. Mass Ratio Various Values for Various Damping Ratios, $A=10$, $K=.01$ 72
Figure 14 Rotor Amplitude at Critical Speeds vs. Mass Ratio for Various Damping Ratlos, $A=10, K=1.0$ 73
Page
Figure 15 Rotor Amplitude at Critical Speeds vs. Mass Ratio for Various Damping Ratios, $A=10, K=5.0$ 74
Figure 15 Rotor Maximum Amplitude vs. Damping Ratio for Various Values of Stiffness Ratios for a Low Mass Ratio Support, $M=0.01, A=10$ 75
Figure 17 Rotor Maximum Amplitude vs. Damping Ratio for Various Values of Stiffness Ratios, $M=0.10, A=10$ 76
Figure 18 Rctor Maximum Amplitude vs. Damping Ratio for Various Values of Stiffness Ratios, $M=0.715, A=10$ 77
Figure 19 Rotor Maximum Amplitude vs. Damping Ratio for Various Values of Stiffness Ratios for a High Mass Ratio Support, $M=2, A=10$ 78
Figure 20 Rotor Maximum Amplitude for Varlous Values of Stiff- ness and Mass Ratio with Optimum Support Damping. 79
Figure 21 Rotor Maximum Amplitude vs. Stiffness Ratio for Various Values of Damping and Support Mass Ratios 80
Figure 22 Rotor Critical Amplitude vs. Support Damping Ratio for Various Values of Support Stiffness with Optimum Mass Patio. 81
Figure 23 Optimum Damping and Mass Ratios for Various Values of Stiffness Ratio. 82
Figure 24 Dimensionless Transient Motion of an Unbalanced Rotor for Twelve Cycles on Over-Damped Supports $[K=M=$ $0.1, C=44]$ 83
Figure 25 Dimensionless Bearing Absolute and Relative Transient Motion for Twelve Cycles on Over-Damped Supports $[K=M=0.1, C=44]$ 84
Figure 26 Dimensionless Transient Support Motion for Twelve Cycles with Excessive Damping $[K=M=0.1, C=44]$. 85
Figure 27 Dimensionless Translent Motion with Under-Damped Flexible Supports for Twelve Cycles $[K=M=0.10$, $C=0.44]$ 86
Figure 28 Dimensionless Bearing Absolute anc lative TransientMotion for Twelve Cycles on Under-Lumped Supports$[K=M=0.1, C=0.44]$87
Page
Figure 29 Dimensionless Transient Support Motion for Twelve Cycles with Under Damping $[K=M=0.1, C=0.44]$ 88
Figure 30 Dimensionless Rotor Motion with Optimum Steady-State Damping Showing the Steady-State Orbit After Seven Cycles of Running Speed $[K=M=0.1, C=5.5]$. 89
Figure 31 Dimensionless Bearing Absolute and Relative Transient Motion with Optimum Steady-State Damping $L K=M=0.1$, $C=5.57$. 90
Figure 32 Dimensionless Trarisient Support Motion with Optimum Steady-State Damping $[K=M=0.1, C=5.5]$ 91

INTRODUCTION

The study of rotor dynamics has ir. recent years, become of increasing importance in the engineering design of power systems. With the increase in performance requirements of high-speed rotating machinery in various fields such as gas turbines, process equipment, auxiliary power machinery and space applications, the engineer is faced with the problem of designing a unit capable of smooth operation under various conditions of speed and load.

In many of these applications the design operating speed is often well beyond the rotor first critical speed, and under these circumstances the problem of insuring that the turbomachine will perform with 3 stable low-level amplitude of vibration is often difficult to achieve.

At the turn of the century H. H. Jeffcott (1) developed the fundamentals of the dynami: response of the damped single mass unbalanced rotor on a massless elastic shaft mounted on rigid bearing supports. The Jeffcott analysis of the single mass model showed that operating speeds above the first critical speed were possible and that a low level of vibration would be attained once the rotor had exceeded the first critical speed.

As various compressor and turbine manufacturers adapted the flexible rotor design concept in which the rotors were designed to operate above the first critical speed, various units developed severe operating difficulties which could not be explained by the elementary Jeffcott model.

Under certain conditions of high speed operation above the first critical speed, such influences as internal rotor friction (2), hydrodynamic bearing and seal forces, (3) and aerodynamic cross coupling (4) can lead to a destructive nonsynchronous precessive whirl motion being developed in the rotor system.
B. L. Newkirk and Kimball (5), in their early investigations of self-excited instability in compressors due to internal friction, were able to determine exporimentally that the introduction of a flexible support system could greatly extend the rotor stability threshold speed. D. M. Smith (6) in 1933 was the first to verify Newkirk's findings theoretically by
expanding the Jeffcott model with internal damping to include a massless ciamped flexible support system. Recent investigators such as Gunter (7), Tond (8), Dimentberg (9) and others (10) have shown that flexible damped supports may improve the statility characteristics of high speed rotors. The problem of : earing forces transmitted has been examined by various researchers, (11, 12, 13, 14). They have shown that a significant reduction in the forces transmitted can be achieved by the proper design of the bearing support system.

The present analysis was undertaken to determine the influence of flexible supports on the synchronous unbalance response of the single mass Jeffcott rotor, and to optimize the support system characteristics so as to minimize the rotor amplitude and forces transmitted over a given speed range. Der, Hartog (15) has shown that the tuned vibration absorber will greatly reduce the response of the forced vibrations of the two-mass system. The following analysis parallels this approach for the case of a single mass rotor excited by an unbalance load.

This paper presents an analytic study of the tuned damper support system similar to that employed by Brock (16) and also presents a generalized study performed on the digital computer to obtain optimum support damping to produce the best response of the rotor over a wide speed range. It is well known that a damper support system can improve the vibration characteristics of a rotiting shaft and various investigators have considered the problem either from the standpoint of a continuous elastic system or as a series of lumped masses (17-23).

Although the results presented in this paper apply specifically to the single mass Jeffcott model, the optimization procedure may be readily extended to more complex multi-mass rotor bearing systems by employing a finite element rotor digital computer program similar to the procedure presented by Lund in Ref. 24 or by using the procedure as cutlined in the paper presented by Crook and Grantham (25) on the vibration analysis of turbine generators on damped flexible supports.

EQUATIONS OF MOTION

Figure 1^{*} represents the single mass jeffcott rotor mounted in damped elastic supports. In the Jeffcott model, the shaft is considered as a massless elastic member and the rotor mass is concentrated in a disc mounted at the center of the span. The shaft is supported in linear bearings which are mounted in damped flexible supports.

Neglecting ro: or acceleration and the disc gyroscopics, the governing equations of motion for the rotor, bearings, and support system in complex notation reduce to the following (31)

$$
\begin{align*}
& M_{2} \ddot{Z}_{2}+C_{s} \dot{Z}_{2}+C_{i} \dot{Z}_{s}-i Q Z_{2}+\left(K_{s}-i \omega C_{i}\right) Z_{s}=m_{2} e_{u} \omega^{2} e^{i \omega t} \tag{1}\\
& C_{b} \dot{Z}_{j}-C_{i} \dot{Z}_{s}+K_{b} Z_{j}-\left(K_{s}-i \omega C_{i}\right) Z_{s}=0 \tag{2}\\
& \cdot \ddot{Z}_{1}+C_{1} \dot{Z}_{1}+K_{1} Z_{1}-C_{i} \dot{Z}_{s}-\left(K_{s}-i \omega C_{i}\right) Z_{s}=0 \tag{3}
\end{align*}
$$

where

$$
Z_{s}=Z_{2}-Z_{j}-Z_{1}=\text { relative shaft deflection. }
$$

If the internal damping C_{i} and the aerodynamic cross coupling term Q are excluded from the above equations then the system will be stable (26).

After the initial transient motion has damped out, it may be assumed that the system steady-state motion is circular synchronous precession. In this case the displacements are related to the velocity and acceleration vectors as follows:

$$
\begin{align*}
& Z_{i}=A_{i} e^{i \omega t} \\
& \dot{Z}_{i}=i \omega Z_{i} \tag{4}\\
& \ddot{Z}_{i}=i \omega \dot{Z}_{i}=-\omega^{2} Z_{i}
\end{align*}
$$

[^1]where A_{i} is in general complex.
The differential equations of motion may be reduced to a set of algebraic equations for the determination of the rotor steady-state motion.
\[

$$
\begin{align*}
& \left(K_{s}-M_{2} \omega^{2}+i C_{s} \omega\right) A_{2}-K_{s} A_{j}-K_{s} A_{1}=M_{2} e_{u} \omega^{2} \tag{5}\\
& -K_{s} A_{2}+\left(K_{b}+K_{s}+i \omega C_{b}\right) A_{j}+K_{s} A_{1}=0 \tag{6}\\
& -K_{s} A_{2}+K_{s} A_{j}+\left(K_{1}+K_{s}-M_{1} \omega^{2}+i \omega C_{1}\right) A_{1}=0 \tag{7}
\end{align*}
$$
\]

ROTOR AMPLIFICATION FACTOR

Consider the steady-state orbit of the flexible rotor on rigid supports. The rotor amplitude is a function of both the rotor and bearing stiffness and damping characteristics. Assuming A_{1} is zero, the relative journal bearing complex amplitude from Eq. 6 is given by

$$
\begin{equation*}
A_{j}=\frac{K_{s}\left(K_{s}+K_{b}-i \omega C_{b}\right)}{\left(K_{s}+K_{b}\right)^{2}+\left(\omega C_{b}\right)^{2}} A_{2} \tag{8}
\end{equation*}
$$

Solving Eq. 5 for the rotor amplitude yields

$$
\begin{equation*}
A_{2}=M_{2} e_{u} \omega^{2} \frac{\left(K_{2}-M_{2} \omega^{2}-i \omega C_{2}\right)}{\left(K_{2}-M_{2} \omega^{2}\right)^{2}+\left(\omega C_{2}\right)^{2}} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{2}=\frac{K_{b} K_{s}\left(K_{s}+K_{b}\right)+K_{s}\left(\omega C_{b}\right)^{2}}{\left(K_{s}+K_{b}\right)^{2}+\left(\omega C_{b}\right)^{2}} \\
& C_{2}=\frac{K_{s}^{2} C_{b}}{\left(K_{b}+K_{s}\right)^{2}+\left(\omega C_{b}\right)^{2}}+C_{s}
\end{aligned}
$$

The rotor displacement vector Z_{2} may be expressed in terms of the absolute displacement R_{2} and the nhase angle ϕ as follows

$$
\begin{equation*}
Z_{2}=R_{2} e^{i(\omega t-\phi)} \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{2} & =\frac{M_{2} e_{u} \omega^{2}}{\sqrt{\left(K_{2}-M_{2} \omega^{2}\right)^{2}+\left(\omega C_{2}\right)^{2}}} \\
\phi & =\tan ^{-1}\left[\frac{\omega C_{2}}{K_{3}-M_{2} \omega^{2}}\right]
\end{aligned}
$$

The above results are similar to the rotor amplitude and phase angle results for the single mass flexible rotor on rigid supports as shown by Thomson (27).

The rotor undamped, or natural critical s,eed is given by

$$
\begin{equation*}
\omega_{c}=\sqrt{\frac{K_{2}}{M_{2}}}=\sqrt{\frac{K_{b} K_{s}}{\left(K_{b}+K_{s}\right) M_{2}}} \tag{11}
\end{equation*}
$$

For the case of a lightly damped rotor system on rigid supports the maximum rotor amplitude will sccur at approximately the rotor critical speed and the dimensionless rotor amplitude or amplification factor at the critical speed is given by

$$
\begin{equation*}
A=\left.\frac{R_{2}}{e_{u}}\right|_{\omega=\omega_{c}}=\frac{K_{2}}{\omega_{c} C_{2}} \tag{12}
\end{equation*}
$$

Example 1

Consider a 97 lb . disc centered on a uniform massless elastic shaft as shown in Fig. (1). Assume that the bearing stiffness $\frac{K_{b}}{2}$ is 500,000 $1 b / i n$ and that the effective shaft stiffnuss K_{s} at the disc station is $333,000 \mathrm{lb} / \mathrm{in}$. Assuming light damping, the total stiffness K_{2} is given by

$$
K_{2}=\frac{K_{s} K_{b}}{K_{s}+K_{b}}=\frac{1 \times 0.333 \times 10^{12}}{(1+0.333) 10^{6}}=250,000 \mathrm{1b} / \mathrm{in}
$$

The rotor cri+ical speed is

$$
\omega_{c}=\sqrt{\frac{K_{2}}{M_{2}}}=\sqrt{\frac{250,000}{0.25}}=1,000 \mathrm{rad} / \mathrm{sec}
$$

or $N_{c}=9,550 \mathrm{RPM}$.
If the rotor damping C_{s} is assumed to be $15 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$ and the bearing damping coefficient $C_{b} / 2$ is $80 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$. then the effective system damping coefficient C_{2} is approximately given by

$$
C_{2}=C_{s}+\frac{K_{s}^{2} C_{b}}{\left(K_{b}+K_{s}\right)^{2}}=15+\frac{(0.333)^{2} \times 10^{12} \times 160}{(1.333)^{2} \times 10^{12}}=251 \mathrm{~b}-\mathrm{sec} / \mathrm{in}
$$

The amplification factor at the rotor critical speed is given by

$$
A_{C R}=A=\frac{K_{2}}{\omega_{C} C_{2}}=\frac{250,000}{1,000 \times 25}=10.0
$$

The amplification factor of 10 represents a very i iahtly damped rotor system and indicates that the rotor amplitude at the critical speed will be 10 times the rotor unbalance eccentricity e_{u}.

ROTOR RESPONSE ON DAMPED FLEXIBLE SUPPORTS

Solution of Eq. 6 for the case of synchronous precession fo- the snaft relative deflection Z_{S} yields
$Z_{s}=\left(Z_{2}-Z_{1}\right)\left[\frac{K_{b}\left(K_{b}+K_{s}\right)+\left(\omega C_{b}\right)^{2}+i \omega C_{b} K_{s}}{\left(K_{b}+K_{s}\right)^{2}+\left(\omega C_{b}\right)^{2}}\right]$
Hence, in terms of the general coefficients C_{2} and K_{2}

$$
\begin{equation*}
z_{s}=\left(z_{2}-z_{1}\right)\left[\frac{k_{2}+i \omega\left(C_{2}-C_{s}\right)}{k_{s}}\right] \tag{14}
\end{equation*}
$$

The simultaneous equations for the absolute shatt anci support housing motion reduce to the following

$$
\begin{equation*}
\left[K_{1}+K_{2}-M_{1} \omega^{2}+i \omega\left(C_{2}+C_{1}-C_{5}\right)\right] A_{1}+\left[-i \omega\left(C_{2}-C_{5}\right)-K_{2}\right] A_{2}=0 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\left[-K_{2}-i \omega\left(C_{2}-C_{s}\right)-1 A_{1}+\left[K_{2}-M_{2 \omega^{2}}+i \omega C_{2}\right] A_{2}=M_{2} \omega_{u} \omega^{2}\right. \tag{16}
\end{equation*}
$$

If the damping terms are neglected, then the natural frequencies of the system ma; be determines by the expansion of the determinant of coefficienis. The resulting frequency equation may be expressed as follows:

$$
\begin{equation*}
\omega_{1,2} / \omega_{c}=\sqrt{\frac{1}{2}+\frac{1+K}{2 M} \pm \sqrt{\left(\frac{\left.1+\frac{K}{2 M}+\frac{1}{2}\right)^{2}-\frac{K}{M}}{}\right.}} \tag{17}
\end{equation*}
$$

where

$$
\omega_{c}=\sqrt{\frac{K_{2}}{k_{2}}}
$$

Figure 2 re-esents ihe dimensionless critical speeds vs. the dimensionless support stiffness factor K for various values of support to rotor mass ratios. Note that the incorporation of the lexible support with the rotor bearing system causes two critical speeds to occur; one which is higher and one which is lower than the original rotor critical on rigid supports.

To solve for the complex support and rotor amplit'tes A_{1} and A_{2}, Eq. 15 and 16 may be expressed as follows:

$$
\begin{equation*}
\left[a_{i j}+i b_{i j}\right] A_{j}=F_{i} ; j=1,2 ; i=1,2 \tag{18}
\end{equation*}
$$

Multiplying Eq. 18 by the complex inverse matrix of coefficients and expanding yields

$$
A_{1}=\frac{\left|\begin{array}{ll}
F_{1} & a_{12}+i b_{12} \tag{19}\\
F_{2} & a_{22}+i b_{22}
\end{array}\right|}{\Delta},
$$

Where

$$
\begin{aligned}
\Delta & =d_{r}+i d_{i} \\
d_{r} & =\left(K_{2}-M_{2} \omega^{2}\right)\left(K_{1}-M_{1} \omega^{2}\right)-K_{2} M_{2} \omega^{2}-C_{1} C_{2} \omega^{2}-\omega^{2} C_{s}\left(C_{2}-C_{s}\right)
\end{aligned}
$$

$$
d_{i}=C_{1} \omega\left(K_{2}-M_{2} \omega^{2}\right)+C_{2} \omega\left(K_{1}-M_{1} \omega^{2}-M_{2} \omega^{2}\right)+C_{5} \omega\left(K_{2}+M_{2} \omega^{2}\right)
$$

Expanding Eq. IS

$$
\begin{equation*}
A_{1}=\frac{F_{1 a_{22}}-F_{2} a_{12}+i\left(F_{1} b_{22}-F_{2} b_{12}\right)}{d_{r}+i d_{i}} \tag{20}
\end{equation*}
$$

In this case only an external unbalance excitation force F_{2} is acting on the shaft and no external exciting force F_{1} is assumed to be present on the support syster:. For example, an excitation force F_{1} may be transmitted to the rotor system through the support structure by vibrations of auxiliary or adjacent equipment.

$$
\begin{equation*}
A_{1}=-\frac{F_{2}\left[a_{12} d_{r}+b_{12} d_{i}+i\left(b_{12} d_{r}-a_{12} d_{i}\right)\right]}{d_{r}^{2}+d_{i}^{2}} \tag{21}
\end{equation*}
$$

Assume A_{1} is of the form

$$
\begin{equation*}
A_{1}=A_{1} r-i A_{1} i \tag{22}
\end{equation*}
$$

The complex support amplitude Z_{1} after some complex algebraic manipulation is given by

$$
\begin{equation*}
Z_{1}=A_{1} e^{i \omega t}=R_{1} e^{i\left(\omega t-\beta_{1}\right)} \tag{23}
\end{equation*}
$$

where

$$
R_{1}=\sqrt{A_{1 r}{ }^{2}+A_{1 i}{ }^{2}}, \quad B_{1}=\tan ^{-1}\left(\frac{d_{i}}{d_{r}}\right)
$$

If the shaft damping coefficient C_{s} is considered small in comparison to the effective damping coefficient C_{2} than the system displacements and phase angles are given as follows

$$
\begin{equation*}
R_{1}=M_{2} e_{u} \omega^{2} \sqrt{\frac{K_{2}^{2}+\left(\omega C_{7}\right)^{2}}{d_{r}^{2}+d_{i}^{2}}} \tag{24}
\end{equation*}
$$

and the phase angle of the support motion relative to the rotating unbal-

```
    ,d is giv.n s!
```

$$
\begin{equation*}
\beta_{1}=\tan ^{-1}\left[\frac{K_{2} d_{i}-\omega C_{2} d_{r}}{K_{2} d_{r}+\omega C_{2} d_{i}}\right] \tag{25}
\end{equation*}
$$

Since the complex rotor support motion Z_{1} is given by

$$
Z_{1}=X_{1}+i Y_{1}=R_{1} e^{i\left(\omega t-\beta_{1}\right)}
$$

Then for example, the horizontal and vertical components of the support motion are given by

$$
\left|\begin{array}{l}
X_{1} \tag{26}\\
Y_{1}
\end{array}\right|=M_{2} u^{\omega^{2}} \sqrt{\frac{K_{2}^{2}+\left(\omega C_{2}\right)^{2}}{d_{r}^{2}+d_{i}^{2}}}\left\{\begin{array}{l}
\cos \left(\omega t-\beta_{1}\right) \\
\sin \left(\omega t-\beta_{1}\right)
\end{array}\right\}
$$

In a similar fashion, the complex rotor amplitude Z_{2} is given by

$$
\begin{equation*}
z_{2}=M_{2} e_{u} \omega^{2} \frac{a_{11}+i b_{11}}{d_{r}+i d_{i}} e^{i \omega t} \tag{27}
\end{equation*}
$$

After some manipulation, Eq. 27 reduces to the following

$$
\begin{equation*}
z_{2}=M_{2} e_{u} \omega^{2} \sqrt{\frac{\left(K_{1}+K_{2}-M_{1} \omega^{2}\right)^{2}+\left(\left(C_{1}+C_{2}\right) \omega\right)^{2}}{d_{r}^{2}+d_{i}^{2}}} e^{i\left(\omega t-\beta_{2}\right)} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{2}=\tan ^{-1}\left(\frac{\left(K_{1}+K_{2}-M_{1} \omega^{2}\right) d_{i}-\left(C_{1}+C_{2}\right) \omega d_{r}}{\left(K_{1}+K_{2}-M_{1} \omega^{2}\right) d_{r}+\left(C_{1}+C_{2}\right) \omega d_{i}}\right) \tag{29}
\end{equation*}
$$

The relative journal displacement is given by

$$
\begin{equation*}
z_{j}=z_{2}-z_{1}-z_{s} \tag{30}
\end{equation*}
$$

Where the relative shaft deflection is

$$
\begin{equation*}
z_{s}=\frac{\left(z_{2}-z_{1}\right)}{k_{s}}\left[k_{s}-k_{2}-i \omega C_{2}\right] \tag{31}
\end{equation*}
$$

Solving for the journal disp!acement

$$
Z_{j}=R_{j} e^{i\left(\omega t-\beta_{j}\right)}
$$

where,

$$
R_{j}=M_{2} e_{u} \omega^{2} \sqrt{\left[\frac{\left(K_{1}-M_{1} \omega^{2}\right)^{2}+\left(\omega C_{1}\right)^{2}}{d_{r}^{2}{ }^{2} d_{i}^{2}}\right] \times\left[\left(\frac{K_{s}-K_{2}}{K_{s}}\right)^{2}+\left(\frac{\omega C_{2}}{K_{s}}\right)^{2}\right]}
$$

(32)
and the phase angle β_{j} between the journal amplitude and rotating unbalance force is given by

$$
\begin{equation*}
\beta_{j}=\tan ^{-1}\left(\frac{\left(K_{1}-M_{1} \omega^{2}\right) d_{i}-\omega C_{i} d_{r}}{\left.-M_{1} \omega^{2}\right) d_{i}+\omega C_{1} d_{i}}\right)+\tan ^{-1}\left(\frac{\omega C_{2}}{K_{s}-K_{2}}\right) \tag{33}
\end{equation*}
$$

FORCES TRANSMITTED

The magnitude of the resultant forces transmitted through the bearings and the support are of considerable interest to the designer from a standpoint of bearing life and system isolation. it is desirable to minimize the forces transmitted through the supporting structure and foundation so that other machines or piping systems are not exsited. The magnitude of the force transmitted through the bearings is given by

$$
\begin{equation*}
F_{b}=R_{j} \sqrt{K_{b}^{2}+\left(\omega C_{b}\right)^{2}} \tag{34}
\end{equation*}
$$

and the force transmitted through the support system is given by

$$
\begin{equation*}
F_{1}=F_{i} \sqrt{K_{1}^{2}+\left(\omega C_{1}\right)^{2}} \tag{35}
\end{equation*}
$$

An indication of the effectiveness of the support system : ottenuating the forces transmitted to the foundation is the support dv., umic transmissibility factor TRD which will be defined as the ratio of the magnitude of the transmitted support force to the rotating unbalance load. If the dynamic transmissibility is less than 1, then the support system possesses good attenuation characteristics. Analysis has shown that if the support housing impedance characteristics, which are determined by the housing mass,
stiff"シss and damping, are mismatchec to the rotor-bearing system then inder certain speed conditions the dynamic transmissibility may exceed 1.

The dynamic transmissibility for the support is defined as

$$
\begin{equation*}
T R D=\frac{F_{i}}{M_{2} e_{u} \omega^{2}}=\sqrt{\frac{\left(K_{2}{ }^{2}+\left(\omega C_{2}\right)^{2}\right)\left(K_{1}{ }^{2}+\left(C_{1} \omega\right)^{2}\right)}{d_{r}{ }^{2}+d_{i}{ }^{2}}} \tag{36}
\end{equation*}
$$

f it is assumed that the rotor is operating well above any of the sysie critical speeds then the dynamic transmissibility is approximately given by

$$
\begin{equation*}
i R D=\frac{1}{\omega^{4}} \sqrt{\frac{\left(K_{2}^{2}+\left(\omega C_{2}\right)^{2}\right)\left(K_{1}^{2}+\left(C_{1} \omega\right)^{2}\right)}{M_{1}^{2} M_{2}^{2}}} \tag{37}
\end{equation*}
$$

The above expression leads to the well known conclusion trat to mifimize the forces transmitted through the suppor for supercritical spfec operation in the Jeffcott model, the support damping snould be zer, and the support stiffness should be as light as possible (28). This is i highly ...desirable design practice for soveral reasons since large olor amplitudes and forces transmitted may be encountered when passing through the rotor critical speeds, and also the rotor system would be extreme'y shock sensitive and particularly susceptible to seli-excit. d whirl i.istability under such conditions.

A conoromise slpport damping coefficient should be selected to either minimize the retor amplitudes or the forces transmitted over the operating - ved range a also be sufficient to insure adequate rotor stability.

ANALYSIS OF SYSTEM UNBALANCE RESPONSE - TUNED SYSTEM

Figure 3 reorrsents a computer generated plot of the dimensionless rotor relative amplitude versus the dimensionless rotor speed for the case of $:=v=1$. This relative rotor amplitude is equivalent to the moticil monitored by a proximity probe mounted in the casing measuring the rotor motion at the center span. This system represents a tuned condition in which the support stiffness ratio K is equal to the support
mass ratio M. With no support damping in the system, the tuned support will cause the relative rotor amplitude to be zero at a speed corresponding to the rotor critical speed with rigid supports. The introduction of support mass and flexibility has caused two critical speeds to appear in the system; one above and one below the rigid support rotor critical. Note that when the support damping is relatively low the amplitudes at the two criticals becomes extremely high.

As the dimensionless support damping ratio C increases fron. 0.01 to 10 the rotor amplitudes at the system critical speeds decrease while the amplitude increases at a speed corresponding to the rigid support critical speed $\left(\omega / \omega_{c}=1\right)$. Note that in this case the damping value of 10 appears to be close to an optimum value for the minimization of the resonance amplitudes. If the support damping is further increased from 10 to 50 , Fig. 3 indicates that there will be only one critical speed present in the system which will correspond to the rigid support critical. Although the damping of $C=50$ is over 5 times the cptimum value, the maximum amplitude is only $1 / 3$ the rigid support value of 10 . Fis the support damping approaches infinity, the rotor amplitude will asymptotically approach 10.

Figure 4 represents the absolute dimensionless rotor motior for various values of support damping ratio and is similar to Fig. 3. It should be noted that the damping coefficient of 10 also appears to be close to the optimum damping for the absolute motion as well as the relative motion.

It is of interest to note that the various damping 1 ines all intersect at a common point P in the plot of absolute as well as relative rotor motion. If the rotor ampliiication factor A is 100 (implying light rotor damping) then there will be two common points of intersection P and Q on the response plots (see Fig. 10) simi iar to that shown by Den Hartog for the damped vibration absorber (15). The intersection points P and Q will occur at speeds respectively below and above the rigid support critical speed. The rotor amplitude may be minimized for the case of the absolute rotor motion by selecting the damoing such that the slope of the response curve is zero at point P, and zero at point Q to minimize the rotor relative motion.

Figure 5 represents the phase angle between the rotating unbalance vector and the absoiute rotor displacement vector for various damping coefficients. The phase angle for the single mass rotor on rigid supports (Jeffcott model) increases with speed from 0 to 90 degrees at the critical speed and asymptotically approaches 180 degrees as the rotor speed greatly exceeds the critical speed. The phase angles of the rotor on damped flexible supports has a considerably different behavior from that of the rigid support rotor. For light values of support damping $(C=0.01)$, the phase angle increases rapidly to 180° as the system passes through the first critical speed and drops to almost 60° as it passes through the second critical speed. As the speed greatly exceeds the highest critical speed, the phase angle again approaches 180°. The phase angle of 180° indicates that the rotor mass center lies along the rotor spin axis. As the support damping coefficient is increased jeyond 5 for the case of the tuned system, the reduction in phase angle above the first critical speed is suppressed. This phenomena of phase angle reversal above the first critical speed has been observed experimentally (30).

Figure 6 represents the support amplitude versus speed for various damping values and indicates that with very light support damping there will be large support resonances. As the damping is increased beyond $C=10$ the resonances are suppressed and the amplitude is only slightly greater than 1. For $\hat{心}=50$ there is only a small peak observed in the support system which occurs at a speed corresponding to the rigid support critical speed. The addition of high damping ($C>50$) freezes the support and limits its motion drastically.

Figure 7 represents the support phase angles versus speed ratio for various values of support damping. The phase angle for light damping ($C=0.01$) is zero at low speeds and goes to 180 degrees as it passes through the first critical and then shifts to 330° upon passing through the second critical speed. If the rotor damping is light ($A=100$) the support phase angle will approach 360° after passing through the second critical speed. Note that the various damping lines intersect at three points. The first node point represents the first system critical speed,
the second node point represents the rigid support critical speed and the third node point represents the second critical speed on flexitle supports. In the discussion of the single mass flexible rotor presented in vibration texts (27) the phase change is only shown from zero to 180 degrees. In more complex systems with flexible supports, the phase change may vary between 0 and 360 degrees. For example in multimass systems the authors have observed phase changes of n times 180 degrees where n represents the number of system critical speeds. The measurement of rotor and support phase angles have been neglected and limited data has been reported in the literature. This is an extremely useful variable which when . :corporated with displacement measurements can be used in balancing flexible rotors or impedance calculations of the support system.

Fiyure 8 represents the dimensionless bearing forces transmitted for the tuned system. The dimensionless force transmitted is obtained by dividing by the transmitted force corresponding to the value at the critical speed of the original rotor on rigid supports. Because ot the light shaft damping the force transmitted curves are similar in appearance to the displacement curves. Note that for the support damping coefficient of $C=10$ the forces transmitted to the bearings at the rigid support critical are only 10 percent of the value transmitted for the rotor bearing system on rigid supports.

Figure 9 represents the force transmitted through the bearing supports to the foundation or base for various values of supporting damping. With a very lightly damped support system, ($C=0.01$) the support amplitude and force transmitted will be particularly high at the first critical speed where the bearing and support motions are in phase. At the second critical speed, the support amplitude is lower than the amplitude attained at the first critical speed. This is because the bearings and support motions are out of phase which enables the bearing damping to help attenuate the support motion. It is of interest to note from Fig. 8, for the tuned rotor system, the bearing force transmitted at $\left(\omega / \omega_{c}\right)=1$ with an sidamped support system is zero. Figure 9 shows that the corresponding force transmitted through the support system at $\omega / \omega_{c}=1$ has been reduced to only 10% of the rigid support value.

The force transmitted for an undamped support system at a speed ratio of four is approximately lo\% of the rigid support value. This condition would be desireable if it were possible to accelerate through the criticals, thereby avoiding the large steady-state amplitudes and forces developed.

The near optimum damping of 10 increases the support forces transmitted in the supercritical speed region to 30% of the rigid support value and the overdamped support system $(C=50)$ has increased 70 ,.2ariv 80%. Hence, the support damping introduced to suppress the system resonan ees will cause the forces transmitted to increase in the supercritical spced region.

If the system is designed to operate over the entire speed range shown, then the near optimum value of damping (i.e., $\hat{=}=10$) for suppressing the rotor absolute amplitude also produces the most desirable attentuation of forces to the system support structure.

OPTIMUM DAMPING FOR TUNED SYSTEM

From the observation of the computer generated displacement and force transmitted plots it is apparent thar there exists an optimum damping to either minimize the rotor amplitudes or the forces transmitted over the entire speed range.

Fcr example to minimize the absolute rotor motion as shown in Fig. 4 or the relative rotor motion shown in Fig. 3, the method of (16) may be used in which the damping is chosen so that the slope of the amplitude curve is zero at points P and Q respectively. In the tuned system where $K / M=1$ for light rotor damping ($A=100$), the rotor amplitudes at points F and Q are independent of the support damping as ;hown in Fig. 10 and can be shown to be equal to

$$
\begin{equation*}
x_{2}=x_{2} /\left.e_{u}\right|_{P, Q}=\sqrt{1+2 M} \tag{38}
\end{equation*}
$$

Therefore with the tuned system illustrated with a mass ratio of $M=1$, the maximum amplitude at P or Q will be 1.732 times the rotor unbalance
eccentricity. The optimum damping may be selected so that the tangent to the amplitude curve at either point P or Q has a zero slope. By selecting the optimum damping in this fashion it is seen that the maximum amplitude in the system will not exceed the value given by Eq. 38. Thus it is readily apparent that to minimize the rotor response over a given speed range, the support mass should be kept as light as possible.

After considerable algebraic manipulation (28) the cptimum damping coefficient for both points P and Q is given by the following expression

$$
\begin{equation*}
\xi^{2}=\frac{4 M^{3} \psi^{3}-3 M^{2}(4 M+3) \psi^{2}+M\left(12 M^{2}+13 M+8\right) \psi-M(1+2 M)^{2}}{-12 M \psi^{2}+8(1+2 M) \psi-(1+2 M)} \tag{39}
\end{equation*}
$$

where,

$$
\xi=C_{1} / C_{c}=C_{1} / C_{2} \times 1 / 2 A=C_{1} \frac{\omega_{C}}{2 K_{2}}
$$

$\psi=\Omega_{1}{ }^{2}$ or $\Omega_{2}{ }^{2}$ depending on whether the value calculated is for point P or Q respectively.
and

$$
\begin{aligned}
& \Omega_{1}^{2}=\frac{\sqrt{1+2 M}}{1+\sqrt{1+2 M}} \\
& \Omega_{2}^{2}=\frac{\sqrt{1+2 M}}{\sqrt{1+2 M}-1}
\end{aligned}
$$

For example, when $M=1$ and for the first node, P :

$$
\psi=\Omega_{1}^{2}=\frac{\sqrt{3}}{1+\sqrt{3}}=0.634
$$

and

$$
\xi^{2}=0.447
$$

Hence

$$
\left.\frac{C_{1}}{C_{c}}\right|_{\text {opt }}=0.688 \quad \text { for point } P
$$

In a similar fashion

$$
\left.\frac{C_{1}}{C_{C}}\right|_{\text {Opt }}=0.559 \text { for point } Q
$$

Example 2

As an exa...ple of the application of the tuned support design criteria consider the rotor of Example \mid mounted in flexibly supported bearing housings which weigh 48.5 lbs and have a stiffness of $125,000 \mathrm{lb} / \mathrm{in}$. The total support weight W_{1} and stiffness K_{1} is given by

$$
\begin{aligned}
& \mathrm{W}_{1}=2 \times 48.5=97 \mathrm{lb} \\
& \mathrm{~K}_{1}=2 \times 125,000=250,000 \mathrm{lb} / \mathrm{in}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
M & =M_{1} / M_{2}=1.0 \\
K & =K_{1} / K_{2}=1.0
\end{aligned}
$$

The critical damping coefficient C_{C} is given by

$$
\therefore \quad C_{c}=\frac{2 K_{2}}{\omega_{c}}=\frac{500,000 \mathrm{lb} / \mathrm{in}}{1,000 \mathrm{rad} / \mathrm{sec}}=500 \mathrm{lb}-\mathrm{sec} / \mathrm{in}
$$

Thus the support damping coefficients required to make the slope of the rotor amplitude curve zero at points P and Q are respectively given as follows

$$
\begin{aligned}
& \left.C_{1}\right|_{p}=0.688 \times C_{c}=344 \mathrm{lb}-\mathrm{sec} / \mathrm{in} \\
& \left.c_{1}\right|_{q}=0.559 \times C_{c}=279.5 \mathrm{lb}-\mathrm{sec} / \mathrm{in}
\end{aligned}
$$

These calculations are valid only for the case of zero damping on the rotor and in the bearings (i.e., $A=\infty$) and only for the tuned system (i.e., $K=M$). For a more realistic solution, a value of $A=10$ was chosen and numerous cases were then programmed on a digital computer to arrive at a value of optimum amplitude and required damping. This approach is discussed in the next section of this paper but the results for the tuned system are very nearly the same as the results arrived at analytically for the case of $A=\infty$ and are presented in Fig. il.

The results shown in Fig. il are approximately correct for systems having moderate to light damping on the rotor (i.e., $10 \leq A<\infty$). Note that the smaller the mass ratio M, the lower will be the peak response and also the lower will be the required support damping. For example, if the mass ratio is 0.1 , then the maximum dimensionless amplitude will be only 1.1 and the required damping ratio will be 5 as compared to a value of 13.6 for an M ratio of 1 . Figure 12 is a response plot for the tuned system $K=M=0.1$ which illustrates the validity of the results plotted in Fig. 11. The response curve for a damping ratio of 5 passes almost horizontal through the node point and has the low amplitude ratio as indicated by Fig. 11.

Example 3

Consider a rotor system similar to Example 2 in which the rotor rigid suoport amplification factor $A=10$.

For a tuned support system the dimension less support dampirig coefficient is obtained from Fig. $1 \mid$ for $M=1$ as follows
$C=C_{1} / C_{2}=13.6$
where C_{2} is given as $25 \mathrm{lb}-\mathrm{sec} /$ in (Example 1).
Therefore,
$C_{3}=13.6 \times C_{2}=340 \mathrm{ib}-\mathrm{sec} / \mathrm{in}$

Note that this value is approximately the same as the value given in Example 2 for the required damping at point P corresonding to A_{∞}.

This indicates that each support must have $170 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$. damping to achieve the optimum response of abcut 1.7 times the unbalance level of the rotor.

Next consider a tunad support with a mass wid stiffness ratio of 0.10 (see Fig, 12). Corresponding support weight and stiffness are given as follows

$$
\begin{aligned}
& W_{1}=9.7 \mathrm{lb} / \mathrm{in} \\
& \mathrm{~K}_{1}=25,000 \mathrm{lb} / \mathrm{in}
\end{aligned}
$$

The required damping is thus found from Fig. il to be

$$
C \cong 5.0
$$

or

$$
C_{1}=5 \times 25=125 \mathrm{lb}-\mathrm{sec} / \mathrm{in}
$$

Thus only $62.5 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$. damping per support is required to obtain an optimum response of 1.1 times the unbalance level of the rotor. This value of 1.1 is in comparison to a maximum response of 10 times the unbalance level for the rigidly mounted rotor-bearing system.

OPTIMIZATION OF SUPPORT DAMPING FOR OFF-TUNED CONDITIONS

In general it is not possible or necessarily desirable to have a tuned support system. The support to rotor mass ratio is usually dictated by design considerations and can be varied only within certain ranges. Figure $1 \mid$ shows that for best reduction of rotor amplitude, the support mass should remain as light as possible. However, it will be shown that even with high mass ratio suppurt systems the rotor amplitudes
can be attenuated by a factor of 5 by proper selection of the stiffness and damping coefficients.

To evaluate the optimum damping for off-tuned conditions the computer program was run for various support mass and stiffness ratios and each of these for various damping cuefficients. For example, Fig. 13 represents the amplitudes at the rotor first and second critical speed for various mass ratios with a dimensionless stiffness ratio of $K: 0.01$ as the mass ratio and damping are varied. The solid lines represent the amplitude at the second critical speed and the dotted lines represent the ampliude at the first critical speed. With moderate support damping ratios it is observed that as the mass ratio increases the amplitude at the first critical reduces while the amplitude at the second critical increases. The optim'm damping was selected as the intersection of the amplitudes at the first and second critical for a particular value of damping. For example in Fig. 14 for $K=1.0$, the lowest optimum amplitude point on the ploi's given by a damping ratio of 10 and produces an amplitude ratio of about 1.5. Several plots similar to Fig. 13 were produced and the results were then crossplotted to obtain plots of amplitude versus damping ratio such as Fig. 15 for $K=5.0$.

Figure 14 represents the maximum rotor amplitude vs. support damping ratio for various values ci dimensionless support stiffness for a rotor bearing system with a low support mass ratio of 0.01 . Figure 16 shows that for this particular case, the lowest amplitude is achieved by a iow support stiffness ratio of $K=0.01$ which is of the same order as the mass ratio. With this low support stiffness, there is a wide range of support damping (i.e. $C=1 \rightarrow 6$) that can be used to achieve the low 'evel of rotor response.

Thus, under proper design conditions the suppori damping may be allowed to vary by a considerable amount without impairing the rotor performance. As the support stiffness ratio increases, the maximum rotor amplitude response also increases and the required support damping must be larger. For example, if the support stiffness ratio increases from 0.01 to 2.0, the optimum damping required increases by a factor of 15 from approximately 2 to 30 .

Figures 17 and 18 represent the maximum rotor amplitude for mass ratios of 0.10 and 0.715 . Note also that for high stiffness ratio support systems, the permissible range of the support damping coefficient is very narrow, and that either a reduction or an increase of damping beyund the optimum value will result in a rapis gain in rotor response.

It is also ce interest to note that if a high support stiffness ($K=2$) is used in c njunction with a low value of support damping ($C<2$) then the rotor response will be worse than the original rotor response on rigid supports $: A=10$).

Figure 19 represents tie maximum rotor response vs. support damping for a high siopport mass ratio system ($M=2$). It is otvious from the comparison of Figs. 16 and 19 that the high mass ratio support system is iess desirasie. The minimum rotor amplitude that can be achieved is $x_{2} / e_{u}=2$ with a tuned support where $K=M_{M}=2$ and a support damping coefficient of $C=20$. (Also see Fig. Il on the tuned system.) As the support stiffness ratin is reduced, the rotor response curve increases ir the optimum damping region.

If it is not possible to incorporate a high value of support damping into the system ($c_{0}=20$), then the rotor amplitude can stili be reduced to $40 \% 0^{x}$ ihe original rotor response by a low support damping value of $C=1$ and a reduced support stiffness ratio of $K=0.7$. For low values of support damping, if the support stiffness increases beyond $K=0.7$, the rotor response rapidly increases.

A series of plots similar to Figs. 16 - 19 were produced for various mass ratios in order to determine the optimum rotor response for off-tuned support conditions. Figure 20 represents the rotor maximum amplitude vs. the support mass ratio for varicus values of support stiffness with optimum damping.

For the case of $A=10$, Fig. 20 illustrates that the lowest amplitude can be achieved with a low mass ratio support system. With a high mass ratio support sustem such as $M=5$, the rotor amolitude X_{2} can be reduced from 10 to 2.8 by means of a tuned support stiffness of $K=5.0$ and optimum damping.

Note that as the support stiffness tecomes very light, the maximum rotor amplitude increases to 7.5.

At a low value of support mass ($M=0.1$), the rotor amplitude increases as the support stiffness increases. The optimum damping required with the tuned support is given by the following approximate relationship

$$
\begin{equation*}
c_{1}-\frac{1.37 \times K_{2}}{\omega_{c}} \times M^{0.437} \tag{40}
\end{equation*}
$$

Figure 21 represents the rotor maximum amplitude vs. stifiness ratio K for various values of mass ratio M and damping val ses C. This figure illustrates that it is possible to operate with off-tuned conditions and still maintain a low level of vibration. It is seen that the light damping value $C=0.10$ will produce the highest amplitude over the range of stiffness plotted for $K=0.1$ to 10 . For K values less than 1.5 , the damping ratio should be less than 10 , while for high stiffness supports where $K>2$, the damping value C should be > 20 for maximum attenuation. Note that for low stiffness supports ($K<0.2$) the value of $C=20$ represents an overdamped support system causing the amplitude and transmitted forces to be greater than the optimum value.

Figure 22 represents the rotor maximum amplitude vs. support damping ratio C for various values of support stiffness K with optimum support mass M. Figure 22 shows that the lowest amplitude level can be achieved with a low support stiffness $(K=0.01)$ and the support damping may vary from $\mathrm{C}=0.5$ to 10 while maintaining a low level response. The figure also illustrates that as the support stiffness is increased, the amplitude will also increase for a given value of damping. It is also clearly seen that as the stiffness value is increased, a larger support damping value is required to produce a low vibration amplitude with optimum support mass ratio.

Figure 23 represents optimum damping and mass ratios for various values of stiffness ratio. Figure 23 shows that, as the mass ratio increases, the required stiffness ratio increases for a given value of damping. It is of interest to note that for K values between 0.2 and 2.0 , for a given M value, there can be two values of optimum damping, a low value of C below 10 and a
high damping va'ue >10. Although high damping values may result in low rotor amplitudes, the bearing forces transmitted through the support will be much higher. Therefore extremely large values of support damping should be avoided.

TRANSIENT ANALYSIS

The previous discussion has been concerned only with the steady-state response of the rotor due to unbalance and has not considered the rotor initial transient motion. As discussed previousiy, the damped flexible support system is important, not only from the standpoint of reduction of synchronous unbala،ce response, but also in the control of self excited vibrations such as caused by internal friction, aerodynamic excitation, etc. Therefore to investigate the general rotor motion and also to provide a check on the steady-state analysis, the rotor equations of morion were integratec forward in time on the digital computer using a modified 4 th order Runge-Kutta integration procedure. This prucedure is of importance particularly if the analyais is extended from a linear bearing or support system to include a nonlinear hydrodynamic damper bearing as presented in Ref. 13.

The dimensionless rotor and support transient orbits were automatically computer plotted with the following dimensionless parameters

$$
x=x / e_{u}, \quad Y=y / e_{u}
$$

Figure 24 represents the initial transient orbit of a 96.6 lb rotor of Example 1 with a highly damped supoort $(C=43)$ for the first 12 cycles of shaft motion. The support mass ratiu and the support stiffness ratio are both approximately the same (0.10) which represents a tuned systrm. Because of the excessive support damping, the maximum force transmitted to the support is 2.16 times the unbalance force while the force transmitted to the bearings is reduced by about 40\%. The magnificatiens of the force to the support would be highly undesirable for applications such as aircraft jet engines. For example, various investigators have observed that such a situation occurs with the hydrodynamic squeeze film bearing when operating at excessive eccentricity ratios (29).

Figure 25 represents the bearing absolute and relative motion corresponding to the case as shown in Fig. 24. The solid line represents the dearing absolute motion while the dashed line represents the bearing relative
motion. Since the support damping is 10 times the bearing damping, the initial absolute bearing motion is not much larger than the bearing relative motion. Note that the timing marks on the orbit appear in the nega-
 phase with the rotating unbalance load.

Figure 26 :!lustretes the support housing motion. Because of excessive support damping, the initial support transient motion is quite small and is less than the unbalance eccentricity. The pnase angle between the support motion and the rotating unbalance load is approximately 220°.

Figure 27 represents the transient orbit for the same rotor system except that the support damping has been reduced by a factor of 100 from $C_{1}=1,000 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$. to $10 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$. In this case, the maximum force transmitted through the support is less than 9% of the rorating unbalance force and the bearing force transmitted is 16%. This orbit is analogous to a suddenly applied unbalance such as a blade ioss in an engine. Although the forces transmitted have been greatly reduced with the low stiffness and damping support system, the rotor has ceveloped a large initial transient motion of over 10 times the unbalance eccentricity and this transient motion is not readily damped out.

Figure 28 represents the absolute and relative bearing motion with the low support damping of $C_{1}=10 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$. The absolute bearing initial transient motion is extremely large while the reiative motion is well behaved. Note that the bearing relative phase angle has shifted from 180° for the highly damped case to 50° for the case with light support housing damping.

Figure 29 represents the support housing motion corresponding to the system with light support damping. A comparison of the absolute support motion and the absolute rotor motion indicates that the two are similar. This implies that the initial transient motion of the rotor is aie primarily to the large deflections in the support system.

In Fig. 30, the rotor transient motion is depicted with an optimum damping coefficient of $C=5.5$ for minimum rotor response as determined from the steady-state analysis. The transient response is rapidly suppressed after seven cycles of shaft motion to produce a small stable synchronous orbit. The transmitted forces to the bearings and support are nearly balanced to achieve approximately a 75% attenuation of the unbalance load. Figure 30 shows that with the optimum damping as determined by the steadystate analysis, the initial transient rotor motion will be 5 times the rotor unbalance eccentricity.

Figure 31 represents the bearing $m+i o n$. After approximately 6 cycles, the initial transient motion is damped out. Figure 31 indicates that the absolute bearing motion is equal to the rotor unbalance eccentricity after the transient has died, and is 180° out of pudse with the rotating inbalance load. The relative bearing motion is approximately 60% of the unbalanced eccentricity and lags the rotating unbalance by about 120°. Figure 32 represents the support motion anc i^{+}is also similar to the rotor motion as shown in Fig. 30.

SUMMARY AND CONCLUSIONS

The equations of motion for a single mass rotor-bearing system on damped flexible supports have been derived and studied considering both a steady-state and transient type analysis. Design charts for both tuned and off-tuned support conditions have been presented.

The analysis may be summarized by the following general statements.
I. The critical speed response of the single mass Jeffcott model rotor may be completely eliminated by means of a low mass ratio flexible support with optimum damping. In this case the rotor steady-state amplitude of motion over the entire speed range will only be slightly more than the rotor unbalance eccentricity.
2. The support mass ratio should be kept as light as possible to achieve minimum rotor amplitude.
3. The rotor amplitude may be considerably attenuated even for high mass ratio support systems by tuning the support stiffness such that $K=M$ and incorporating optimum damping for the tuned conditions.
4. With a low mass ratio support system, the required value of optimum damping is not critical and can vary by a factor of 10 without appreciably effecting rotor performance. As the mass ratio increases, the required value of optimum damping increase:i rapidly and the permissible range of variation of support damping diminishes.
5. The off-tuned support $(K \neq M)$ can be designed to produce a consideradle improvement in system response in comparison to the rotor on rigid supports. If insufficient damping is incorporated in the suppcr then the resulting rotor steady-state amplitude may be larger than the original rotor response for support c+iffness values $K>1$.
6. If there is excessive suppor ${ }^{+}$damping (C 20) with a low mass ratio support ($M=0.1$), then the forces transmitted through the support may exceed the unbalance forces (TROS > 1.0).
7. Although the steady-state analysis shows that the rotor amplitude will be small for an underdamped (C < 0.50) low mass raiio support system, the orbital analysis shows that a large initial transient motion can be
generated due to the suddenly applied unbalance force and that this motion is not readily attenuated.
8. The optimum damping based on minimization of the rotor steadystate amplitude for both tuned and off-tuned conditions produces a satisfactory transient response from the standpoint of rapid reduction of the initial trarisient motion, improved system stability and reduction of the forces tran:imitted.

ACKNOWLEDGEMENT

The research described herein was conducted at the University of Virginia under NASA Research Grant NGR 47-005-050 with Mr. William J. Anderson, Chief of Bearings Branch, Fluid System Components Division, NASA-Lewis Research Center, as Technical Manager. The authors wish to express their appreciation to Mr. Anderson for his assistance and support in the development of this work.

APPENDIX A

DISCUSSION

A high speed rotor shaft may be considered as a continuous elastic member with variable mass and inertia properties along its length. The rotor shaft usually has attached to it such components as turbine or compressor blades, impeller disks, or spacer assemblies or sea!s. If the axial dimensions of each rotor component is small in comparison to the overall length of the rotor, then each component may be treated as a concentrated mass with a polar moment of inertia equivalent to that of the original component. If the mass of the components are large in comparison to the shaft mass connecting the components, then the shaft weight can be neglected or considered to be located at the mass stations. If the polar moment of inertia of each section is ignored, then the stations may be considered as concentrated masses, rather than distributed in the plane of the rotor element. However, if the sections whirl in a plane, perpendicular to the spin axis then the gyroscopic moments do not act on the system and hence the equations reduce to the same as if point masses were assumed.

The position vector of the nth mass center is given by

$$
\vec{P}=\vec{\delta}_{b}+\vec{\delta}_{j}+\vec{\delta}_{s}+\vec{e}_{u}
$$

where

$$
\begin{aligned}
& \vec{\delta}_{b}=\text { vectoral bearing support deflection } \\
& \vec{\delta}_{j}=\text { vectoral journal deflection } \\
& \vec{\delta}_{s}=\text { vectoral shaft deflection } \\
& \vec{e}_{u}=\text { displacement of mass center from the shaft centerline }
\end{aligned}
$$

The system being analyzed has been reduced to a single mass rotor mounted in idealized linear bearings and the bearings are in turn mounted on damped, elastic supports. By considering only small deflections, the spring rate of the flexible, massless rotor shaft may be considered to be linear.

The rotor disk (see Fig. 1) is considered to whirl in a plane and hence no gyroscopic moments are acting on the system. The orthogonal support and bearing spring rates are assumed symmetric and no cross coupling terms are considered to be acting at the support housings. The aforementioned assumptions allow the equations of motion of the system to be written as total differential equatioris.

DERIVATION OF EQUATIONS OF MOTION
A.l Kinematics

The position vectors to the mass stations are given by
m_{1} : bearing
$\begin{aligned} & \text { bearing } \\ & \text { housing mass } \\ & \vec{P} \\ & M_{1} / 0\end{aligned}=X_{1} \vec{n}_{x}+Y_{1} \vec{n}_{y}$
m_{2} : rotor mass

$$
\begin{equation*}
\vec{p}^{M_{2} / 0}=\left(X_{2}+e_{u} \cos \theta\right) \vec{n}_{x}+\left(Y_{2}+e_{u} \sin \theta\right) \vec{n}_{y} \tag{A.2}
\end{equation*}
$$

The velocities of the mass stations are given by

$$
\begin{align*}
& \vec{V}^{M_{1} / 0}=\dot{x}_{1} \vec{n}_{x}+\dot{Y}_{1} \vec{n}_{y} \tag{A.3}\\
& \left.\vec{V}^{M_{2} / 0}=\left(\dot{X}_{2}-e_{u} \dot{\theta} \sin \theta\right) \vec{n}_{x}+\dot{Y}_{2}+e_{u} \dot{\theta}^{\theta} \cos \theta\right) \vec{n}_{y} \tag{A.4}
\end{align*}
$$

A. 2 Kinetic Energy

The kinetic energy of the system is given by

$$
\begin{equation*}
T=\frac{1}{2} \sum_{i=1}^{2}\left(M_{i} \vec{V}_{i} \cdot \vec{V}_{i}\right)+\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \phi_{i j} \omega_{i} \omega_{j} \tag{A.5}
\end{equation*}
$$

neglecting the gyroscopic couples acting on the disc, the system kinetic energy reduces to

$$
\begin{align*}
T= & \frac{1}{2} A_{1}\left(\dot{X}_{1}^{2}+\dot{Y}_{1}^{2}\right)+\frac{1}{2} M_{2}\left[\left(\dot{X}_{2}-e_{u} \dot{\theta} \sin \theta\right)^{2}+\left(\dot{Y}_{2}+e_{L} \dot{\theta} \cos \theta\right)^{2}\right] \\
& +\frac{1}{2} \Phi_{z z} \dot{\theta}^{2} \tag{A.6}
\end{align*}
$$

A. 3 Potential Energy

The potential energy of the system is composed of the sums of the potential energy of the flexible shaft, the potential energy of the bearings, and the energy of support structure as follows

$$
V=\frac{1}{2}\left[K_{s}\left(X_{s}^{2}+Y_{s}^{2}\right)+K_{b}\left(X_{j}^{2}+Y_{j}^{2}\right)+K_{1}\left(X_{1}^{2} \quad Y_{1}^{2}\right)\right]
$$

where

$$
x_{s}=x_{2}-x_{1}-x_{i}
$$

A. 4 Dissipative Energy

The system dissipative energy consists of the damping functions provided by the bearing support system, the bearings, and the external and internal rotor damping and the aerodynamic rotor cross coupling as described by Alford (4).

$$
\begin{align*}
D= & \frac{1}{2}\left\{C_{1}\left(\dot{X}_{1}^{2}+\dot{Y}_{1}^{2}\right)+C_{b}\left(\dot{X}_{j}^{2}+\dot{Y}_{j}^{2}\right)+C_{s}\left(\dot{X}_{2}^{2}+\dot{Y}_{2}^{2}\right)\right. \\
& \left.+C_{i}\left[\dot{X}_{s}^{2}+\dot{Y}_{s}^{2}+2 w\left(Y_{s} \dot{X}_{s}-X_{s} \dot{Y}_{s}\right)\right]+Q\left(Y_{2} \dot{X}_{2}-X_{2} \dot{Y}_{2}\right)\right\} \tag{A.8}
\end{align*}
$$

The internal damping function is dependent upon the rotor precession rate and can cause self excited whirl instability when the rotor is operated above the critical speed (26). Alford has demonstrated that the aerodynamic cross coupling stiffness term can also cause -otor instability when the rotor speed is supercritical. When the system dissipation function is comprised of only the first three terms, the system is inherently stable.

A. 5 Lagranges Equations

The governing equations of motion are obtained from Lagranges Equations which state:

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{\partial L}{\partial \dot{q}_{r}}\right]-\frac{\partial L}{\partial q_{r}}+\frac{\partial D}{\partial \dot{q}_{r}}=F_{q_{r}} \tag{A.9}
\end{equation*}
$$

where

$$
L=T-V
$$

The total number of equations of motion obtained will be equal to the number of degrees of freedom of the system which is seven and are given as follows.

Rotor

$$
\begin{align*}
X_{2}: & M_{2} \ddot{X}_{2}+C_{s} \dot{X}_{2}+C_{i}\left(\dot{X}_{2}-\dot{X}_{1}-\dot{X}_{j}\right)+K_{s}\left(X_{2}-X_{1}-X_{j}\right) \tag{A.10}\\
& +Q Y_{2}+\omega C_{i}\left(Y_{2}-Y_{1}-Y_{j}\right)=M_{2} e_{u}\left(\omega^{2} \cos (\omega t)+\alpha \sin (\omega t)\right) \\
Y_{2}: & M_{2} \ddot{Y}_{2}+C_{5} \dot{Y}_{2}+C_{i}\left(\dot{Y}_{2}-\dot{Y}_{1} \cdot \dot{Y}_{j}\right)+K_{s}\left(Y_{2}-Y_{1}-Y_{j}\right)-Q X_{2} \tag{A.11}\\
& -\omega C_{i}\left(X_{2}-X_{1}-A_{j}\right)=M_{2} e_{u}\left(\omega^{2} \sin (\omega t)-\alpha \sin (!t)\right)
\end{align*}
$$

Bearings

$$
\begin{align*}
& X_{j}:\left(C_{i}+C_{b}\right) \dot{X}_{j}-C_{i}\left(X_{2}-\dot{X}_{1}\right)+\left(K_{b}+K_{s}\right) X_{j} \tag{A.12}\\
&-K_{s}\left(X_{2}-X_{1}\right)-C_{i} \omega\left(Y_{2}-Y_{1}-Y_{j}\right)=0 \\
& Y_{j}:\left(C_{i}+C_{b}\right) Y_{j}-C_{i}\left(\dot{Y}_{2}-\dot{Y}_{1}\right)+\left(K_{b}+K_{s}\right) Y_{j} \tag{A.1B}\\
&-K_{s}\left(Y_{2}-Y_{1}\right)+C_{i} \omega\left(X_{2}-X_{1}-X_{j}\right)=0
\end{align*}
$$

Support

$$
\begin{align*}
X_{1}: & M_{1} \ddot{X}_{1}+\left(C_{1}+C_{i}\right) \dot{X}_{1}-C_{i}\left(\dot{X}_{2}-\dot{X}_{j}\right)+\left(K_{1}+K_{s}\right) X_{1} \tag{A.14}\\
& -K_{s}\left(X_{2}-X_{j}\right)-C_{i} \omega\left(Y_{2}-Y_{1}-Y_{j}\right)=0 \\
Y_{1}: & M_{1} \ddot{Y}_{1}+\left(C_{1}+C_{i}\right) \dot{Y}_{1}-C_{i}\left(\dot{Y}_{2}-\dot{Y}_{j}\right)+\left(K_{1}+K_{s}\right) Y_{1} \tag{A.15}\\
& -K_{s}\left(Y_{2}-Y_{j}\right)+C_{i} \omega\left(X_{2}-X_{1}-X_{j}\right)=0
\end{align*}
$$

Angular Acceleration

$$
\begin{align*}
\theta: \quad & \left(\Phi_{z z}+M_{2} e_{u}^{2}\right) \ddot{\theta}+M_{2} e_{u}\left[\ddot{Y}_{2} \cos \theta-\ddot{x}_{2} \sin \theta\right. \\
& \left.-\dot{\theta}\left(\dot{Y}_{2} \operatorname{s} n \theta+\dot{x}_{2} \cos \theta\right)\right]=T_{z}(\dot{\theta}) \tag{A.16}
\end{align*}
$$

Where
$\dot{\theta}=\omega, \ddot{\theta}=\alpha$

The equations A. 10 to A. 15 may be vectorially combined by rejresenting the displacements in complex notation as fc:lows

$$
\begin{aligned}
& \left.\begin{array}{l}
z_{2}=x_{2}+i y_{2} \\
z_{j}=x_{j}+i y_{j} \\
z_{1}=x_{1}+i y_{l}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -i Q Z_{2}-i \omega C_{i}\left(Z_{2} \quad Z_{1}-Z_{j}\right)=M_{2} e_{u}\left(\omega^{2}-i \alpha\right) e^{i \omega t} \\
& z_{j}=\left(C_{b}+C_{i}\right) \dot{z}_{j}-C_{i}\left(\dot{Z}_{2}-\dot{Z}_{1}\right)+\left(K_{b}+K_{s}\right) z_{j} \\
& -K_{s}\left(Z_{2}-Z_{1}\right)+i c_{i} \omega\left(Z_{2}-Z_{1}-Z_{j}\right)=0 \\
& Z_{1}: M_{1} \ddot{z}_{1}+\left(C_{1}+c_{i}\right) \dot{z}_{1}-c_{i}\left(\dot{Z}_{2}-\dot{z}_{\dot{i}}\right)+\left(K_{1}+K_{s}\right) Z_{1} \\
& -\dot{k}_{s}\left(Z_{2}-Z_{j}\right)+i C_{i} \omega\left(Z_{2}-Z_{1}-Z_{j}\right)=0
\end{aligned}
$$

APPENDIX B

TRANSIENT COMPUTER PROGRAM FOR THE THREE MASS SYSTEM
The rotor system used in the transient analysis is of considerably greater romplexity than the equations used in the steady-state analysis. in the more generdi transient analysis, internal and aerodynamic cross coupling may be incorporated in the rotor. The Learing may have 8 stiffness and damping coefficients while the support system may have 4 stiffness and damping coefficients. Because of the more generalized treatment, studies may be conducted on the stability of the rotor due to hydrodynamic beari.,g forces, internal friction, or aerodynamic cross coupling. The support system can be investigated to show the influence of the support damping in promoting stability.

Equations of Motion

$$
\begin{align*}
X_{2}: & M_{2} \ddot{X}_{2}+C_{s} \dot{X}_{2}+C_{i}\left(\dot{X}_{2}-\dot{X}_{1}-\dot{X}_{j}\right) \\
& +K_{s}\left(X_{2}-X_{1}-X_{j}\right)+Q Y_{2}+\omega C_{i}\left(Y_{2}-Y_{1}-Y_{j}\right) \\
& =M_{2} e_{u} \omega^{2} \cos \omega t \tag{E.1}\\
Y_{2}: & M_{2} \ddot{Y}_{2}+C_{s} \dot{Y}_{2}+C_{i}\left(\dot{Y}_{2}-\dot{Y}_{1}-\dot{Y}_{j}\right) \\
& +K_{s}\left(Y_{2}-Y_{1}-Y_{j}:-Q X_{2}-\omega C_{i}\left(X_{2}-X_{1}-X_{j}\right)\right. \\
& =M_{2} e_{u} \omega^{2} s i n \omega t \tag{B.2}\\
X_{j}: & 2 M_{j}\left(\ddot{X}_{1}+\ddot{X}_{j}\right)+\left(C_{i}+2 C_{x x}\right) \dot{X}_{j}-C_{i}\left(\dot{X}_{2}-\dot{X}_{1}\right) \\
& +\left(2 K_{x x}+K_{s}\right) X_{j}-K_{s}\left(X_{2}-X_{1}\right)-C_{i} \omega\left(Y_{2}-Y_{1}-Y_{j}\right) \\
& +2\left(K_{x y} Y_{j}+C_{x y}\right)=0 \tag{B.3}
\end{align*}
$$

$$
\begin{align*}
Y_{j}: & 2 M_{j}\left(\ddot{Y}_{1}+\ddot{Y}_{j}\right)+\left(C_{i}+2 C_{y y}\right) \dot{Y}_{j}-C_{i}\left(\dot{Y}_{2}-\dot{Y}_{1}\right) \\
& \left(2 K_{y y}+K_{s}\right) Y_{j}-K_{s}\left(Y_{2}-Y_{1}\right)+C_{i} \omega\left(X_{2}-X_{1}-X_{j}\right) \\
& +2\left(K_{y x} X_{j}+C_{Y x} \dot{X}_{j}\right)=0 \\
X_{1}: & 2 M_{1} \ddot{X}_{1}+2 M_{j}\left(\ddot{X}_{1}+\ddot{X}_{j}\right)+\left(2 C_{1 x}+C_{i}\right) \dot{X}_{1} \\
& -C_{i}\left(\dot{X}_{2}-\dot{X}_{j}\right)+\left(2 K_{1 x}+K_{s}\right) X_{1}-K_{s}\left(X_{2}-X_{j}\right) \\
& -C_{i} \omega\left(Y_{2}-Y_{1}-Y_{j}\right)=0 \tag{B.5}\\
Y_{1}: & 2 M_{1} \ddot{Y}_{1}+2 M_{j}\left(\ddot{Y}_{1}+\ddot{Y}_{j}\right)+\left(2 C_{1 y}+C_{i}\right) \dot{Y}_{1} \\
& -C_{i}\left(\dot{Y}_{2}-\dot{Y}_{j}\right)+\left(2 K_{l y}+K_{s}\right) Y_{1}-K_{s}\left(Y_{2}-Y_{j}\right) \\
& +C_{i} \omega\left(X_{2}-X_{1}-X_{j}\right)=0 \tag{B.6}
\end{align*}
$$

The support equations can be reduced to the following form by using Eqs. B. 3 and B.4.

$$
\begin{align*}
& M_{1} \ddot{X}_{1}+C_{1 x} \dot{X}_{1}+K_{1 x} X_{1}-C_{x x} \dot{X}_{j}-C_{x y} \dot{Y}_{j} \\
& -K_{x x} X_{j}-K_{x y} Y_{j}=0 \tag{B.7}\\
& M_{1} \ddot{Y}_{1}+C_{1 y} \dot{Y}_{1}+K_{1 y} Y_{1}-C_{y x} \dot{X}_{j}-C_{y y} \dot{Y}_{j} \\
& -K_{y x} X_{j}-K_{y y} Y_{j}=0 \tag{B.8}
\end{align*}
$$

COMMENT
THIS PROGRAR CALCULATES THE TRANSIENT RESPONSE OF A SINGLEOMASS FLEXIBLE ROTOR ON FLEXIBLE BEARING SUPPORTS (LIMEAR) - THE RESULTS are plotted autohatically rsee Input canos beloms and the INITIAL ANO FINAL VALUES ARE PRINTEO OHT ON THE LINE PRINTERE THEY APPEAR IN THE CORRECT ORDER TU BE TYPED ON DATA CARDS to contimue the motion if desired (that is card s(a)).

ENC DF COMMENT:

```
            THE INPUT TO THE PFOGRAM IS AS FOLLONS :
            (ALL DATA IS IN FREE FIELD )
            COMAENT
CARD 1 REAC:CR,/,TMAX,H,N,CASNOS
Tmax - NO, OF RADIANS SOL. IS TO BE SOLVEO
H- STEP SIZE USED IN INTEGRATION PROCEDURE
A - NO. OF EOS. TO BE INTEGRATED
    ( E 12 IF SUPPORT. - IF NO SUPPORT)
CASNO - IDENTIFICATION NUMBER (XXXX,XXXX)
                                    {(MD,)(OAY),(YEAR)(CASE NO,)}
CARO 2 READ(CR,/,RPM,W,K,DS,CI,OAC,EU,WJ,HI)
RPM - ROTOR SPEED - REV/MIN
m - ROTOR WEIGHT , LB.
K - ROTOK SHAFT STIFFNESS - LB/IN
DS - ABSOLUTE SHAFT DAMPING, LBESEC/IN
CI - INTERNAL FRICIIION DAMPING , LB=SEC/IN
OAC - CROSS=COUPLING, LB/IN
EU - UNBALANCE ECCENTRICITY OF M IN MILS
                                    -*-*
WJ - JDURNAL WEIGHT AT EACH END , LB.
H1 - SUPPORT WEIGHT AT EACH BEARING: LB.
CARD 3 REAO(CR,/,KXXPKYY,CXX,CYY,KXYOKYX,CXYAGYX)
BEARING STIFFNESS AND DAMPING OF EACH BEARING
CARD A IF N>G THEN READ(CR,/,KIX,KIY,CIX,CIY)
SUPPORT STIFFNESS AND DAMPING OF EACH SUPPORT
CAKD 5 (4) READ(CR,/,FOR [&O STEP 1 UNTIL N OU[Y(O,I]J)
O IS FOR INITIAL TIME, RADIANS
1 - ABSOLUTE ROTOR DISP., X=OIR.
2 - ABSOLUTE ROTOR VELOCITY, X=OIK.
3 - ABS, ROTOR DISP., YODIR,
4 - ABS, ROTOR VEL, YODIR,
5,6,7,8 - SAME ORDER AS ABOVE FOR JOURNAL RELATIVE MOTION
9,10,11,12 - SAME AS ABOVE FDR SUPPORT MOTIDN (IF REQUIRED)
CARD 6 (5)READ(CR,/CS,ISCALE,XMIN,OX,XHIN2,DX2,XMIN3,OX3)
CS - PLOTTER CONTROL O ND PLOT 1 - PLOT
ISCALE - SCALE CONTROL D- PROG. SCALE I - USE FOLLOWING INFO.
```

```
        XHIN - NOZ TO APPEAR AT ORIGIN ROTOR DISLPACEMENT
        DX - SCALE INCREMENT PER INCH ROTOR OISPLACEMENT
        XMINZ;DXE - SAME AS ABOVE BUT FOR JOURNAL PLOT
        XMIN3,DX3 - SAME AS ABOVE BUT FOR SUPPORT
    CARD Y (6) IF CSMO THEN READ(CR,/PRPCS)
    RPCS - NO. Of TIMES INTEG. FOR TMAX RADIANS IS TO BE SOLVED
    EXAMPLE DATA INPUT:
12,56,0.05,0,600.7101.
10000,675,280000:0:0,0,0,5,312,50,
351000,606000,739,865,0,0,0,0,
0,00,5,0,0,=0,5,-0,05,0,0,00,05.
1,0,0,0,0,0,0,0,
5.
NOTE ON PLOTTING: REQUEST ONE (I) block PER SET OF DATA
END OF COMMENT;
I
    -O-REPEAT THE SERIES FOR EACH CASE -\infty-
$
INTEGER CS S
INTEGER IPJ,NA,NS
BOOLEAN ISCALEB
BOOLEAN STABLE;
INTEGER RPCORPCSS
INTEGER VV J
ALPHA ARRAY ALPI,ALP2[0IBJ, ALP3,ALPA,ALP5,ALPO,ALPT,ALPB,
ALP9,ALP10,ALP11,ALP12,ALP13,ALP14,ALP15,ALP1B,ALP17TO:3]:
ALPHA AMRAY ALPHAI, ALPHAZ[O:2];
ALPHA ARRAY ALPIB,ALPI9[O:A])
A:PHA ARRAY ALP20[0:0], ALP21[010], ALP22[013]s
ALPHA ARRAY ALP23;ALP24CO:4];
ALPHA ARRAY ALP25:ALP26,ALP27,ALP28[0171)
ALPHA ARRAY ALP29;ALP30[O:3]s
REAL CASNOS
REAL K2X,K2Y,C2X,C2Y, WCX,WCY,ACX,ACYY
REAL KII,KI2,K13,K14,FMBH,FMBI,FMSH,FMSI,GIMHB,TIMHSS
REAL TMAXH &
REAL FMSHH,FMBHH,TIMHBH,TIMHSHB
REAL OAC,Y'IN2,DX2,XMAX2,XHIN3,DX3,XMAX3, YMIN2,DY2,YMAX2,
YMIN3,DY3,YMAX3:
REAL Z2,ZZ2,21,22,Z3,Z4:Z5,Z6,Z7,Z0,Z2,Z10 ,Y0,Y1,Y2,Y3,Y4,Y5,
Y6,Y7,Y0,Y9,Y10;
REAL YII,YI2,DS,CIOWJ,KXX,KYY,CXX,CYY&KIX,KIY,CIX,CIY!
REAL MJ,222,Z32,Z11,212,Z13,Z14,Z15,216,217,Z18,EU ;
REAL XA,HXA,XI,HXI,YA,HYA,YI,HYI ;
REAL TMAX, H:CC, R, OMEGA, OMEGA2,
REAL NCS ;
REAL DUM1,DUM2,DUM3,DUN4,OUM22,DUM42,RE1,IM1,M1,M1,C1,K1,KB,CB ,
REAL K2,C2 ,
REAL MPM,N,K,CD,CO,DC,RAD,M,DDC,NCIONCRATIO,DEN1,AA,DEN2,ACR,
XMAX,YMAX,
REAL XMIN, YMIN, DX, DY B
REAL KXY,KYX,CXY,CYXB
REAL 219,220,221,223;
```

```
    LABEL ALLDONE ACAND S
    REAL ARRAY A,B,C[0;4],0,KK,Y[0&4,0:12],F[0:12],AY[0112,0:700],
ARRAY GXR,BYRCO:7001%
    LABEL REPEATS
    FORMAT OUTDATA (X2,E13.6,X2,F6.2.G(X2,E13,6))%
    PHOCEDURE MAXMIN (X,Y,N:H): VALUE N,H:
    REML HJ INTEGER NS ARRAY XOYIOJ I
    REGIN
    INTEGER I S
```



```
    FORI * STEP I UNTILNOO
    BEGIN
    IFXIII> XA THEN
    BEGIN
        XA & X[1]; HXA & I!
        END
        ELSE BEGIN
        IF XII]< XI IHEN BEGINXI * XIIJ HXI*I &END: END %
        IF YII]> YA THEN
    BEGIN
        YA & Y[I]! HYA & I %
    ENO
        ELSE BEGIN IF Y[I] < YI THEN BEGIN YI & YII, HYI & I {ENDIENDI
    ENO !
        HYA & (HYA=I) x H / 6.28 )
        HYI (HYI=1) < H/6.28 
        HXI & (HXI-1) ×H/6.28 
        HXA & (HXA-1) < H/6.28;
        END OF MAXMIN 3
PRCCEDURE SAMESCALE(X,Y,N,XMIN,XMAX,DX,YMIN:YMAX,OY)S VALUE NS
    ARKAY X,Y[O] SNTEGER N:
    REAL XMIN:XMAX,OX,YMIN,YMAX,OYI
    BEGIN
    REAL ANS: ANSX;
    INTEGER I;
    ANS & ABS (Y[I])! ANSX + AlIS (X[1])S
    FOR I + 2 STEP I UNTIL N DO
    8EGIN
    IF ABS (Y[I]) > ANS THEN ANS * ABS (YIIJ)!
    IF ARS (X[I])> ANSX THEN ANSX & ABS (XIIJ)!
    ENOS
    IF ANSX > ANS THEN ANS & ANSXI
    IF AHS < I THEN
    8EGIN
    XMIN + -1I DX + 0.3333333333!
    ENU
    ELSE
    IF ANS < 3 THEN
    BEGIN
```



```
    END
        ELSE
        IF ANS < }6\mathrm{ THEN
```

BEGIN
XMIN

$$
D x \div 21
$$

END ELSE If ANS $\operatorname{Cl} 2$ THEN
BEGIN XMIN - 12 : $D X+a s$
END
ELSE IF ANS < 18 THEN
BEBIN
XMIN - 16 B DX 6 ,
ENO
ELSE
PEGIN XMIN - -243
DX +83
END
DY • DX: YMIN • XMIN;
XMAX + 3XDXB YMAX + $3 \times D Y B$
END OF SAMESCALE
PROCEOURE PLOTCHEK(X,Y,N,XMIN,XMAX,YMIN,YMAX)S VALUE NB ARRAY X, Y [OJ; INTEGER NI
REAL XMIN,XMAX,YMIN,YMAX;
OEGIN
INTEGER I!
FOR I - I STEP 1 UNTIL N DO
BEGIN
IF X II] \geqslant Xmax THEN X [I] - XMAX
ELSE
IF X[I] \& XMIN THEN XPIJ * XMIN:
IF Y [I] > YMaX THEN Y[I] \& YmaX
ELSE
IF Y[IJ Q YMIN THEN YIIJ. YMIN!
END :
ENO OF PLOTCHEK,

```
PROCEDURE ORBITTDP (I):
VALUE IS INTEGER I ;
BEGIN
IF I : I THEM
    SYMBOL(1,50,9,00,.21,ALP1,0,24)
ELSE IF I = 2 THEN
    SYMBOL(2,00,9,00,,21,ALP2,0,18)
ElSE
    SYMBOL(2,00,9.00,,21,ALP 3,0,16)!
    SYMBOL(5,00,9.50,C.10,ALP30,0,3);
    NUMBER(5,20,9,50,0,10,CASNO,0,4);
    SYMBOL(1,55,0,75,,14,ALP25,0,24);
    NUMBER(2,03,8,75,,14,AY[0,1)/6,28,0,2))
```



```
    SYMBOL(0,75,8.50,.14,ALP4 ,0,18)3NUMBER(1,35,0,50.,14,RPM ,0,0):
    SYMBOL(3,75,0,50,,14,ALP6,0,19);NUMBER(4,23,8,50,.14,EU ,0,3)1
```



```
        SYMBOL(3,75,0,25,,14,ALPB ,0,17)INUMOER(4.23,0,25,.14,WJ 0,0,2,3
        SYMBOL (0,75,6,00,.14,ALPT,0,21);NUNBER(1,23,0,00,,14,K ,0,3)S
        SYMBOL(3,75,0,00,.14,ALP10,0,22);NUNAER(4,35,6,00,,14,KXK 00,3);
        SYMBOL(0,75,7,75,.14,ALP9 ,0,23)INUNREN(1,23,7,75,.14,DS 0,0,231
        SYMBOL(3,75,7,750.14,ALP12,0,22)SNUKGEA(4,35,7,75,.14,KYY 00,3)1
        SYMBOL(0,75,7,50,.1A,ALP11,0,23)3NUMBER(1,23,7,50,.1A,C1 ,0,2)!
        SYMBOL(3,75,7,50,.14,ALP14,0,24)BNUNBER(4,35,7,50,.14,CKK 00,281
        SYMBOL(0,75,7,25,.14,ALP13,0,10)INUMBER(1,12,7,25,.14,0AC ,0,2);
        8YMBOL (3,75,7,25, ,14,ALP16,0,24)BNUMPER(A, 35,7,25, ,14,CYY
        SYMBOL(0,75,7,00,,14,ALP15,0,19), NUNGER(1,47,7,00,,14,HCX
        SYMBOL (3,75,7,00,,14,ALP18,0,6 )BNL,ABER(4,23,7,00,.14,ACX
        SYMBOL(0,75,6,75,.14,ALP17,0,19), MUMBER(1,47,6,75,,14,WCY
        SYMBOL(3,75,6,75,.14,ALP20,0,6 )/NUMBEÑ{4.23,6,75,,1A,ACY
        IFN> THEN BEGIN
        SYMBOL(0,75,6,50,0,14,ALP19,0,16)BNUMSER(1,23,6,50,.14,W1 ,0,2)3
        SYMBOL(0,75,6,27,,14,ALP21,0,21)BNUNEER(1,23,6,27,,14,K1K ,0,3):
        SYMBDL(3,75,6,27,.14,ALP22,0,24)3NUMBER(4,35,6,27,,14,C1X 00,2);
        SYMBOL(0,75,6,05,.14,ALP23,0,21);NUNBEK(1,23,6,05,.14,KIY 00,3)1
        SYMBOL(3,75,6,05,.14,ALP24,0,24)3NUMBER(4,35,6,05,.14,C1Y ,0,2)8
        ENOS
        K &KX10003 KXX&KXXX10003 KYY&KYYK10001 KIX&KIXXI000BKIY&KIYXI000!
ENO OF ORBITTOP ;
    PRDCEDURE AGRID (XMIN,DX,YMIN,DY)S
    REAL XMIN,OX,Y&IN:DYS
    BEGIN
    AXIS (0,0,O,ALPHA1:14,6,90,YHIN,OY)S
    AXIS(0,0,ALPHAZ,-14,6,0,XMIN;DX):
        AXIS(6,0,ALPHA1,0,6,90;YMIN,DY)]
        AXIS(6,6,ALPHAZ,0,6,180,XMIN,DXIS
        END)
    PROCEDURE FUNCTION (J,Y)S
    VALUE JB INTEGER J% ARRAY Y[0,0];
    BEGIN
    YO+Y(J,O)]
    Yi+Y{J,1];
    Y2+Y{J:21:
    r3+r(J,3]:
    Y@&Y{d,4])
    YS&Y(J.53s
    Y6+Y(J.6):
    YT+Y{N,7];
    YB+Y(J,B)S
    IFN>& THEN BEGIN
    Y9+Y{J,9]:
    Y10 + Y[J:10];
    Y11 + Y{J,11)]
    Y12 + Y{J,123:
    ENDS
    F(0) + 1:
    F[1] + Y2%
    F(2) + EUXCOS(Y0)=21XY2-22X(Y2-Y10-Y6)
    -23x(Y1-Y0-Y5)-2AxY3-22x(r3-Y11-r7):
    F[3) * Y4;
    F(4) + EUXSIN(YO)=2{xYA-22X(Ya-Y12-Y8)
```



```
    IFN> TMEN BEGIN
    F(9) Y10;
    F(10)- -Z10x(Z11XY9+212xY10-Z13xY5-Z14xY6 - Z19xY7-220xYB)s
    F[11]+Y12}
```



```
    END ELSE F[9)*F{10]*F(11)]*F{12}*0.0;
    F{5] + Y6)
    F(6) - F(10)=25x(Z6xY6-222x(Y2-Y10) +27xY5
    -232x(YI-Y9)-Z22x(Y3=Y11-Y7)+Z19xYY+Z20XY());
    F[7] 4 Y0;
    F[8] + -F[12] = 25x(Z&xY8- 222x(Y4-YIZ) + Z9xYy
    -232x(Y3-Y11) + 222x(Y1-Y0-Y5)+221xY5+223xY6)!
    END OF FUNCTION S
    PROCEDUAE RKG (K,Y)S INTEGERKS
    ARRAY Y[O:O] ;
    BEGIN
    REAL P S INTEGER IOJ:
    FOR J + STEP I UNTIL DO
    BEGIN
    FUNCTION (J=1;Y) B
    FORI 1 O STEP 1 UNTIL N DO
    KK[J;I] & FII]!
    FOK 1 O STEP I UNTIL NDO
    GEGIN
    P*M[J] x (KK[J,I] - 8[J] x 0{J=l,lj) !
    Y{J.{I] Y{J={II]+H\timesP)
```



```
    END:
    ENDS
    FOR I*O STEP I UNTIL N DO
BEGIN
    Y(0,I)+Y(4,I)!
    O{0,I]+\{A,I})
    AY[I:K]+Y[A:]]!
ENDS
    FMBI +(Z13XY{0.5} + Z14xY{0.8] + 219xY{0.7] + Z20xY[0.8])*2
```



```
    FMSI + (Z11KY(0,9)+Z12XY{0,10) )+2+(215\timesY(0,11)+Z16xY(0,12])+2,
    IF FMBIDFMBH THEN BEGIN
    FMBH & FMBIS TIMHB & Y{O.OJS ENDS
    IF FMSI > FMSH THEN BEGIN
    SMSH &MSI! TIMNS & YOODOJ: ENOS
ENO OF RKGS
    PRDCEDURE YIMESTEP (TMAX, H, N, AY, NA,Y)S
    VALUE TMAX,M&Ns
    REAL TMAX,HJ INTEGER NO NA,
    REAL ARRAY AY[O,JJ S
    ARRAY Y[O,O] B
    BEGIN
        INTEGER IOJOK: LABEL REPEAT:
        FOR I*O STEP I UNTIL N DO
BEGIN
```

```
    0[0:1]+0:
    AY[1:1]+Y{0,1])
ENOS
    FMBH + (Z13XY{0,5) + 214XY{0, 6} + Z19XY{0,7) + 220XY(0,0))*2
        +(221xY(0.5) + Z2]xY(0.6) + Z17xY[0,7] + Z18xY[0,8])*? ;
    FMSH + (211XY{0,0)+212XY(0,101)+2+(Z95\timesY(0,111)+216KY(0,121)+2,
    TIMMB + Y{0,0]; YIMHS + Y{0,0];
REPEAT:
    k+k+1;
    RKG (K,Y);
    IF Y(0,O]<tMa:: then go to repeat ;
    NA4K)
ENO OF TIMESTEP;
            A[1] + C[1] + C[4]*0.5 B
            A[2]+C[2]+1-SORT(0,5),
            A(3) + C(3) + 4+SORT(0.5) B
            A[(4) 1/6 3
            B(1) + B[4] + 2 :
            B[2} & B{3] + 1}
```



```
    "FLFXIRLE ROYOR ON FLEXIBLE BEARING SUPPORTS (LINEAR) "THE RESULTS",
/,*ARE PLOTTED AUTOMATICALLY (SEE INPUY CAROS BELOM) AND THE M,l,
    "INITIAL ANE FINAL VALUES ARE PRINTED OUT ON THE LINE PRINTER. m,/,
    "THEY APPEAR IN THE CORRECI JRDER TO BE TYPED DN DATA CAROS m,le
    "TO CONTINUE THE MOTION IF DESIRED (THAT IS CARD S(A)). m,%
///." THE INPUT TO THE PROGPAM IS AS FOLLOWS 1 m,/"
    * (ALL DATA IS IN FREE F!ELD ) *a/l,
    * CARD 1 READ(CR,O,TMAX,H,N,CASNO) "./.
    " TMAX - NO. OF RADIANS SOL. IS TO BE SOLVEO n,/,
    * H- STEP SIZE USED IN INTEGRATION PROCEDURE (TMAX/HSTOO) Na/O
    * N - NO. OF EQS. TO BE INTEGRATED ",/,
    n i=12 IF SUPPORT = IF NO SUPPORT) m,/,
    CASND - IDENTIFICATION NUMBER [XXXX,XXXX] m,/,
    "* [(MO.)(DAY).(YEAR)(CASE NO_)] mala
1/," CARD 2 READ(CR,/,RPM,W,K,DS,CI,OAC,EU,WJ,W1)
    * RPM - ROTOR SPEED . REV/MIN ",/,
    *W - RGTOR WEIGHT , LB. n,l,
    " K - ROTOR SHAFT STIFFNESS , LBIIN ",/,
    * DS - ABSOLUTE SHAFT DAMPING . LB-SEC/IN
    " CI = INTERNAL FAICTION DAMPI'VG, LBOSECIIN
        n,10n,1,
    " EU - UNBALANCE ECCENTRICITY OF WIN MILS mol.
    n EU UNBALANCEECCENTRICITY OF W IN ©O-巳
    * mJ - journal meIght at each end , LB.
    " WI - SUPPORT WEIGHT AT EACH BEARING LB, ",%
1/," CAKD 3 READ(CR,/OKXXOKYY,CXX,CYY,KXYOKYX,CXY,GYX) n,/o
    " BEARING STIFENESS AND DAMPING OF EACH BEARING n,/"
//," CARD 4 IF N>B THEN READ(CR&/OKIX&KIY,CIX,CIY) m, A
    * SUFPORT STIFFNESS AND DAMPING OF EACH SUPPORT ",1,
//,N CARD 5 (4) READ(CR&/,FOR I+O STEP 1 UNTIL N DGCY(O&IJ]) mole
    * O IS FOR INITIAL PIME, RADIANS *./O
```

```
    N 1 = ABSOLUTE ROTOR DISP. , XOOIR. N./,
    " 2 - ABSOLUTE ROTOR VELCEITY, X=OIK. n.l,
    n 3 - ABS. ROTOR DISP., Y~DIR.
    " - ABS. ROTOR VEL, , YODIR.
    NO/,
    " 5,6,7,0 - SAME ORDER AS ABOVE FOR JOURNAL RELATIVE MOTION "./a
    " 9:10.11.12 - SAME AS ABOVE FOR SUPPDRT MOTION (IF REOUIRED) m,/,
//," CAFO 6 (5)READ(CR,/CS,ISCALE,XMIN,DX,XMIN2,DX2,XMIN3,OX3) m,/.
    * CS - PLOTTER CONTROL O - NO PLOT 1 - PLOT N,/.
    * ISCALE SCALE CONTROL O - PROG, SCALE 1 - USE FOLLOWING INFO."
*/. XMIN - NO. TO APPEAR AT ORIGIN ROTOR DISLPACEMENT "./"
    * DX - SCALE INCREMENT PER INCA ROTOR DISPLACEMENT N,l,
    * XMIN2,DX2 - SAME AS ABOVE GUT FOK JOURNAL PIOT N,/"
    # XMIN3,OX3 - SAME AS ABOVE BUT FOR SUPPORT m,/,
//," CARD 7 (6) IF CSAO THEN READ(GR,I,RPCS) N,/,
    " RPCS - NO. OF TIMES INTEG. FOR TMAX RADIANS IS TO BE SDLVED m,/,
/1," EXAMPLE DATA INPUT:
                                    *,/,
    "12.56,0,05,8,608.7101, *./%
    "10000,675,280000,0,0,0,0,5,312,50, ",/,
    * 351000,606000,739,865, -0,1:
    "0,0,0,0,0,0,0,0,0, m,1,
    m1,0,0,0,0,0,0,0, n,1,
    "5, ",/,
/1," NOTE ON PLOTTING& N:/,
    * REQUEST ONE (1) BLOCK PER SET OF DATA n,/,
    " -O-REPEAT THE SERIES FOR EACH CASE --- ">)!
        nHITE(LP[PAGE])}
        WRITECLPSEN PLOTTER OUTPUT INFURMATION AND SUGGESTIONS",//,
    MmARE TMAX A MILTIPLE OF 6.28 (BUT LESS THAN -5 IF H=0.05) m,1,
    "A REASONABLE VALUE OF H IS 0.05 WHICH GIVES 125 STEPS PER M./,
    "CYCLE OF RUNNING SPEED FOR THE INTEGRATION.",//,
    "TWO (2) MINUTES PROCESSOR TIME IS KEQUIRED FOR 10 CYCLES DF N,/,
    "SOLUTION FOR N = 8. ",/%
    ~THREE (3) MINUTES PROCESSOP TIME IS REQUIRED FOR 10 CYCLES OF m.1,
    "SOLUTION FOR N = 12.m,1%
    /,MA SMALL CIRCLE APPEARS ON THE ORUIT EVERY 6.2G RADIANS DF m./,
    "SOLUTION AND IS EQUIVALENT TO A KEY PHASOR mAFK ON a CRO TRACE",I,
    "THIS IS TRUE ONLY WHEN TMAX IS A MULTIPLE OF 6, Z8,",%,
    "A PLUS SIGN APPEARS AT THE POINT THE SOLUTION IS INITIALLY STARTEO
    ",/OMOR CONTINUEJ WITH RPCS > 1, ",//,
    "WHEN N = 12, THE ABSOLUTE JOURNAL MOTION APPEARS AS A DASHEDN,/,
    "LINE AND THE RELATIVE MOTION APPEARS AS A SOLID LINE. ",/%,
    "THE CROSS COUPLING TERMS FOR THE BEARINGS ARE NUT PRINTED OUT",",
    #ON THE PLOTTER OUTPUT GUT THEY DO APPEAR ON THE LP OUTPUT. N,1,
    "AS a SUGGESTION yDU COULD PUT a NEGATIVE CASE NumbER WHEN AND m,I,
    "IF THE CROSS COUPLING TERMS FOR THE BEARINGS ARE NOT ZERO ."./.
    "THIS WOULD INDICATE TO LOOK AT THE LP I-D FOR THE VALUESN>);
        ACAKD 
        FMSHH + O.OS FMBHH + 0.0S
        VV +1 ;
        RPC * 1)
        READ (CR,/,TMAX,H,N,CASNO)(ALLDONE)S
        READ(CR,/,RPM,W,K,DS,CI,QAC,EU,WJ,W1)S
        READ(CR,/,KXX,KYY,CXX,CYY,KXY,KYX,CXY,CYX)S
        IF N> % THEN READ(CR,/AKIXOKIY,CIX,CIY):
            READ(CR,/,FOR I+O STEP & UNTIL N DO [Y[O,IJ])!
        WRITE(LP(PAGE])!
```

```
    WRITE(LP,<"INITIAG CONDITIONSND):
    WRITE(LP,<FII.6>,FOR I + O SYEP 1 UNTIL N DOIY(O,IJJ)I
    READ (CR,I,CS,ISCALE,XMIN,DX,XMIN2,DX2,XMIN3,DX3)I
    IF CS O O THEN
    READ(CR,/,RPGS):
    RAD + RPM * 0.1047,
    M+N / 386;
    M1 + W1/386 %
    MJ + WJ/386.0S
    22 + mx RAD;
    Z22 + 22xRADS
    Z1 + DS/22B <2+CI/22; 23+K.2Z2! 24*0AC/2Z2B
    25+M/MJ) Z6+(CI+2xCXX)/(2x22)3 222+22/2;
Z7+(2XKXX+K)/(2xZZ2): Z32+Z3/2;
ZB+(CI+2xCYY)/(2XZZ)) Z9+(2XKYY+K)/(2XZZ22))
IF N>8 THEN
Z10+M/M11 211+K1X/2Z21 212+C1X/223 213+KXX/Z223
Z14+CXX/ZZ; Z15+K1Y/ZZ23 Z164C1Y/ZZS
Z17+KYY/ZZZ; Z!84CYY/ZZ;
Z19+KXY/Z<2; Z2O+CXY/ZZS Z2{+KYX/2Z2S Z23+CYX/ZZ:
K2X + (2XKXXXKX(K+CXKXX)+4XKX(RADXCXX)*2)/((K+2XKXXX)*2 +
4x(RADXCXX)*2))
K2Y & (2XKYYXKX(K+2XKYYY) + 4XKX(RADXCYY)*2)/ ((K+2XKYY)*# +
4X(RACXCYY)*2))
C2X + 2xKXKXCXX/((2XKXX+K)*2 + AX(RADXCXX)*2) + DS J
C2Y + 2XKXKXCYY/((2XKYY+K)*2 + 4X(RADXCYY)*2) + DS )
WCX + SQRT(2XKXKXX/((2XKXX+K)XM))
        |
    WCY & SQRT(2XKXKYY/((2XKYY&K)XM)),
    ACX * K2X/(WCXXC2X) ;
    ACY & K2Y/(WCYXC2Y) )
    WCX + WCX/0.1047; WCY WCY/0.1047%
    TMAXH & TMAX ;
    TMAX + TMAX + Y[0:0];
    REPEAT: RPC + RPC + 11
    TIMESTEP (TMAX, Ha N: AY,NA,Y)I
    WRITE (LP(PAGEJ))
    WRITE (LP, <X 35, WORBITAL MOTION OF THE SINGLE MASS UNBALANCED m.
    MKOYOR",///>)!
    WRITECLP,<X2,"CASE NO,N,F11.4.//, X2, NROTOR WEIGHT =",
    F9.3," LB,",X12,"ROTOR SPEED =n,F10.2," RPMN,/,X2,
"ROTOR STIFFNESS En,F11.4,"NLB/MIL,*,X3,
    "INBALANCE =n,F8,3," MILS",l,*2,
    "SHAFT DAMPING =%,F8,3," LO-SEC/INN, X6,
    "INYERNAL DAMPING *",F9.3," LB-SEC/IN",/,X2,
    "CROSS COUPLING = ",F9.2, "LB/IN*,//.x2.
"BEARING STIFFNESSN,XII,"NEARING DAMPINGN,/,X3,
"KXX=N,F10.3," LB/MIL",X6,"CXX =",F10.3," LB=SEC/INN,IOX3,
"KYY =",F10.3," LB/MIL",X6,"CYY En,F10.3," LE=SEC/INN>,
CASNR,W,RPM,K/1000,O,EU,DS,CI,OAC,KXX/1000,0,CXX,KYY/1000,0,CYYII
HRITECLP,<X3,"KXY =",F10.3," LB/MIL",X6,"CXY EN,FIO.3," LB-SEC/IN*,
```



```
,KXY/1000.0,CXY,KYX/1000,0,CYX):
WHITE(LP,<X3,NWEIGHT OF EACH BEARING =",F9,3," LE."#//>,WJ)S
IF N>8 THEN
WRITE:LP,<X2,"SUPPORT STIFFNESSN, X11,"SUPPORT UAMPING",1,X3,
"KIX =',F10,3," LB/MIL",XG,"CIX En,F10,3," LBOSEC/INN,/&X3,
```



```
    KIY/1900,0,CIX,KIY/1000,0,CIY)S
    IF N> THEN WRITECLPO&X3,WHEIGHT OF EAPH SUPPORT EM,F9.3.
    * L8,*,/1*,W1)s
```



```
    *RPCS Em,IA>PTMAXHON,H&RPCSI)
II CS A O THEN
BEGIN
    IF VV I THEN BEGIN
    PLOT (2,0,-4): PLOT (2,0,05),
    FILL ALPHAI[*J WITH "YODIR,",N [MIL",NS] N!
    FILL ALPHAEP*) WITH "X=DIR,N," [MIL",NSj -!
    FILL ALPI [*J WITM "ABSOLU*,"TE ROTm, "OR MOTm,"ION MB
    FILL ALP2 [*] WITH NJOURNAN;*L MOTIN,"ON *B
    FILL ALP3 [*j WITH "SUPPORN,RY MOTI*,"ON m!
    FILL ALP4 [*J WITH MN = m,N NO"RPM m!
    FILL \lambdaLPS [*j W!TH TW2 = m,N m,N LR,N!
    FILL ALPG I*J WITH "EU = m,N N," MIL",NS N!
    FILL ALPT [*] WIYH "KS = n,n N," LB/n,"MIL m,
    FILL ALP8 [*] WITH mWJ= m,n m," LB, m;
    FILL ALPg [*J WITH *CS=m,n non LBOSn,"EC/IN n)
    FILL ALPIOR*J WITH MKXX= "," M," LBN&N/MIL m!
    FILL ALPIIt*J WITH "CIE m," m,n LROSN,NECIIN m;
    FILL ALPI2[*] WITM "KYY = "," m," LBN,"/MIL m;
    FILL ALPISI*J WITH"0 = m,N m,N LB/IN";
    FILL ALPI4[*J WITH "CXX**,N "," LB*N,NSEC/IN";
    FILL ALPI5[*] WITH "WCX = "," N," RPN,OM N%
```



```
    FILL ALPIT!*J WITN "WCY = ",
    FILL ALP2O[*J WITH "ACY= - !
    IFN>8 THEN EEGIN
    FILL ALPI9[*] WITH "WI = ",N "," LB my
    FILL ALPZIT*J WITH "KIX= m,N n," LB/n,"MIL m!
    FILL ALP22[*] WITH "CIX:"," N," LBon,NSEC/IN")
    FILL ALP23[*J WITH "KIY=*,n m,n LB/N,NMIL *J
    FILL ALP24[*) WITH "CIY = "," N,N LBON,"SEC/IN";
    END:
    FILL ALP25[*) WITH "CYCLESN," N," T","HROUGH*!
    FILL ALP26[*] WITH "FU: mon m,N LB,N%" m!
```



```
    FILL ALP29[*J WITH mFB= non m,* LB,NB
    FILL ALP30[*] WITH mNO. m;
    END ;
    VV + VV + 11
    BEGIN
    REAL KIRKRG!
    FOR I + O STEP & UNTIL N DO
    Y[O,I] + AY[I,NA] )
    WHITE(LP,<X2,"END GONDITIONS FOR FPC E*,I3>,RPC*1)s
    WRITE(LP,<FII,6>,FOR I * O STEP 1 UNTIL N DO[Y[O:IJJ)]
    IF N > PHEN OEGIN
    FOR : & S SYEP & UNTIL NA DO BEGIN
    BXR[I" * AY[5,I]+AY[9,I];
```

BYR[I] + AY[7,I]+AY[11,I]J
END,
END;
IF ISCALE THEN BEGIN
IF VUS 2 THEN BEGIN
XMAX + YMAX * $3 \times D X 1$
YMIN + XMIN: OY \& DX ;
XMAX2 + YMAX2 + $3 \times D \times 23$
XMAX3 + YMAX3 + $3 \times 0 \div 31$
YMIN2 * XMIN2 DY2 * DX2I
YMIN3 + XMIN3I DY3 + DX3:
END:
PLOTCHEK(AY[1,*),AY[3,*],NA\&XMIN,XMAX,YMIN,YMAX) B
SCALES (AYP3,*J,NA,YMIN,OY,CS)S
SCALES (AYI $1,{ }^{\circ} \mathrm{J}, \mathrm{NA}, \mathrm{XM}$ IN, DX,CSSB
PLCTCHEK (AY (3,*),AY[7,*),NA,XMIN2,XMAX2,YMIN2,YMAX2)S
SCALES(AY[5,*),NA,XMIN2,DX2,CS):
SCALES(AY[7,*),NA,YMIN2ADYZ,CS):
IF $N>8$ THEN GEGIN
I +113
PLOTCHEK(AY[9,*],AYYI,*],NAOXMIN3,XMAX3,YMIN3,YMAX3)S
SCALES(AY[I, WI,NA, YMIN3,DY30CS) B
SCALES(AY[O,*],NA,XMIN3,DX3,CS):
PLOTCHEK(BXR, BYR,NA,XMIN2,XMAX2,YMIN2,YMAX2):
SCALES(BYR,NA,YMIN2,DY2,CS) B
SCALES(8XR,NA,XMIN2,DX2,CS)
END:
ENC
ELSE
EEGIN
SAMESCALE (AY[1,*],AY\{3,*),NA, XMIN\&XMAX,DX,YMIN,YMAX:OY);
PLOTCHEK (AY (1,*),AY\{3,*),NA,XMIN,XMAX,YMIN,YMAX))
SAMESCALE(AY(5,*],AY[7,*),NA,XMIN2,XMAX2,DX2,YMIN2,YMAX2,OY2):
PLOTCHEK(AY[5,*),AY[7:*1,NA,XMIN2,XMAX2,YMIN2,YMAX2):
SCALES (AYP3,*J,NA,YMIN,DY,CS)
SCALES (AY[1,*),NA,XMIN,DX,CS):
SCALES(AY[T,*),NA,YMIN2,UY2,CS):
SCALES(AY(5,*),NA,XMIN2,DX2,CS) 3
IF N > THEN BEGIN
PLOTCHEK(EXH,BYR,NA, XMIN2,XMAX2,YMINZ,YMAXZ):
SCALES(BXR,NA,XMIN2,DX2,CS) B
SCALES(BYR,NA,YMIN2,DY2,CS)S
1-111

SCALES(AY[I,*1,NA, YMIN3:DY3,CS):
SCALES(AY\{9,*J,NR,XMIN3,DX3:CS)
END:
END
IF VV ≤ 2 THEN
BEGTN
OREITTOP(I):
AORID(XMIN:DXAYMINADY):
ENC
SYMBOL(AY[1,1], AY\{3,1\},,14,ALPMA1,0,013):
XA $4.28 / \mathrm{HB}$

```
FOR I XA STEP YA UNTIL NA DO
SYMBOL(AY[1,I],AY{3,1],0,07,ALPHA&,0,03)!
LYNE(AY(1,*)sAY!3;W),NA,CS)&
PLOT(12,0,05;)
IP VY S 2 THEN
BEGIN
OREITTO:'(2)S
AERID(XMINZ,DX2,YMIN2,OYK):
END:
SYABOL(AY[5,1],AYIT,1],0.14,ALPNA1,0,013);
FOR I * XA STEP XA UNTIL NA DO
SYMBCL(AY[5,I],AY[7,I],0,OT,ALPHA&,0,05)S
LVNE(AY(5:*)OAY[T:*),NAOCS)S
IFN>0 THEN BEGIN
SYMBOL(BXR[1;,8YR[1],0.14,ALPHA1,0,013)%
FOR & XA STEP XA UNTI NA 0O
SYMBOL{OXR[1],BYR\1J,0,07,ALPHA1,0,05)S
DASMIINE(BXR,BYR,NA,CS)3
END:
PLOT(12,0,-5):
IF N> B THEN REGIN
IF VV S 2 THEN
BEGIN
ORBITTOPC3)S
AORID(XMIN3:DX3OYMIN3:OY3)%
ENC:
J 113
SYMBOL(AY[9,1),AY[J, 1],0,14,ALPHA1,0,=13)!
TOR I * XA STEP XA UNTIL NA DO
SYMBOL (AY{9,1],RY{J,1],0.07,ALPMA{,0,05)S
LYME(AY[9:*),AY[J,*),NAOCS)S
ENO:
END:
WRITE(LP[DBL])!
H.ITERLP:&NTROBOMAX = ,FII.4.N AND OCCURS AT m,FT.2,
-CYCLESFS,IF EU=0.0 THEN SORT(FMBN)X2.O ELEE SORT (FMBH)X2.O/EU.
TIMHB/6,28)!
IF N>8 THEN
WRITE(IP,<"TRDS-MAX = M,FI&,C, WAND OCCURS AT m,F7.2,
* CYCLESND,IF EU=O.O THEN SQRT(FMSH)X2.O ELSE SORT(FMSH)X2.O/EIJ,
TIMHS/6.26)!
MRITE\LP,<MUNBALANCE STIFFNESS = F,F11,2, LB/MIL",X2,
**ND UNBALANCE = *FO.3.* M1LS*>,222/1000.0,EUJ)
IF FMBH>FMBHH THEN BEGIN
FMBHH + FMAHI TIMMBH & TIMHBS
END|
IF FMSH \FMSHM THEN BEGIN
FMSHH * FMSH! TIMHSH * TIMHS!
END:
IF RPC S RPCS THEN
BEGIN
PLOT(-24,0,-5):
TMAX + TMAX + TMAXH;
ISCALE * TRUES
GO YO REPEAT:
```

```
    END:
    IF EU = 0.O THEN BEGIN
    FMBHH * SORT (FMBHH) \2.OB
    FMSHH + SQRT(FMSHH)\times2.0S
    END ELSE
    BEGIN
    FMBHH + SORT(FMBHH)\times2.0/EUS
    FMSHH + SERT(FMSHH)X2.0/EU:
    END:
    TIMHBH + TIMHBH/6.28;
    TIMNSH (IIMHSH/6.20;
    PLOT(-24,0,-5)3
    IF N=0 THEN BEGIN
    SYMBOL(0,75,6.50,0.14,ALP29,0,18)B
    NUMFER(1,23,6,50,0.:14,FMBHH\times222xEU/1000,0,0,3):
    END;
    NUMBER(4,31,0,75,.14,AY[0,NA)/6,28,0,2)3
    SYMBOL(3,75,6,50,.14,ALP26,0,21);
    NUMBER(4, 23,6,50,.14,222/1000,0xEU,0,3);
    PLUT(12,0,-5)!
    IF N=O THEN BEGIN
    SYMBOL(0,75,6.50,0,14,ALP29,0,18)B
NUMPER( 1,23,6,50,0,14,FMBHHXZZ 2XEU/1000,0,0,3):
    END:
    NUMBER(4.31,8,75,,14,AY[0,NA)/6,28,0,2)}
    SYMBOL(3,75,0,50,.14,ALP27,0,24);NUMBER(4, 35,6,50, ,14,FMBHH,0,33)
    NUMBER(5,43,6,50,.14,TIMHRH,0,2)1)
    PLOT(12,0,-5);
    IF N>8 THEN BEGIN.
    NUMBER(4,31,8,75,.16,AY[0,NA]/6,28,0,2)8
    SYMBOL(3,75,6,50,,14,ALP2R,0,24):NIMKBER(4,35,6,50,,14,FMSKH,C,3)3
    NUKBER(5,43,6,50,.14,TIMKSH,0,2)3
    END;
    PLOT(12,0,-5)3
    gO TO ACARE;
    ALLDNNE :
    PLOT(1,C -3)s
END:
    WRITE (LP[PAGEJ)S
    WHITE (LP,<"TOTAL PROCESSOR :IME = %:F6.2,Y1,"MINUTES">,
    TIME(2) / 3600 ),
    WHITE (LPIPAGE j, <"TOTAL IOO TIME E *,F6.2, X1, MMINUTES" >,
    TIME(3) / 3600 ) :
    END.
ARCIAN IS SEGMENT NUMBER gOEO,PRT ADDRESS IS OIIT
COS IS SEGMENT NUMBER 0081,PRT ADORESS IS 0075
EXP IS SEGMENT NUMBER 0082,PRT AODRESS IS 0072
LN IS SEGMENT NUMAER 0083,PRT ADDRESS IS 0071
SIN IS SEGMENT NUMBER OOB4,PRT RDORESS IS 0076
SURT IS SEGMENT WUMBER 0085,PRT LDDRESS IS 0436
DUTPUT(N) IS SEGMENT NUMBER OOEGAPRT ADDHESS IS OA4O
BLOCK CONTROL IS SEGMENT NUMBER 008T,PRT ADDRESS IS 0005
INPUT(W) IS SEGMENT NUMBER 0088,PRT ACDRESS IS OA&A
X TO THE I IS SEGMENT NUMEER 0089,PRT ADORESS IS OOT3
GO TD SOLVER IS SEGMENT NUMBER 0090,PRT ADDRESS IS 0065
ALGOL WRITE IS SEGMENT NUMBER OO9I.PRT ADORESS IS OOIA
```

```
    ALGOL READ IS SEGMENT NUMEER 0092PPRT ADORESS IS OOIS
    ALGOL SELECT IS SEGMENT NUMBER O093,PRT ADDRESS IS 0016
    FILE ATTRBUTS IS SEGMENT NUMEER OOQAPPRT ADDRESS IS OO33
COMPILATION TIMECSECONDS; PR E 5Y 1/0 = 162
NUMBER OF ERRORS DETECTED = 000. LAST ERROR ON CARD E
NUMBER OF SEQUENCE ERRORS COUNTED : O.
NUMBER OF SLOW WARNINGS = O.
PRT SIZEE 334; TOTAL SEGMENT SIZE: 3952 MORDS.
DISK STORAGE REQ.E 360 SEGS.I NO. SEGS.: 95.
ESTIMATED CORE STORAGE REQUIREMENT E 15355 MOROS.
```


PLOTTER OUTPUY INFORMATION AND SUGGESTIONS

MAKE TMAX A MULTIPLE OF 6.28 (BUT LESS THAN 35 IF HeO.05) a REASONABLE VALUE OF H IS 0.05 WHICH GIVES 125 STEPS PER CYCLE OF RURNING SPEED FOR THE INTEGRATION.

THO (2) MINITES PROCESSOR TIME IS REQUIRED FOR 10 CYCLES OF SOLUTION FOR N = 8. THREE (3) MIMUTES PROCESSOR TIME IS REOUIRED FOR 10 CYCLES UF SOLUTION FOR N 12.

A SMALL CIRCLE APPEARS ON THE ORBIT EVERY 6.28 RADIANS OF SOLUTION ANC IS EOUIVALENT TD A KEY PHASOR MARK ON a cRO TRACE THIS IS TRUE ONLY WMEN TMAX IS A MULTIPLE OF 6.28. a PLUS SIGN APPEARS AT THE POINT THE SOLUTION IS INITIALLY STARTED OR CONTINUED WITH RPCS $\geqslant 1$.

WHEN N : 12, THE ABSCLUTE JOURNAL MOTION APPEARS AS A DASHEO LINE ANO THE RELATIVE MOTION APPEARS AS A SOLID LINE.

THE CROSS CRUPLING TERMS FOR THE BEARINGS ARE NOT PRINTEO OUT ON THE PLOTTER OUTPUT BUT THEY DO APPEAR ON THE LP OUTPUT. AS SUGGESTION YOU COULD PUT AEGATIVE CASE NUMBER WHEN AND If IHE CROSS COUPLING TERMS FOR THE BEARINGS ARE NOT 2ERO . THIS MOULD INDICATE TO LOOK AT THE LP I-D FOR THE VALUES

```
CASE NO. 707.7100
ROTOR MEIGHT E 675,000 LB. ROTOR SPEED - 10000,00 RPM
ROTOR STIFFNESS = 280.0000 LE/MIL. UNEALANCE 0.500 MILS
SHAFT DAMPING © 0.000 LGOSEC/IN INTERNAL OAMPINGE 100.000 LBESECIIN
CROSS COUPLING E 0.00 LB/IN
```



```
        TMAXHE 12.56
            N = 8
            H=0.050
        RPCS = 5
    ENO CONOITIONS FOR RPC = 1
    75.400000
    -0.758303
-0.497459
    1.748020
-0.-37636
    0.368998
-0.208504
    0.435189
    0,060081
TROB-MAX = 0.7590 AND OCCURS AT 11.82 CYCLES
UNBALANCE STIFFMESS = 1916.95 LB/MIL AND UNBALANCE = 0.500 MILS
```

```
INIIIAL CONOITIONS
    62.800000
    -1.890000
    0.163980
    -0.801630
    -1.133000
    -0.353260
    -0.167480
        0.128290
    -0.101200
```


NOHENCLATURE

A_{Cr}	Amplitication factor at rigid support critical $=\frac{K_{2}}{\omega_{C} C_{2}}$ (DIM)
A_{j}	Complex bearing amplitude, in
A_{1}	Complex support amplitude, in
A_{2}	Complex rotor amplitude, in
C	Damping ratio $=\mathrm{C}_{1} / \mathrm{C}_{2}$ (DIM)
C_{b}	Bearing damping, lb-sec/in
c_{C}	Critical damping coefficient, Ib-sec/in
C_{i}	Rotor internal damping, lb-sec/in
$\mathrm{C}_{\text {S }}$	Absolute shaft damping, Ib-sec/in
C_{1}	Support damping, lb-sec/in
C_{2}	Effective rotor-bearing damping, Ib-sec/in
e_{u}	Rotor mass eccentricity, in
F_{1}	Force transmitted to foundation, ib
F_{b}	Force transmitted to bearing housing, If
K	Stiffness ratio, K_{1} / K_{2}
K_{b}	Bearing stiffness, lb/in
K_{s}	Rotor-shaft stiffness, lb/in
K_{1}	Support stiffness, lb/in
K_{2}	Effective rotor-bearing stiffness, lb/in
M	Mass ratio, $=M_{1} / M_{2}$ (DIM)
M_{1}	Support mass, $1 \mathrm{~b}-\sec ^{2 / 1 / n}$
M_{2}	Rotor mass, $1 \mathrm{~b}-\mathrm{sec}^{2} / \mathrm{in}$
N_{C}	Rotor critical speed, [RPM]
p	Ist node point on response plot
Q	Rotor cross-coupling stiffness, lb/in
Q	2nd node on response plots

R_{2}	Rotor absolute displacement amplitude
T	Kinetic energy
TRD	Transmissibility $=\mathrm{F}_{1} /\left(\mathrm{M}_{2} \mathrm{e}_{u} \omega^{2}\right)$
V	Potential Energy
$\overline{\mathbf{V}}$	Velocity, in/sec
W_{1}	Support weight, ib
$\overline{\mathbf{x}}$	Defined as. X^{2}
X_{5}	Shaft re.ative displacement in x - direction
X_{1}	Support displacement in \times - direction
x_{2}	Rotor absolute displacement in \times-direction
X_{j}	Journal relative displacement in \times - direction
Y_{s}	Shaft reiativi displacement in y-direction
Y_{1}	Support displacement in y-direction
γ_{2}	Rotor absoiute displacement in y - direction
Y_{j}	Journal reiative displacement in y - direction
Z_{s}	Complex shaft relative amplitude, in.
Z_{1}	Complex support amplitude, in.
Z_{2}	Complex rotor amplitude, in.
Z_{j}	Complex journal amplitude, in.
α	Rotor ar.gular accele-ation, rad/sec ${ }^{2}$
B_{1}	Phase angle of support motion relative to rotor unbal ance, DEG
B_{2}	Phase angle of rotor motion relative to rotor unbalance, DEG
β_{b}	Phase angle of bearing motion relative to rotor unba:ance, DEG
θ	Angular displacement, rad
γ	Defined as K/M (DIM)
ξ	Damping ration $=c_{1} / c_{c}$ (DIM)
ϕ	Rotor absolute amplitude phase angle, deg.

- Moment of inertia

X Optimum amplitide for tuned system
$\Psi \quad$ Jefined as Ω_{1}^{2} or $\Omega_{2}{ }^{2}$ when calculating required damping at point P or Q respectively
$\omega \quad$ Rotor angular velocity, rad/sec
$\omega_{1,2}$
$\omega_{C} \quad$ Rigid support critical speed. rad/sec
Ω_{1}, Ω_{2} Speeds at which the node point P and Q occur on response plots

(AUTOMATIC PLOTTER NOMENCLATURE)

A Amplification factor at rigid support critical (DIM)
CB Bearing damping, lb-sec/in
$C D \quad$ Shaft damping coefficient, lb-sec/in
DC Internal damping, Ib-sec/in
E Rotor mass eccentricity, in
FTREWC Force transmitted at rigid support critical
N Rotor speed, RPM
QAC Aerodynamic cross-coupling coef., Ib/in.
TRDB Maximum bearing force transmitted (DIM)
TRDS Maximum support force transmitted (DIM)
FU* Rotating unbalance ioad per mil unbalance eccentricity, ib
W Rotor speed, rad/sec
WC Rigid support critical speed, rad/sec.

REFERENCES

1. Jeffcott, H. H., "The Lateral Vibrations of Loaded Shafts in the Neighborhood of a Whirling Speed ... The Effect of Want of Balance," Phil. Mag. Series 6, Vol. 37, 1919, p. 304.
2. Newkirk, B. L., "Shaft Whipping," General Electric Rev., Vol. 27, 1924. p. 169.
3. Newkirk, B. T., Taylor, H. D., "Shaft Whipping Due to Oil Action in Journal Bearings," General Electric Review, Vol. 28, pp. 559-568.
4. Alford, J. S., "Protecting Turbomachinery from Self-Excited Rotor Whirl," J. of Eng. for Power, Trans. ASME, Series A, No. 4, Oct. 1965, pp. 333-344.
5. Kimball, A. L., "Internal Friction as a Cause of Shaft Whirling," Phil. Mag., Vol. 49, 1925, pp. 724-727.
6. Smith, D. M., "The Motion of a Rotor Carried by a Flexible Shaft in Flexible Bearings," Proc. Roy. Soc. (A), 142, 92 (1933).
7. Gunter, E. J., "The Influence of Internal Friction on the Stability of High Speed Rotors," Journal of Engineering for Industry, Trans. ASME, Series B, Vol. 89, Nov. 1967, pp. 683-688.
8. Tondl, A., Some Probiems of Rotor Dynamics, London, Chapman and Hall, Ltd., 1965.
9. Dimentberg F. M. , Flexural Vibrations of Rotating Shafts, Butterwort s, London, 1961.
10. Lund, J. W., "The Stability of an Elastic Rotor in Journal Bearings with Flexible Damped Supports," Journal of Applied Mechanics, Trans. ASME, Vol. 87, Series E, 1965, pp. 911-920.
II. Lund, J. W. and Sternlicht, "Rotor-Bearing Dynamics with Emphasis on Attenuation," Journal of Basic Engineering, Trans. ASME. Series D, Vol. 84, No. 4, 1962, pp. 491-502.
11. Lund, J. W., "Attenuation of Bearing Transmitted Noise - Voi. 2, Part 1: Attenuation of Rotor Unbalanced Forces by Flexible Bearing Supports," Report No. EC 232, prepared for Bureau of Ships under Contract No. Bs86914, Aug. 1964.
12. Gunter, E. J., "Irifluence of Flexibly Mounted Polling Element Bearings on Rotor Response Part 1 - Linear Analysis," J. of Lub. Tech., Trans. ASME, Vol. , Jan. 1970.
13. Dworski, J., "High-Speed Rotor Suspension Formed by Fully Floating Hydrodynamic Radial and Thrust Bearings," Journal of Enginearing for Power, Trans. ASME, Series A, No. 2, April 1964, pp. 149-160.
14. Den Hartog, J. P., Mechanical Vibrations, McGraw-Hill Book Co., inc., New York and London, 1956, Fourth ed.
15. Brock, J. E., "A Note on the Damped Vibration Absorber," Journal of Applied Mechanics, Vol. 1/4 Trans. ASME, Vol. 68, 1946, p. A-284.
16. Voorhees, J., Mellor, C. C., and B. G. Dubensky, "the Control of Shaft Vibrations at Hypercritical Speeds," ASME Paper 63-M0-30 Presented May 1963, Design Eng. Conf., New York.
17. Miller, D. F.: "Forced Vibrations of a Uniform Beam on Damped Flexible End Supports," Paper No. 52-A-23, Applied Mech., Div., ASME Annual Meeting, 1952.
18. Plunkett, R., "The Calculation of Optimum Concentrated Damping for Continuous Systems," Journal of Applied Mechanics, Vol. 25, ASME Trans., Vol. 80, 1958, pp. 219-224.
19. Lewis, F. M., "The Extended Theory of the Viscous Vibration Damper," Journal of Applied Mech., irans. ASME, Vol 77, 1955, p. 377.
20. Henney, A., and Raney, J. P., "The Optimization of Damping : Four Configurations of a Vibrating Uniform Beam," Journal of Eng. for Industry, Trans. ASME, Aug. 1963, pp. 259-264.
21. Eubanks, R. A. et al., "Optimal Shock Isolator and Absorber Design Techniques," IIT Résearch Institute Project M6078, Final Report, April 1965.
22. Tiber, T., and Sevin, E., "Optimal Shock Isolation Synthesis," The Shock and Vibration bulletin, No. 35, Feb. 1966, pp. 203-215.
23. Lund, J. W., "Rotor-Bearing Dynamics Design Technology. Part V: Computer Program Manual for Rotor Response and Stability AFAPL-TR-65-45 Part V, Mech. Tech. Inc., May 1965, Air Force Aero Propulsion Lab., Wright-Patterson Air Force Base, Ohio.
24. Crook, A. W., and F. Grantham, "An Approach to the Prediction of the Vibrations of Turbine Generators on Undertuned Foundations," ASME Paper 67-VIBR-46, riesented ASME VIB. Conf., March 1967, Boston.
25. Gunter, E. J., Dynamic Stability of Rotor-Bearing Systems, NASA Sp-1I3 Office of 3chnology Utilization, U. S. Gov. Printing Office, 1966.
26. Thomson, W. T., Vibration Theory and Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1965.
27. Kirk, R. G., "Design Analysis of the Jeffcott Model ot the Single Mass Rotor on Flexible Supports," B.S. Thesis, Dept. of Mech. Eng., Univ. of Virginia, Charlottesville, Va., May 1967.
28. Cooper, S., "Preliminary Investigation of Oil Films for Control of Vibration," Proceedings of the Lubrication and Wear Convention, 1. Mech. E., 1963, London, England.
29. Gunter, E. J., Private communications, 1969.
30. Kirk, R. G., Gunter, E. J., "The Influence of Damper Sup;orts on the Dynamic Response of a Single Mass Flexible Rotor-Part I Linear System" Research Laboratories for the Engineering Sciences, No. ME-4040-105-7IU, March 1971, University of Virginia for NASA Lewis Research Center Contract NGR 47-005-050.

Figure 1 Schumatic Dlagram of a Single Mass Rotor on Damped Elastic Supports

Figure 9. Dimensionless Force Transmitted to Foundation Vs Speed Ratio for Various Values of Support Damping

ROTOR AMPLITUDE AT CRITICAL vs. MASS RATIO

Figure 14 Rotor Amplitude at Critical Speeds Vs Mass Ratio for Various Damping

\qquad

ROTOR MAXIMUM AMPLITUDE FOR VARIOUS VALUES OF STIFFNESS AND MASS RATIO

Figure 20 Rotor Maximum Amplitude for Various Values of Stiftness and Mass Ratlo with Optimum Support Damping

Figure 23 Optimum Damping and Mass Ratios for Various Values of Stiffness Ratio

Figure 24 Dimensionless Transient Motion of an Unbalanced Rotor for Twalve Cycles on Over-Damped Supports $[K=M=$ $0.1, C=44]$

BEARING MOTION

Figure 25 Dimensionless Bearing Absolute and Relative Transient Moticn for Twelve Cycles on Over-Damped Supports $[K=M=0.1, C=44]$

SUPPORT MOTION

Figure 2.6 Dimensionless Transient Support Motion for Tweive
Cycles with Excessive Damping $[K=M=0.1, C=44]$

ABSOLUTE ROTOR MOTION

Figure 27 Dimerisioniess Transient Motion with Under-Damped Flexible Supports for Twelve Cycles $[K=M=0.10$, $C=0.44]$

BEARING MOTION

Figure 28 Dimensimnless Bearing Absolute and Relative Transient Motion for Twelve Cycles on Under-Damped Supports $[K=M=0.1, C=0.44]$

SUPPORT MOTION

Figure 29 Dimensionless Transient Support Motion for Twelve Cycles with Under Daniping $[K=M=0.1, C=0.44]$

ABSOLUTE ROTOR MITION

Figure 30 Dimensionless Rotor Motion with OptImum Steady-siate Damping Showing the Steary-State Orblt After Seven Cycles of Running Speed [$\because=M=0.1, C=5.5$]

BERRING MOTION

Figure 31 Dimensionless [garing Absolute and Relative Trarisient Motion with Optimum Steady-State naring [k $=M=0.1$, $\mathrm{C}=5.5$]

[^0]: IInstructor, Department of Mechanical Engineering, University of Virginia, Charlottesville, Virginia, Assoc. Mem. ASME.
 ${ }^{2}$ Associate Professor, Department of Mechanical Engineering, University of Virginia, Charlottesville, Virginia, Mem. ASME.

[^1]: * 1 |lustrations begin on page 60.

