73 research outputs found

    Global unions as imperfect multilateral organizations: an international relations perspective

    Get PDF
    We apply an international relations framework and the notion of multilateral organizations as a means of understanding the nature of trade union internationalism, the conditions under which it operates. We argue that international trade unionism involves an imperfect multilateralism which requires close working relationships between small groups of unions in order to function, that is, a ‘minilateral’ method of working. By using this framework we attempt to highlight the intrinsic durability and adaptability of the Global Unions and also identify areas of activity that serve to strengthen them as organisations, primarily by building affiliates’ engagement and investment in them

    Phase II trial of trimelamol in refractory ovarian cancer

    Get PDF
    Trimelamol is an analogue of hexamethymelamine which exhibited activity against refractory ovarian cancer in phase I clinical trial. The dose limiting toxicity was leukopenia. In a phase II study, 42 patients with recurrent, or platinum-complex resistant, advanced ovarian cancer were treated using the dose schedule 800 mg m-2 i.v. daily for 3 days. There were one complete, three partial and five minor responses, objective response rate: 9.5%. The main toxicity observed was nausea and vomiting, myelosuppression was minor. The role of Trimelamol in the treatment of ovarian cancer remains to be defined, but its activity is limited in refractory disease

    Democracy in trade unions, democracy through trade unions?

    Get PDF
    Since the Webbs published Industrial Democracy at the end of the nineteenth century, the principle that workers have a legitimate voice in decision-making in the world of work – in some versions through trade unions, in others at least formally through separate representative structures – has become widely accepted in most west European countries. There is now a vast literature on the strengths and weaknesses of such mechanisms, and we review briefly some of the key interpretations of the rise (and fall) of policies and structures for workplace and board-level representation. We also discuss the mainly failed attempts to establish broader processes of economic democracy, which the eclipse of nationally specific mechanisms of class compromise makes again a salient demand. Economic globalization also highlights the need for transnational mechanisms to achieve worker voice (or more radically, control) in the dynamics of capital-labour relations. We therefore examine the role of trade unions in coordinating pressure for a countervailing force at European and global levels, and in the construction of (emergent?) supranational industrial relations. However, many would argue that unions cannot win legitimacy as democratizing force unless manifestly democratic internally. We therefore revisit debates on and dilemmas of democracy within trade unions, and examine recent initiatives to enhance democratization

    X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10-70 GPa

    Get PDF
    We report experiments in which powder-diffraction data were recorded from polycrystalline vanadium foils, shock-compressed to pressures in the range of 10-70 GPa. Anisotropic strain in the compressed material is inferred from the asymmetry of Debye-Scherrer diffraction images and used to infer residual strain and yield strength (residual von Mises stress) of the vanadium sample material. We find residual anisotropic strain corresponding to yield strength in the range of 1.2 GPa-1.8 GPa for shock pressures below 30 GPa, but significantly less anisotropy of strain in the range of shock pressures above this. This is in contrast to our simulations of the experimental data using a multi-scale crystal plasticity strength model, where a significant yield strength persists up to the highest pressures we access in the experiment. Possible mechanisms that could contribute to the dynamic response of vanadium that we observe for shock pressures ≥30 GPa are discussed

    Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Full text link
    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.10.1 and $1.0 \ bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and experienced strong radiative cooling resulting in post-shock compressions of { \times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.Comment: HEDLA 2016 conference proceeding

    Design and fabrication of gas cell targets for laboratory astrophysics experiments on the Orion high-power laser facility

    Get PDF
    This paper describes the design and fabrication of a range of ‘gas cell’ microtargets produced by the Target Fabrication Group in the Central Laser Facility (CLF) for academic access experiments on the Orion laser facility at the Atomic Weapons Establishment (AWE). The experiments were carried out by an academic consortium led by Imperial College London. The underlying target methodology was an evolution of a range of targets used for experiments on radiative shocks and involved the fabrication of a precision machined cell containing a number of apertures for interaction foils or diagnostic windows. The interior of the cell was gas-filled before laser irradiation. This paper details the assembly processes, thin film requirements and micro-machining processes needed to produce the targets. Also described is the implementation of a gas-fill system to produce targets that are filled to a pressure of 0.1–1 bar. The paper discusses the challenges that are posed by such a target

    A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours

    Get PDF
    Antibody-directed enzyme prodrug therapy is a targeted therapy in which a prodrug is activated selectively at the tumour site by an enzyme, which has been targeted to the tumour by an antibody (antibody-enzyme conjugate). Previous clinical trials have shown evidence of tumour response, however, the activated drug had a long half-life, which resulted in dose-limiting myelosuppression. Also, the targeting system, although giving high tumour to blood ratios of antibody-enzyme conjugate (10 000 : 1) required administration of a clearing antibody in addition to the antibody-enzyme conjugate. The purpose of this current study therefore was to attempt tumour targeting of the antibody-enzyme conjugate without the clearing antibody, and to investigate a new prodrug (bis-iodo phenol mustard, ZD2767P) whose activated form is highly potent and has a short half-life. Twenty-seven patients were treated with antibody-directed enzyme prodrug therapy using A5CP antibody-enzyme conjugate and ZD2767P prodrug, in a dose-escalating phase I trial. The maximum tolerated dose of ZD2767P was reached at 15.5 mg m−2×three administrations with a serum carboxypeptidase G2 level of 0.05 U ml−1. Myelosuppression limited dose escalation. Other toxicities were mild. Patients' quality of life was not adversely affected during the trial as assessed by the measures used. There were no clinical or radiological responses seen in the study, but three patients had stable disease at day 56. Human anti-mouse antibody and human anti-carboxypeptidase G2 antibody were produced in response to the antibody enzyme conjugate (A5CP). The antibody-enzyme conjugate localisation data (carboxypeptidase G2 enzyme levels by HPLC on tumour and normal tissue samples, and gamma camera analysis of I-131 radiolabelled conjugate) are consistent with inadequate tumour localisation (median tumour: normal tissue ratios of antibody-enzyme conjugate of less than 1). A clearance system is therefore desirable with this antibody-enzyme conjugate or a more efficient targeting system is required. ZD2767P was shown to clear rapidly from the circulation and activated drug was not measurable in the blood. ZD2767P has potential for use in future antibody-directed enzyme prodrug therapy systems
    corecore