1,486 research outputs found

    Models for Modules

    Full text link
    We recall the structure of the indecomposable sl(2) modules in the Bernstein-Gelfand-Gelfand category O. We show that all these modules can arise as quantized phase spaces of physical models. In particular, we demonstrate in a path integral discretization how a redefined action of the sl(2) algebra over the complex numbers can glue finite dimensional and infinite dimensional highest weight representations into indecomposable wholes. Furthermore, we discuss how projective cover representations arise in the tensor product of finite dimensional and Verma modules and give explicit tensor product decomposition rules. The tensor product spaces can be realized in terms of product path integrals. Finally, we discuss relations of our results to brane quantization and cohomological calculations in string theory.Comment: 18 pages, 6 figure

    Periphery Plots for Contextualizing Heterogeneous Time-Based Charts

    Full text link
    Patterns in temporal data can often be found across different scales, such as days, weeks, and months, making effective visualization of time-based data challenging. Here we propose a new approach for providing focus and context in time-based charts to enable interpretation of patterns across time scales. Our approach employs a focus zone with a time and a second axis, that can either represent quantities or categories, as well as a set of adjacent periphery plots that can aggregate data along the time, value, or both dimensions. We present a framework for periphery plots and describe two use cases that demonstrate the utility of our approach.Comment: To Appear in IEEE VIS 2019 Short Papers. Open source software and other materials available on github: https://github.com/PrecisionVISSTA/PeripheryPlots Video figure available on Vimeo: https://vimeo.com/34967814

    Discovery of a Transition to Global Spin-up in EXO 2030+375

    Full text link
    EXO 2030+375, a 42-second transient X-ray pulsar with a Be star companion, has been observed to undergo an outburst at nearly every periastron passage for the last 13.5 years. From 1994 through 2002, the global trend in the pulsar spin frequency was spin-down. Using RXTE data from 2003 September, we have observed a transition to global spin-up in EXO 2030+375. Although the spin frequency observations are sparse, the relative spin-up between 2002 June and 2003 September observations, along with an overall brightening of the outbursts since mid 2002 observed with the RXTE ASM, accompanied by an increase in density of the Be disk, indicated by infrared magnitudes, suggest that the pattern observed with BATSE of a roughly constant spin frequency, followed by spin-up, followed by spin-down is repeating. If so this pattern has approximately an 11 year period, similar to the 15 +/- 3 year period derived by Wilson et al. (2002) for the precession period of a one-armed oscillation in the Be disk. If this pattern is indeed repeating, we predict a transition from spin-up to spin-down in 2005.Comment: Accepted for publication in ApJ Letters, 4 pages, 5 figures, using emulateapj.cl

    The Nature of the Compact Supernova Remnants in Starburst Galaxies

    Get PDF
    Radio observations of starburst regions in galaxies have revealed groups of compact nonthermal sources that may be radiative supernova remnants expanding in the interclump medium of molecular clouds. Because of the high pressure in starburst regions, the interclump medium may have a density ~ 10^3 H atoms cm^{-3} in a starburst nucleus like M82 and ~ 10^4 H atoms cm^{-3} in an ultraluminous galaxy like Arp 220. In M82, our model can account for the sizes, the slow evolution, the high radio luminosities, and the low X-ray luminosities of the sources. We predict expansion velocities ~ 500 km/s, which is slower than the one case measured by VLBI techniques. Although we predict the remnants to be radiative, the expected radiation is difficult to detect because it is at infrared wavelengths and the starburst is itself very luminous; one detection possibility is broad [OI] 63 micron line emission at the positions of the radio remnants. The more luminous and compact remnants in Arp 220 can be accounted for by the higher molecular cloud density. In our model, the observed remnants lose most of the supernova energy to radiation. Other explosions in a lower density medium may directly heat a hot, low density interstellar component, leading to the superwinds that are associated with starburst regions.Comment: 11 pages, 1 figure, ApJ submitte

    Carbon in Spiral Galaxies from Hubble Space Telescope Spectroscopy

    Get PDF
    We present measurements of the gas-phase C/O abundance ratio in six H II regions in the spiral galaxies M101 and NGC 2403, based on ultraviolet spectroscopy using the Faint Object Spectrograph on the Hubble Space Telescope. The C/O ratios increase systematically with O/H in both galaxies, from log C/O approximately -0.8 at log O/H = -4.0 to log C/O approx. -0.1 at log O/H = -3.4. C/N shows no correlation with O/H. The rate of increase of C/O is somewhat uncertain because of uncertainty as to the appropriate UV reddening law, and uncertainty in the metallicity dependence on grain depletions. However, the trend of increasing C/O with O/H is clear, confirming and extending the trend in C/O indicated previously from observations of irregular galaxies. Our data indicate that the radial gradients in C/H across spiral galaxies are steeper than the gradients in O/H. Comparing the data to chemical evolution models for spiral galaxies shows that models in which the massive star yields do not vary with metallicity predict radial C/O gradients that are much flatter than the observed gradients. The most likely hypothesis at present is that stellar winds in massive stars have an important effect on the yields and thus on the evolution of carbon and oxygen abundances. C/O and N/O abundance ratios in the outer disks of spirals determined to date are very similar to those in dwarf irregular galaxies. This implies that the outer disks of spirals have average stellar population ages much younger than the inner disks.Comment: 38 pages, 9 postscript figures, uses aaspp4.sty. Accepted for publication in The Astrophysical Journa

    The Microchannel X-ray Telescope on Board the SVOM Satellite

    Full text link
    We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about 1{\deg}) telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is based on square micro pore optics (MPOs), coupled with a low noise CCD. The optics are based on a "Lobster Eye" design, while the CCD is a focal plane detector similar to the type developed for the seven eROSITA telescopes. MXT is a compact and light (<35 kg) telescope with a 1 m focal length, and it will provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy of the afterglows of the SVOM GRBs to better than 1 arc min (90\% c.l. with no systematics) provided MXT data are collected within 5 minutes after the trigger. The MXT sensitivity will be adequate to detect the afterglows for almost all the SVOM GRBs as well as to perform observations of non-GRB astrophysical objects. These performances are fully adapted to the SVOM science goals, and prove that small and light telescopes can be used for future small X-ray missions.Comment: 6 pages, 6 figures, proceedings of the conference "Swift: 10 years of Discovery", Rome, December 2-5, 2014. To be published by Po

    The Microchannel X-ray Telescope for the Gamma-Ray Burst mission SVOM

    Full text link
    We present the Microchannel X-ray Telescope, a new light and compact focussing telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling of square pore micro-channel plates with a low noise pnCCD. MXT will provide an effective area of about 50 cmsq, and its point spread function is expected to be better than 3.7 arc min (FWHM) on axis. The estimated sensitivity is adequate to detect all the afterglows of the SVOM GRBs, and to localize them to better then 60 arc sec after five minutes of observation.Comment: 12 pages, 8 figures, to be published in SPIE Astronomical Telescopes + Instrumentation, Montreal, June 201

    Short GRBs at the dawn of the gravitational wave era

    Get PDF
    We derive the luminosity function and redshift distribution of short Gamma Ray Bursts (SGRBs) using (i) all the available observer-frame constraints (i.e. peak flux, fluence, peak energy and duration distributions) of the large population of Fermi SGRBs and (ii) the rest-frame properties of a complete sample of Swift SGRBs. We show that a steep ϕ(L)La\phi(L)\propto L^{-a} with a>2.0 is excluded if the full set of constraints is considered. We implement a Monte Carlo Markov Chain method to derive the ϕ(L)\phi(L) and ψ(z)\psi(z) functions assuming intrinsic Ep-Liso and Ep-Eiso correlations or independent distributions of intrinsic peak energy, luminosity and duration. To make our results independent from assumptions on the progenitor (NS-NS binary mergers or other channels) and from uncertainties on the star formation history, we assume a parametric form for the redshift distribution of SGRBs. We find that a relatively flat luminosity function with slope ~0.5 below a characteristic break luminosity ~3×1052\times10^{52} erg/s and a redshift distribution of SGRBs peaking at z~1.5-2 satisfy all our constraints. These results hold also if no Ep-Liso and Ep-Eiso correlations are assumed. We estimate that, within ~200 Mpc (i.e. the design aLIGO range for the detection of GW produced by NS-NS merger events), 0.007-0.03 SGRBs yr1^{-1} should be detectable as gamma-ray events. Assuming current estimates of NS-NS merger rates and that all NS-NS mergers lead to a SGRB event, we derive a conservative estimate of the average opening angle of SGRBs: θjet\theta_{jet}~3-6 deg. Our luminosity function implies an average luminosity L~1.5×1052\times 10^{52} erg/s, nearly two orders of magnitude higher than previous findings, which greatly enhances the chance of observing SGRB "orphan" afterglows. Efforts should go in the direction of finding and identifying such orphan afterglows as counterparts of GW events.Comment: 13 pages, 5 figures, 2 tables. Accepted for publication in Astronomy & Astrophysics. Figure 5 and angle ranges corrected in revised versio

    The Large-scale Bipolar Wind in the Galactic Center

    Get PDF
    During a 9-month campaign (1996--1997), the Midcourse Space Experiment (MSX) satellite mapped the Galactic Plane at mid-infrared wavelengths (4.3--21.3um). Here we report evidence for a spectacular limb- brightened, bipolar structure at the Galactic Center extending more than a degree (170 pc at 8.0 kpc) on either side of the plane. The 8.3um emission shows a tight correlation with the 3, 6 and 11 cm continuum structure over the same scales. Dense gas and dust are being entrained in a large-scale bipolar wind powered by a central starburst. The inferred energy injection at the source is ~10^54/kappa erg for which \kappa is the covering fraction of the dusty shell (kappa <= 0.1). There is observational evidence for a galactic wind on much larger scales, presumably from the same central source which produced the bipolar shell seen by MSX. Sofue has argued that the North Polar Spur -- a thermal x-ray/radio loop which extends from the Galactic Plane to b = +80 deg -- was powered by a nuclear explosion (1-30 x 10^55 erg) roughly 15 Myr ago. We demonstrate that an open-ended bipolar wind (~10^55 erg), when viewed in near-field projection, provides the most natural explanation for the observed loop structure. The ROSAT 1.5 keV diffuse x-ray map over the inner 45 deg provides compelling evidence for this interpretation. Since the faint bipolar emission would be very difficult to detect beyond the Galaxy, the phenomenon of large-scale galactic winds may be far more common than has been observed to date.Comment: 24 pages, 6 figures, aastex. High resolution figures are available at ftp://www.aao.gov.au/pub/local/jbh/astro-ph/GC/. Astrophysical Journal, accepte

    The 3rd IBIS/ISGRI soft gamma-ray survey catalog

    Get PDF
    In this paper we report on the third soft gamma-ray source catalog obtained with the IBIS/ISGRI gamma-ray imager on board the INTEGRAL satellite. The scientific dataset is based on more than 40 Ms of high quality observations performed during the first three and a half years of Core Program and public IBIS/ISGRI observations. Compared to previous IBIS/ISGRI surveys, this catalog includes a substantially increased coverage of extragalactic fields, and comprises more than 400 high-energy sources detected in the energy range 17-100 keV, including both transients and faint persistent objects which can only be revealed with longer exposure times.Comment: Accepted for publication in ApJ Suppl.; 11 pages; 4 figures Minor changes to conten
    corecore