44 research outputs found

    The Computational Power of Optimization in Online Learning

    Full text link
    We consider the fundamental problem of prediction with expert advice where the experts are "optimizable": there is a black-box optimization oracle that can be used to compute, in constant time, the leading expert in retrospect at any point in time. In this setting, we give a novel online algorithm that attains vanishing regret with respect to NN experts in total O~(N)\widetilde{O}(\sqrt{N}) computation time. We also give a lower bound showing that this running time cannot be improved (up to log factors) in the oracle model, thereby exhibiting a quadratic speedup as compared to the standard, oracle-free setting where the required time for vanishing regret is Θ~(N)\widetilde{\Theta}(N). These results demonstrate an exponential gap between the power of optimization in online learning and its power in statistical learning: in the latter, an optimization oracle---i.e., an efficient empirical risk minimizer---allows to learn a finite hypothesis class of size NN in time O(logN)O(\log{N}). We also study the implications of our results to learning in repeated zero-sum games, in a setting where the players have access to oracles that compute, in constant time, their best-response to any mixed strategy of their opponent. We show that the runtime required for approximating the minimax value of the game in this setting is Θ~(N)\widetilde{\Theta}(\sqrt{N}), yielding again a quadratic improvement upon the oracle-free setting, where Θ~(N)\widetilde{\Theta}(N) is known to be tight

    Study of Healthcare Personnel with Influenza and other Respiratory Viruses in Israel (SHIRI): study protocol

    Full text link
    Abstract Background The Study of Healthcare Personnel with Influenza and other Respiratory Viruses in Israel (SHIRI) prospectively follows a cohort of healthcare personnel (HCP) in two hospitals in Israel. SHIRI will describe the frequency of influenza virus infections among HCP, identify predictors of vaccine acceptance, examine how repeated influenza vaccination may modify immunogenicity, and evaluate influenza vaccine effectiveness in preventing influenza illness and missed work. Methods Cohort enrollment began in October, 2016; a second year of the study and a second wave of cohort enrollment began in June 2017. The study will run for at least 3 years and will follow approximately 2000 HCP (who are both employees and members of Clalit Health Services [CHS]) with routine direct patient contact. Eligible HCP are recruited using a stratified sampling strategy. After informed consent, participants complete a brief enrollment survey with questions about occupational responsibilities and knowledge, attitudes, and practices about influenza vaccines. Blood samples are collected at enrollment and at the end of influenza season; HCP who choose to be vaccinated contribute additional blood one month after vaccination. During the influenza season, participants receive twice-weekly short message service (SMS) messages asking them if they have acute respiratory illness or febrile illness (ARFI) symptoms. Ill participants receive follow-up SMS messages to confirm illness symptoms and duration and are asked to self-collect a nasal swab. Information on socio-economic characteristics, current and past medical conditions, medical care utilization and vaccination history is extracted from the CHS database. Information about missed work due to illness is obtained by self-report and from employee records. Respiratory specimens from self-collected nasal swabs are tested for influenza A and B viruses, respiratory syncytial virus, human metapneumovirus, and coronaviruses using validated multiplex quantitative real-time reverse transcription polymerase chain reaction assays. The hemagglutination inhibition assay will be used to detect the presence of neutralizing influenza antibodies in serum. Discussion SHIRI will expand our knowledge of the burden of respiratory viral infections among HCP and the effectiveness of current and repeated annual influenza vaccination in preventing influenza illness, medical utilization, and missed workdays among HCP who are in direct contact with patients. Trial registration NCT03331991 . Registered on November 6, 2017.https://deepblue.lib.umich.edu/bitstream/2027.42/146186/1/12879_2018_Article_3444.pd

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudáfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistánFil: Ali, Asad. Aga Khan University; PakistánFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudáfricaFil: Echavarría, Marcela Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudáfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. Fundación Para El Fomento de la Investigación Sanitaria; EspañaFil: Moïsi, Jennifer C.. Agence de Médecine Préventive; FranciaFil: Munywoki, Patrick K.. No especifíca;Fil: Ourohiré, Millogo. No especifíca;Fil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: Simões, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudáfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapónFil: Zar, Heather J.. University of Cape Town; SudáfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid

    Probability Modeling of Autonomous Unmanned Combat Aerial Vehicles (UCAVs)

    Get PDF
    Military Operations Research, Vol. 11, No. 4, pp 5-24

    Regret Minimization for Branching Experts

    No full text
    We study regret minimization bounds in which the dependence on the number of experts is replaced by measures of the realized complexity of the expert class. The measures we consider are defined in retrospect given the realized losses. We concentrate on two interesting cases. In the first, our measure of complexity is the number of different "leading experts", namely, experts that were best at some point in time. We derive regret bounds that depend only on this measure, independent of the total number of experts. We also consider a case where all experts remain grouped in just a few clusters in terms of their realized cumulative losses. Here too, our regret bounds depend only on the number of clusters determined in retrospect, which serves as a measure of complexity. Our results are obtained as special cases of a more general analysis for a setting of branching experts, where the set of experts may grow over time according to a tree-like structure, determined by an adversary. For this setting of branching experts, we give algorithms and analysis that cover both the full information and the bandit scenarios

    Regret minimization for branching experts

    No full text
    We study regret minimization bounds in which the dependence on the number of experts is replaced by measures of the realized complexity of the expert class. The measures we consider are defined in retrospect given the realized losses. We concentrate on two interesting cases. In the first, our measure of complexity is the number of different "leading experts", namely, experts that were best at some point in time. We derive regret bounds that depend only on this measure, independent of the total number of experts. We also consider a case where all experts remain grouped in just a few clusters in terms of their realized cumulative losses. Here too, our regret bounds depend only on the number of clusters determined in retrospect, which serves as a measure of complexity. Our results are obtained as special cases of a more general analysis for a setting of branching experts, where the set of experts may grow over time according to a tree-like structure, determined by an adversary. For this setting of branching experts, we give algorithms and analysis that cover both the full information and the bandit scenarios

    Unusually stable and highly electrochemically reversible n-doping of regioregular alternate copolymer of dialkylthiophene and fluorenone

    No full text
    We describe detailed studies on the electrochemical activity of thin films of a new conjugated copolymer, namely, poly[(2,7-fluoren-9-one)-alt-(5,5′-(3,3′-di-n-octyl-2,2′-bithiophene))] (abbreviated PFDOBT-HH (HH = head-to-head)), which has been synthesized electrochemically by a mild oxidation process at low current density. The dynamics of both p- and n-dopings of PFDOBT-HH in sulfolane/TEABF4 solution was fully characterized by a combination of cyclic voltammetry (CV) and electrochemical impedance spectroscopic (EIS) investigations. The development of a stable and highly electrochemically reversible n-doping capacity of the polymer film is presented as a function of the vertex potential in the CV curves of the n-doped PFDOBT-HH. Using EIS, clear evidence is furnished for the presence of trapped, negatively charged species in the polymer bulk as a consequence of prolonged, consecutive n-doping. Qualitative differentiation between the responses originating from mobile and trapped charge carriers has been established. In contrast to the cases of pristine polythiophene, polyfluorothiophene and nanoscale aryleneethynylene oligomers, n-doping of PFDOBT-HH, although leading to a partial trapping of the negatively charged carriers, does not result in any irreversible change in the electrochemical behavior of this polymer. Keywords: CV, PITT, n-doping, Charge trapping, Poly(fluorenone-bithiophene) copolyme
    corecore