657 research outputs found
Triangulating evidence from longitudinal and Mendelian randomization studies of metabolomic biomarkers for type 2 diabetes.
The number of people affected by Type 2 diabetes mellitus (T2DM) is close to half a billion and is on a sharp rise, representing a major and growing public health burden. Given its mild initial symptoms, T2DM is often diagnosed several years after its onset, leaving half of diabetic individuals undiagnosed. While several classical clinical and genetic biomarkers have been identified, improving early diagnosis by exploring other kinds of omics data remains crucial. In this study, we have combined longitudinal data from two population-based cohorts CoLaus and DESIR (comprising in total 493 incident cases vs. 1360 controls) to identify new or confirm previously implicated metabolomic biomarkers predicting T2DM incidence more than 5 years ahead of clinical diagnosis. Our longitudinal data have shown robust evidence for valine, leucine, carnitine and glutamic acid being predictive of future conversion to T2DM. We confirmed the causality of such association for leucine by 2-sample Mendelian randomisation (MR) based on independent data. Our MR approach further identified new metabolites potentially playing a causal role on T2D, including betaine, lysine and mannose. Interestingly, for valine and leucine a strong reverse causal effect was detected, indicating that the genetic predisposition to T2DM may trigger early changes of these metabolites, which appear well-before any clinical symptoms. In addition, our study revealed a reverse causal effect of metabolites such as glutamic acid and alanine. Collectively, these findings indicate that molecular traits linked to the genetic basis of T2DM may be particularly promising early biomarkers
Cdkn2a deficiency promotes adipose tissue browning.
Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.
We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients.
We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression.
Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders
TCF7L2 rs7903146-macronutrient interaction in obese individuals' responses to a 10-wk randomized hypoenergetic diet
BACKGROUND:
Transcription factor 7-like 2 (TCF7L2) rs7903146 associates with type 2 diabetes and may operate via impaired glucagon-like peptide 1 secretion, which is stimulated more by fat than by carbohydrate ingestion.
OBJECTIVE:
The objective was to examine the interaction between TCF7L2 rs7903146 and dietary fat and carbohydrate [high-fat, low-carbohydrate: 40-45% of energy as fat (HF); compared with low-fat, high-carbohydrate: 20-25% of energy as fat (LF)] in obese individuals' responses to a 10-wk hypoenergetic diet (-600 kcal/d).
DESIGN:
European, obese participants (n = 771) were randomly assigned to receive an HF or an LF diet. Body weight, fat mass (FM), fat-free mass (FFM), waist circumference (WC), resting energy expenditure (REE), fasting fat oxidation in percentage of REE (FatOx), homeostasis model assessed insulin release (HOMA-beta), and HOMA-insulin resistance (HOMA-IR) were determined at baseline and after the intervention; 739 individuals were genotyped for rs7903146.
RESULTS:
Average weight loss was 6.9 kg with the LF and 6.6 kg with the HF (difference between diets, NS) diet. Among individuals who were homozygous for the T-risk allele, those in the HF diet group experienced smaller weight losses (Deltaweight) (2.6 kg; P = 0.009; n = 622), smaller DeltaFFM (1.6 kg; P = 0.027; n = 609), smaller DeltaWC (3.3 cm; P = 0.010; n = 608), and a smaller DeltaHOMA-IR (1.3 units; P = 0.004; n = 615) than did the LF diet group. For C allele carriers, there were no differences between the HF and LF diet groups. For the HF diet group, each additional T allele was associated with a reduced loss of FM (0.67 kg; P = 0.019; n = 609). TCF7L2 rs7903146 was not associated with DeltaREE, DeltaFatOx, DeltaHOMA-beta, or dropout.
CONCLUSION:
Our results suggest that obese individuals who are homozygous for the TCF7L2 rs7903146 T-risk allele are more sensitive to LF than to HF weight-loss diets
KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response.
The endoplasmic reticulum (ER) unfolded protein response (UPR(er)) pathway plays an important role in helping pancreatic β cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPR(er) gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germline and β cell-specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance. Genome-wide analysis of Kat2b-regulated genes and functional assays reveal a critical role for Kat2b in maintaining UPR(er) gene expression and subsequent β cell function. Importantly, Kat2b expression is decreased in mouse and human diabetic β cells and correlates with UPR(er) gene expression in normal human islets. In conclusion, Kat2b is a crucial transcriptional regulator for adaptive β cell function during metabolic stress by controlling UPR(er) and represents a promising target for T2D prevention and treatment
Predicting Diabetes: Clinical, Biological, and Genetic Approaches: Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR)
OBJECTIVE—To provide a simple clinical diabetes risk score and to identify characteristics that predict later diabetes using variables available in the clinic setting as well as biological variables and polymorphisms
Mechanisms behind the immediate effects of Roux-en-Y gastric bypass surgery on type 2 diabetes
BACKGROUND: The most common bariatric surgery, Roux-en-Y gastric bypass, leads to glycemia normalization in most patients long before there is any appreciable weight loss. This effect is too large to be attributed purely to caloric restriction, so a number of other mechanisms have been proposed. The most popular hypothesis is enhanced production of an incretin, active glucagon-like peptide-1 (GLP-1), in the lower intestine. We therefore set out to test this hypothesis with a model which is simple enough to be robust and credible. METHOD: Our method involves (1) setting up a set of time-dependent equations for the concentrations of the most relevant species, (2) considering an “adiabatic” (or quasi-equilibrium) state in which the concentrations are slowly varying compared to reaction rates (and which in the present case is a postprandial state), and (3) solving for the dependent concentrations (of e.g. insulin and glucose) as an independent concentration (of e.g. GLP-1) is varied. RESULTS: Even in the most favorable scenario, with maximal values for (i) the increase in active GLP-1 concentration and (ii) the effect of GLP-1 on insulin production, enhancement of GLP-1 alone cannot account for the observations. I.e., the largest possible decrease in glucose predicted by the model is smaller than reported decreases, and the model predicts no decrease whatsoever in glucose ×insulin, in contrast to large observed decreases in homeostatic model assessment insulin resistance (HOMA-IR). On the other hand, both effects can be accounted for if the surgery leads to a substantial increase in some substance that opens an alternative insulin-independent pathway for glucose transport into muscle cells, which perhaps uses the same intracellular pool of GLUT-4 that is employed in an established insulin-independent pathway stimulated by muscle contraction during exercise. CONCLUSIONS: Glycemia normalization following Roux-en-Y gastric bypass is undoubtedly caused by a variety of mechanisms, which may include caloric restriction, enhanced GLP-1, and perhaps others proposed in earlier papers on this subject. However, the present results suggest that another possible mechanism should be added to the list of candidates: enhanced production in the lower intestine of a substance which opens an alternative insulin-independent pathway for glucose transport
α-cell glucokinase suppresses glucose-regulated glucagon secretion
Glucagon secretion by pancreatic α-cells is triggered by hypoglycemia and suppressed by high glucose levels; impaired suppression of glucagon secretion is a hallmark of both type 1 and type 2 diabetes. Here, we show that α-cell glucokinase (Gck) plays a role in the control of glucagon secretion. Using mice with α-cell-specific inactivation of Gck (αGckKO mice), we find that glucokinase is required for the glucose-dependent increase in intracellular ATP/ADP ratio and the closure of K javax.xml.bind.JAXBElement@dee6e8 channels in α-cells and the suppression of glucagon secretion at euglycemic and hyperglycemic levels. αGckKO mice display hyperglucagonemia in the fed state, which is associated with increased hepatic gluconeogenic gene expression and hepatic glucose output capacity. In adult mice, fed hyperglucagonemia is further increased and glucose intolerance develops. Thus, glucokinase governs an α-cell metabolic pathway that suppresses secretion at or above normoglycemic levels; abnormal suppression of glucagon secretion deregulates hepatic glucose metabolism and, over time, induces a pre-diabetic phenotype
Evaluating the association of common APOA2 variants with type 2 diabetes
<p>Abstract</p> <p>Background</p> <p><it>APOA2 </it>is a positional and biological candidate gene for type 2 diabetes at the chromosome 1q21-q24 susceptibility locus. The aim of this study was to examine if HapMap phase II tag SNPs in <it>APOA2 </it>are associated with type 2 diabetes and quantitative traits in French Caucasian subjects.</p> <p>Methods</p> <p>We genotyped the three HapMap phase II tagging SNPs (rs6413453, rs5085 and rs5082) required to capture the common variation spanning the <it>APOA2 </it>locus in our type 2 diabetes case-control cohort comprising 3,093 French Caucasian subjects. The association between these variants and quantitative traits was also examined in the normoglycaemic adults of the control cohort. In addition, meta-analysis of publicly available whole genome association data was performed.</p> <p>Results</p> <p>None of the <it>APOA2 </it>tag SNPs were associated with type 2 diabetes in the French Caucasian case-control cohort (rs6413453, <it>P </it>= 0.619; rs5085, <it>P </it>= 0.245; rs5082, <it>P </it>= 0.591). However, rs5082 was marginally associated with total cholesterol levels (<it>P </it>= 0.026) and waist-to-hip ratio (<it>P </it>= 0.029). The meta-analysis of data from 12,387 subjects confirmed our finding that common variation at the <it>APOA2 </it>locus is not associated with type 2 diabetes.</p> <p>Conclusion</p> <p>The available data does not support a role for common variants in <it>APOA2 </it>on type 2 diabetes susceptibility or related quantitative traits in Northern Europeans.</p
- …