18,701 research outputs found
Excited-state quantum phase transitions in a two-fluid Lipkin model
Background: Composed systems have became of great interest in the framework
of the ground state quantum phase transitions (QPTs) and many of their
properties have been studied in detail. However, in these systems the study of
the so called excited-state quantum phase transitions (ESQPTs) have not
received so much attention.
Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is
presented in this work. The study is performed through the Hamiltonian
diagonalization for selected values of the control parameters in order to cover
the most interesting regions of the system phase diagram. [Method:] A
Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting
boson model (IBM) is diagonalized for selected values of the parameters and
properties such as the density of states, the Peres lattices, the
nearest-neighbor spacing distribution, and the participation ratio are
analyzed.
Results: An overview of the spectrum of the two-fluid Lipkin model for
selected positions in the phase diagram has been obtained. The location of the
excited-state quantum phase transition can be easily singled out with the Peres
lattice, with the nearest-neighbor spacing distribution, with Poincar\'e
sections or with the participation ratio.
Conclusions: This study completes the analysis of QPTs for the two-fluid
Lipkin model, extending the previous study to excited states. The ESQPT
signatures in composed systems behave in the same way as in single ones,
although the evidences of their presence can be sometimes blurred. The Peres
lattice turns out to be a convenient tool to look into the position of the
ESQPT and to define the concept of phase in the excited states realm
Ricci Solitons on Lorentzian Manifolds with Large Isometry Groups
We show that Lorentzian manifolds whose isometry group is of dimension at
least are expanding, steady and shrinking Ricci solitons
and steady gradient Ricci solitons. This provides examples of complete locally
conformally flat and symmetric Lorentzian Ricci solitons which are not rigid
Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors
We have measured the transition process from the high to low resistivity states, i.e., the reset process of resistive switching based memristors based on Ni/HfO2/Si-n+ structures, and have also developed an analytical model for their electrical characteristics. When the characteristic curves are plotted in the current-voltage (I-V) domain a high variability is observed. In spite of that, when the same curves are plotted in the charge-flux domain (Q-phi), they can be described by a simple model containing only three parameters: the charge (Qrst) and the flux (rst) at the reset point, and an exponent, n, relating the charge and the flux before the reset transition. The three parameters can be easily extracted from the Q-phi plots. There is a strong correlation between these three parameters, the origin of which is still under study
FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers
The microstructure and magnetic properties of sputtered permalloy films and FeNi(170 nm)/X/FeNi(170 nm) (X=Co, Fe, Gd, Gd-Co) sandwiches were studied. Laminating of the thick FeNi film with various spacers was done in order to control the magnetic softness of FeNi-based multilayers. In contrast to the Co and Fe spacers, Gd and Gd-Co magnetic spacers improved the softness of the FeNi/X/FeNi sandwiches. The magnetoimpedance responses were measured for [FeNi/Ti(6 nm)] 2/FeNi and [FeNi/Gd(2 nm)] 2/FeNi multilayers in a frequency range of 1-500 MHz: for all frequencies under consideration the highest magnetoimpedance variation was observed for [FeNi/Gd(2 nm)] 2/FeNi multilayers. © 2012 American Institute of Physics
A Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site ordered SmBaMn2O6
Soft X-ray resonant powder diffraction has been performed at the Mn L2,3
edges of A-site ordered SmBaMn2O6. The energy and polarization dependence of
the (1/2 1/2 0) reflection provide direct evidence for a (x2-z2)/(y2-z2) type
orbital ordering in contrast to the single layer manganite. The temperature
dependence of the reflection indicates an orbital reorientation transition at
210 K, below which the charge and orbital ordered MnO2 sheets show AAAA type of
stacking. The concurring reduction of the ferromagnetic super exchange
correlations leads to further charge localization
- …