1,706 research outputs found

    Chiral surfaces self-assembling in one-component systems with isotropic interactions

    Get PDF
    We show that chiral symmetry can be broken spontaneously in one-component systems with isotropic interactions, i.e. many-particle systems having maximal a priori symmetry. This is achieved by designing isotropic potentials that lead to self-assembly of chiral surfaces. We demonstrate the principle on a simple chiral lattice and on a more complex lattice with chiral super-cells. In addition we show that the complex lattice has interesting melting behavior with multiple morphologically distinct phases that we argue can be qualitatively predicted from the design of the interaction.Comment: 4 pages, 4 figure

    Novel self-assembled morphologies from isotropic interactions

    Get PDF
    We present results from particle simulations with isotropic medium range interactions in two dimensions. At low temperature novel types of aggregated structures appear. We show that these structures can be explained by spontaneous symmetry breaking in analytic solutions to an adaptation of the spherical spin model. We predict the critical particle number where the symmetry breaking occurs and show that the resulting phase diagram agrees well with results from particle simulations.Comment: 4 pages, 4 figure

    Using the uncertainty principle to design simple interactions for targeted self-assembly

    Get PDF
    We present a method that systematically simplifies isotropic interactions designed for targeted self-assembly. The uncertainty principle is used to show that an optimal simplification is achieved by a combination of heat kernel smoothing and Gaussian screening of the interaction potential in real and reciprocal space. We use this method to analytically design isotropic interactions for self-assembly of complex lattices and of materials with functional properties. The derived interactions are simple enough to narrow the gap between theory and experimental implementation of theory based designed self-assembling materials

    Pluripolarity of Graphs of Denjoy Quasianalytic Functions of Several Variables

    Full text link
    In this paper we prove pluripolarity of graphs of Denjoy quasianalytic functions of several variables on the spanning se

    Designing isotropic interactions for self-assembly of complex lattices

    Get PDF
    We present a direct method for solving the inverse problem of designing isotropic potentials that cause self-assembly into target lattices. Each potential is constructed by matching its energy spectrum to the reciprocal representation of the lattice to guarantee that the desired structure is a ground state. We use the method to self-assemble complex lattices not previously achieved with isotropic potentials, such as a snub square tiling and the kagome lattice. The latter is especially interesting because it provides the crucial geometric frustration in several proposed spin liquids.Comment: 4 pages, 3 figure

    Perceptions and understanding of research situations as a function of consent form characteristics and experimenter instructions

    Get PDF
    Two studies examined how research methodology affected participant behaviors. Study 1 tested (a) consent form perspective (1st, 2nd, or 3rd person) and (b) information on participants’ right to sue upon perceptions of coercion, ability to recall consent information, and performance on experimental tasks. Unexpectedly, participants who received instructions without the right to sue information had significantly better recall of their research rights. Study 2 manipulated (a) consent form complexity (presence or absence of jargon) and (b) the detail of verbal instructions (simple, elaborate); participants who received a consent form with simpler language spent more time on a difficult task, and participants in the elaborate instruction condition recalled more details. Together, these studies suggest (a) explaining the right to sue may actually be counterproductive; (b) providing a more detailed explanation may help participants remember procedural details; and (c) using jargon may decrease task performance
    • …
    corecore