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We present a direct method for solving the inverse problem of designing isotropic potentials that cause

self-assembly into target lattices. Each potential is constructed by matching its energy spectrum to the

reciprocal representation of the lattice to guarantee that the desired structure is a ground state. We use the

method to self-assemble complex lattices not previously achieved with isotropic potentials, such as a snub

square tiling and the kagome lattice. The latter is especially interesting because it provides the crucial

geometric frustration in several proposed spin liquids.
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Self-assembly [1], the process through which simple
entities spontaneously form complex structures, is a phe-
nomenon of fundamental interest and a compelling tool
for future nanoscale fabrication. As technology is pushed
to ever smaller length scales, direct fabrication becomes
increasingly challenging and material design may turn
towards tailoring interactions to cause constituents to order
into the desired patterns without directed external influ-
ence. This vision has been the subject of intense experi-
mental work during the past decades, but there is still a
relative lack of theoretical results beyond pure simulation-
based work.

What theoretical work exists can be understood as trying
to solve an ’’inverse’’ statistical mechanics problem, find-
ing interactions that cause self-assembly into a target
structure or configurations with desired properties. Various
schemes for approaching this problem have been proposed
[2,3] and several isotropic potentials self-assembling into
low-coordinated lattices have been reported, e.g., square,
honeycomb, simple cubic, and diamond lattices [4]. The
focus is on isotropic interactions, partly due to theoretical
tractability but also motivated by the recent years’ remark-
able improvement in both understanding and design
capabilities of such interactions in especially colloidal
and nano systems [5,6]. By combining and tuning forces
including, but not limited to, van der Waals, electrostatic,
magnetic, and steric forces as well as forces of purely
entropic origin, it is possible today to construct complex
effective interactions. With such a profusion of possibil-
ities, the forward statistical mechanics’ prescription of
sweeping the parameter space to give a complete picture
of the possible structures becomes computationally infea-
sible, and the inverse formulation increasingly appealing.

In this Letter we present a new method for designing
potentials for targeted self-assembly based on an energy
spectrum approach. The method is direct in contrast to
iterative or optimization approaches more commonly
used to solve inverse problems. We show how interactions
that cause particles to organize into the kagome lattice can
be obtained. The kagome lattice is a much sought after

topology due to its highly frustrated geometry [7,8], possi-
bly resulting in spin liquid ground states in several materi-
als [9,10] as well as in the corresponding Heisenberg model
[11]. The self-assembly of nanoscale [12,13] and colloidal
[14] kagome lattices through directed interactions has
caused considerable interest, but whether this target struc-
ture is achievable via isotropic potentials has until now
been an open question (cf. the negative result in [15]).
To demonstrate the generality of our method, we also apply
it to the honeycomb lattice and a snub square tiling [16].
We consider self-assembly governed by energy minimi-

zation where an interaction is designed with certain features
so that the target structure is a stable low energy state, which
should typically be reached when the system self-assembles
from random initial configurations. Our method differs from
previous ones in that we use a reciprocal representation of
the lattice to construct a theoretical potential in a way that
guarantees the target structure to be the unique ground state.
The potential is then systematically simplified into a more
realizable form. In general a lattice structure is defined by
the small jkj region of the Fourier spectrum while the large
jkj region only contributes with higher resolution of the
distribution defining the particles. The kagome lattice for
instance is clearly resolved (Fig. 1) when expressed as the
sum of the Fourier modes of the (weighted) reciprocal
lattice vectors up to length 2jkpj, where kp is a primitive

reciprocal lattice vector. This makes the reciprocal perspec-
tive a natural approach for targeted self-assembly of lattice
structures, as opposed to real-space methods focusing on the
pair correlation function [4].
In two dimensions the potential energy for a configura-

tion with particle density �ðrÞ can be expressed in recip-
rocal space as

E ¼
Z

dr1dr2�ðr1ÞVðjr1 � r2jÞ�ðr2Þ ¼
Z

dkj�̂ðkÞj2V̂ðkÞ;
(1)

where j�̂ðkÞj2dk ¼ R
jkj¼k dkj�̂ðkÞj2, �̂ðkÞ is the standard

Fourier transform of �ðrÞ, and V̂ðkÞ is the radial Fourier
(Hankel) transform of VðrÞ [17],
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V̂ðkÞ ¼ 2�
Z

rdrVðrÞJ0ðrkÞ; (2)

where J0ðxÞ is a Bessel function. If Vðr1; r2Þ ¼ Vðjr1 �
r2jÞ is interpreted as a linear operator, then Eq. (1) defines a
diagonalization of Vðr1; r2Þ. We therefore refer to V̂ðkÞ as
the energy spectrum of the potential [18].

We use the power spectrum of the target lattice j�̂ðkÞj
and Eq. (1) to construct a potential that guarantees that the
target is a ground state in the following way. Consider a
potential VðrÞ whose energy spectrum is chosen positive,

V̂ðkÞ � 0, and has zeros only at the frequencies coinciding
with the reciprocal lattice points Gi of the Bravais lattice

describing the target lattice, V̂ðjGijÞ ¼ 0 for all i. This
design guarantees that the target lattice is a ground state
with E ¼ 0. However, any lattice with reciprocal points
being a subset of Gi, i.e., with arbitrary basis (as well as
reciprocal lattices with opposite chirality), is also a ground
state. This degeneracy can be broken in favor of the target
lattice by introducing small perturbations of the energy
spectrum at its zeros and using the fact that there are
amplitude differences in the peaks of �̂ðGiÞ defining the
target basis. The principle behind the choice of perturba-
tions is that negative perturbations of the energy spectrum
at frequencies where j�̂ðkÞj of the target structure is large,
and positive perturbations where j�̂ðkÞj is small, exclude
lattice bases with structure factors other than the target’s as
ground states.

In many cases, such as for the lattices considered in this
Letter, it is possible to exclude the complete set of alter-
native bases and analytically construct a potential with the
target lattice as the unique ground state. There are two
characteristics of �̂ðkÞ we need to consider in these cases.

For a closed system with n particles �̂ð0Þ ¼ n so V̂ð0Þ
is irrelevant to the ground state configuration. More
importantly, the mass provides a maximum for the ampli-
tude j�̂ðkÞj ¼ j�n

j¼1e
ik�rj j � n, with equality for certain

k ¼ Gi if the basis of rj satisfies k � rj ¼ 2�mþ�, m

being an integer and � an arbitrary phase. From Eq. (1) it

follows that a negative perturbation of the energy spectrum
at a frequency where j�̂ðkÞj is maximal limits the bases of
the degenerate ground states to the finite number of con-
figurations fulfilling the maximum amplitude constraint
k � rj ¼ 2�mþ�. Smaller negative perturbations at the

next highest peaks, or positive perturbations at the lowest
peaks, further reduce the degeneracy. The hierarchy of
perturbations then singles out the target lattice as the
unique ground state.
We apply this design scheme to the kagome lattice.

Consider an energy spectrum with zeros corresponding
to the hexagonal Bravais lattice with primitive vectors

fð2; 0Þ; ð1; ffiffiffi
3

p Þg, which encompasses the kagome lattice

[basis fð0; 0Þ; ð1; 0Þ; ð1=2; ffiffiffi
3

p
=2Þg]. The maximum ampli-

tude constraint is fulfilled at the reciprocal points
jGij ¼ 4�ffiffi

3
p only if the basis is a subset of fð0; 0Þ; ð1; 0Þ;

ð1=2; ffiffiffi
3

p
=2Þ; ð3=2; ffiffiffi

3
p

=2Þg. Any subset of three of this set
is a basis for the kagome lattice, assuming a density of
approximately three particles per primitive cell. Including
a hard core repulsion makes rj ¼ rl, j � l, unfeasible

without energetically benefiting any configuration nor af-
fecting the kagome lattice. Therefore a negative perturba-

tion of V̂ðkÞ at k ¼ 4�ffiffi
3

p combined with a hard core repulsion

breaks the degeneracy in favor of the kagome lattice which
becomes the unique ground state. An energy spectrum
constructed by following these prescriptions is shown in
Fig. 2(a).
A typical energy spectrum fulfilling the above con-

straints results in a highly complex potential, not realiz-
able in experimental systems. However, the properties of
the energy spectrum that select the ground state are far
from a complete specification. This has dual consequen-
ces in that, on one hand, there is considerable leeway in
varying experimental realizations for a target system, but,
on the other hand, the prescription leaves a fairly large
space of possible designs to be searched. While having no
effect on the ground states, these choices can greatly
affect the realizability of the potential as well as the
extent to which a system of particles interacting with
the potential can achieve the ground state under realistic
dynamics. Reasonable requirements on the designed
potentials include smoothness and restrictions on their
range. To understand how this can be achieved we note
that the Fourier relation in Eq. (2) implies that there
exist versions of Heisenberg’s uncertainty principle relat-
ing the smoothness of the potential in real space to a
screening in reciprocal space, and vice versa. Several
general principles for how the power spectrum should
be designed follow from this observation. Restricting
the power spectrum to the low k region gives smoother
potentials, evident in Figs. 2(a) and 2(b). Notice how the
first few minima of the power spectrum are sufficient to
determine the lattice periodicity. A screening of the power
spectrum provides further smoothing of the potential [19].
Conversely, to get a short-ranged potential the spectrum

FIG. 1 (color online). The kagome lattice in real space (a) as
described by its first few reciprocal lattice vectors (b). Structure
factors for the included reciprocal vectors are shown in black and
primitive lattice vectors kp as gray arrows. The kagome lattice

(illustrated in black, with basis and lattice vectors in white) is
indeed determined by this limited part of the reciprocal lattice.
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should be smooth; in Fig. 2(a) this is achieved using
third orders splines as interpolations between the extreme
points.

To test our method we perform Monte Carlo simulations
with the constructed interaction potentials to confirm that
they reliably and in a positive density range self-assemble
into their respective target lattices. All simulations start in
a random disordered state and we consider only local
moves in the Monte Carlo updates. We do not fine-tune
the dimensions of the simulated systems, therefore some
deformations of the lattices are necessary for them to fit.
The simulations confirm that the designed potentials are
robust to such complications.

Figure 2(c) illustrates the relaxation process for the
physically most interesting structure, the kagome lattice.
The snapshots of the time evolution show how the lattice
assemble locally into grains with boundaries that diffuse
and slowly annihilate. The system size in Fig. 2(c) is
chosen large enough to illustrate this process but makes
complete relaxation too computationally demanding. In
Fig. 2(d) we show the global ground state for a smaller
system with the same potential. It should be noted that the
kagome lattice is significantly more complex than lattices
previously achieved through targeted self-assembly with
isotropic interactions.

To demonstrate the range of our method, we also as-
semble a snub square tiling with isosceles triangles [16],
shown in Fig. 3(a). This structure is even more complex
than the kagome lattice since it has a square Bravais
lattice and requires more perturbations to single out the
target basis. We use perturbations at four points in the
energy spectrum, three positive perturbations where
j�̂ðjGijÞj2 ¼ 0, and one negative where j�̂ðjGijÞj2 ¼ n.

For completeness we also show how our method applies
to the previously self-assembled honeycomb lattice [4]. It
is significantly simpler, but physically interesting espe-
cially in its graphene incarnation [20]. Since the power
spectrum has fewer features [�̂ðGiÞ 2 f2; 1g], even a rela-
tively simple potential can exhibit the crucial properties for
self-assembly of the honeycomb lattice; see Fig. 3(b).
All examples above utilize key features of the lattices in

reciprocal space, namely, that the power spectra reaches its
theoretical maximal limit at the reciprocal lattice sites
where jGij ¼ k for some k. If this criterion is not fulfilled,
as is the case for several Archimedean tilings like the
equilateral snub square, one cannot reduce the set of pos-
sible basis configurations to a finite number (discrete
positions) and the choice of perturbations is not as straight-
forward. However, allowing for competing perturbations

FIG. 3 (color online). Isotropic potentials that cause particles
to self-assemble into snub square (a) and honeycomb (b) lattices.

FIG. 2 (color online). A spectral method for targeted self-assembly. By designing an energy spectrum V̂ðkÞ (a) with minima at the
peaks of �̂ and taking its Fourier transform we arrive at a potential VðrÞ (b) that causes particles to self-assemble into a target lattice.
(c) Time evolution of a self-assembling kagome lattice. The number of grains diminishes by random walk of their boundaries, a
process faster for smaller systems (d) but where some local defects are still present as the dimensions of the system is not fine-tuned to
fit the lattice.
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expands the group of achievable lattices. To evaluate a
basis with respect to a given set of perturbations it is
sufficient to calculate the structure factors of the reciprocal
points coinciding with the perturbation frequencies. This is
computationally efficient and therefore an iterative method
could be used to find the necessary perturbations for this
type of lattice. Note that we cannot exclude that there can
exist a basis where the uniqueness of the ground state
cannot be enforced by any perturbation.

In general, proving that a certain configuration is the
ground state of a given potential is a very hard problem. In
fact, the exact nature of the ground state is not rigorously
known even for simple interactions such as the Lennard-
Jones potential [21]. In this Letter we have described
a direct method to design potentials for targeted self-
assembly of lattices, a problem usually approached using
iterative methods involving repeated relaxations of the
system [2,3]. From our construction follows the somewhat
counterintuitive observation that it is actually simpler to
find a potential with a given configuration as a ground state
than to determine the ground state(s) of a given potential.

To conclude, we have demonstrated that there exist
isotropic potentials that produce complex lattices such as
the kagome. Previous work addressing targeted lattice
formation has focused on the structure of the potential in
real space, e.g., [2,3], whereas our approach focuses on the
energy spectrum of the potential. We believe our method to
be better suited for targeted self-assembly of lattices since
their translational invariance is more naturally expressed in
reciprocal space.

The ability to design interactions that self-assemble into
complex lattices is interesting in itself, but this remains a
theoretical observation if the potentials are too complicated
to be feasible except in computer simulations. By analyz-
ing how smoothing and screening affect the energy spec-
trum we can systematically simplify the potentials and
thereby design interactions that should be possible to im-
plement in experimental systems. A complementary ap-
proach to achieve realizability could be to only consider
potentials that can be spanned as a linear combination, or
some other parametrization, of a set of basis potentials that
can be controlled in an experimental system. Our method
can be applied directly in this context by analyzing the
parametrized potential in reciprocal space according to
the design principles we have introduced. Exploring the
possibilities and limitations of combinations of standard
potentials is currently work in progress.

O. L. and M.N. J. acknowledge support from the SuMo
Biomaterials center of excellence.
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