We show that chiral symmetry can be broken spontaneously in one-component
systems with isotropic interactions, i.e. many-particle systems having maximal
a priori symmetry. This is achieved by designing isotropic potentials that lead
to self-assembly of chiral surfaces. We demonstrate the principle on a simple
chiral lattice and on a more complex lattice with chiral super-cells. In
addition we show that the complex lattice has interesting melting behavior with
multiple morphologically distinct phases that we argue can be qualitatively
predicted from the design of the interaction.Comment: 4 pages, 4 figure