132 research outputs found

    Neuronal correlates of serial position performance in amnestic mild cognitive impairment.

    Get PDF
    Objectives: Delayed recall of the first words of a list - the primacy position – is thought to be particularly dependent on intact memory consolidation. Hippocampal volume has been suggested as the primary neuronal correlate of delayed primacy recall in cognitively normal elderly individuals. Here, we studied the association of hippocampal volume with primacy recall in individuals with amnestic mild cognitive impairment (aMCI). Methods: We investigated serial position performance in 88 subjects with aMCI using a 16-word list (CVLT). Primacy and recency performance were measured during learning and delayed recall. Hippocampal volumes were automatically determined from structural MRI scans. We conducted regression analyses with bilateral hippocampal volumes as predictors and serial position indices as outcomes. Results: After controlling for age, gender, and total intracranial volume, bilateral hippocampal volume was not associated with primacy recall either during learning or delayed recall. Primacy performance during learning was associated with the right inferior and middle temporal gyrus as well as the right inferior parietal cortex and supramerginal gyrus. During delayed recall, primacy performance was related to the bilateral supramarginal gyri. Conclusions: Our findings suggest a reduced primacy effect in aMCI already during learning, contrasting previous findings in normal cognitive aging. This might indicate impaired encoding and consolidation processes at an early stage of episodic memory acquisition. Furthermore, our data indicates that hippocampal volume may not be a relevant determinant of residual primacy performance in the stage of aMCI, which may rather depend on temporal and parietal neocortical networks

    Self-similar chain conformations in polymer gels

    Full text link
    We use molecular dynamics simulations to study the swelling of randomly end-cross-linked polymer networks in good solvent conditions. We find that the equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand lengths N_s exceeding the melt entanglement length N_e. The internal structure of the network strands in the swollen state is characterized by a new exponent nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory argument for a self-similar structure of mutually interpenetrating network strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand length.Comment: 4 pages, RevTex, 3 Figure

    The Primacy Effect in Amnestic Mild Cognitive Impairment: Associations with Hippocampal Functional Connectivity

    Get PDF
    Background: The “primacy effect,” i.e., increased memory recall for the first items of a series compared to the following items, is reduced in amnestic mild cognitive impairment (aMCI). Memory task-fMRI studies demonstrated that primacy recall is associated with higher activation of the hippocampus and temporo-parietal and frontal cortical regions in healthy subjects. Functional magnetic resonance imaging (fMRI) at resting state revealed that hippocampus functional connectivity (FC) with neocortical brain areas, including regions of the default mode network (DMN), is altered in aMCI. The present study aimed to investigate whether resting state fMRI FC between the hippocampus and cortical brain regions, especially the DMN, is associated with primacy recall performance in aMCI. Methods: A number of 87 aMCI patients underwent resting state fMRI and verbal episodic memory assessment. FC between the left or right hippocampus, respectively, and all other voxels in gray matter was mapped voxel-wise and used in whole-brain regression analyses, testing whether FC values predicted delayed primacy recall score. The delayed primacy score was defined as the number of the first four words recalled on the California Verbal Learning Test. Additionally, a partial least squares (PLS) analysis was performed, using DMN regions as seeds to identify the association of their functional interactions with delayed primacy recall. Results: Voxel-based analyses indicated that delayed primacy recall was mainly (positively) associated with higher FC between the left and right hippocampus. Additionally, significant associations were found for higher FC between the left hippocampus and bilateral temporal cortex, frontal cortical regions, and for higher FC between the right hippocampus and right temporal cortex, right frontal cortical regions, left medial frontal cortex and right amygdala (p < 0.01, uncorr.). PLS analysis revealed positive associations of delayed primacy recall with FC between regions of the DMN, including the left and right hippocampus, as well as middle cingulate cortex and thalamus (p < 0.04). In conclusion, in the light of decreased hippocampus function in aMCI, inter-hemispheric hippocampus FC and hippocampal FC with brain regions predominantly included in the DMN may contribute to residual primacy recall in aMCI

    Tube Models for Rubber-Elastic Systems

    Full text link
    In the first part of the paper we show that the constraining potentials introduced to mimic entanglement effects in Edwards' tube model and Flory's constrained junction model are diagonal in the generalized Rouse modes of the corresponding phantom network. As a consequence, both models can formally be solved exactly for arbitrary connectivity using the recently introduced constrained mode model. In the second part, we solve a double tube model for the confinement of long paths in polymer networks which is partially due to crosslinking and partially due to entanglements. Our model describes a non-trivial crossover between the Warner-Edwards and the Heinrich-Straube tube models. We present results for the macroscopic elastic properties as well as for the microscopic deformations including structure factors.Comment: 15 pages, 8 figures, Macromolecules in pres

    The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1&#8211;6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7&#8211;34 pathogenic variant

    Get PDF
    Purpose: CADASIL is a small-vessel disease caused by a cysteine-altering pathogenic variant in one of the 34 epidermal growth factor-like repeat (EGFr) domains of the NOTCH3 protein. We recently found that pathogenic variant in EGFr domains 7\u201334 have an unexpectedly high frequency in the general population (1:300). We hypothesized that EGFr 7\u201334 pathogenic variant more frequently cause a much milder phenotype, thereby explaining an important part of CADASIL disease variability. Methods: Age at first stroke, survival and white matter hyperintensity volume were compared between 664 CADASIL patients with either a NOTCH3 EGFr 1\u20136 pathogenic variant or an EGFr 7\u201334 pathogenic variant. The frequencies of NOTCH3 EGFr 1\u20136 and EGFr 7\u201334 pathogenic variant were compared between individuals in the genome Aggregation Database and CADASIL patients. Results: CADASIL patients with an EGFr 1\u20136 pathogenic variant have a 12-year earlier onset of stroke than those with an EGFr 7\u201334 pathogenic variant, lower survival, and higher white matter hyperintensity volumes. Among diagnosed CADASIL patients, 70% have an EGFr 1\u20136 pathogenic variant, whereas EGFr 7\u201334 pathogenic variant strongly predominate in the population. Conclusion: NOTCH3 pathogenic variant position is the most important determinant of CADASIL disease severity, with EGFr 7\u201334 pathogenic variant predisposing to a later onset of stroke and longer survival

    Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative

    Get PDF
    Brain atrophy is increasingly evaluated in cerebral small vessel diseases. We aim at systematically reviewing the available data regarding its extent, correlates and cognitive consequences. Given that in this context, brain atrophy measures might be biased, the first part of the review focuses on technical aspects. Thereafter, data from the literature are analyzed in light of these potential limitations, to better understand the relationships between brain atrophy and other MRI markers of cerebral small vessel diseases. In the last part, we review the links between brain atrophy and cognitive alterations in patients with cerebral small vessel diseases

    Kinetic models with randomly perturbed binary collisions

    Full text link
    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases

    Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.

    Get PDF
    Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD

    Genome-wide genotyping demonstrates a polygenic risk score associated with white matter hyperintensity volume in CADASIL

    Get PDF
    Background and Purpose—White matter hyperintensities (WMH) on MRI are a quantitative marker for sporadic cerebral small vessel disease and are highly heritable. To date, large-scale genetic studies have identified only a single locus influencing WMH burden. This might in part relate to biological heterogeneity of sporadic WMH. The current study searched for genetic modifiers of WMH volume in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a monogenic small vessel disease. Methods—We performed a genome-wide association study to identify quantitative trait loci for WMH volume by combining data from 517 CADASIL patients collected through 7 centers across Europe. WMH volumes were centrally analyzed and quantified on fluid attenuated inversion recovery images. Genotyping was performed using the Affymetrix 6.0 platform. Individuals were assigned to 2 distinct genetic clusters (cluster 1 and cluster 2) based on their genetic background. Results—Four hundred sixty-six patients entered the final genome-wide association study analysis. The phenotypic variance of WMH burden in CADASIL explained by all single nucleotide polymorphisms in cluster 1 was 0.85 (SE=0.21), suggesting a substantial genetic contribution. Using cluster 1 as derivation and cluster 2 as a validation sample, a polygenic score was significantly associated with WMH burden (P=0.001) after correction for age, sex, and vascular risk factors. No single nucleotide polymorphism reached genome-wide significance. Conclusions—We found a polygenic score to be associated with WMH volume in CADASIL subjects. Our findings suggest that multiple variants with small effects influence WMH burden in CADASIL. The identification of these variants and the biological pathways involved will provide insights into the pathophysiology of white matter disease in CADASIL and possibly small vessel disease in general

    Correction to: The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1&#8211;6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7&#8211;34 pathogenic variant

    Get PDF
    This Article was originally published under Nature Research\u2019s License to Publish, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the Article have been modified accordingly
    • …
    corecore