6,354 research outputs found

    Transmission-Line Analysis of Epsilon-Near-Zero (ENZ)-Filled Narrow Channels

    Get PDF
    Following our recent interest in metamaterial-based devices supporting resonant tunneling, energy squeezing and supercoupling through narrow waveguide channels and bends, here we analyze the fundamental physical mechanisms behind this phenomenon using a transmission-line model. These theoretical findings extend our theory, allowing us to take fully into account frequency dispersion and losses and revealing the substantial differences between this unique tunneling phenomenon and higher-frequency Fabry-Perot resonances. Moreover, they represent the foundations for other possibilities to realize tunneling through arbitrary waveguide bends, both in E and H planes of polarization, waveguide connections and sharp abruptions and to obtain analogous effects with geometries arguably simpler to realize.Comment: 35 pages, 9 figure

    Low sidelobe level low-cost earth station antennas for the 12 GHz broadcasting satellite service

    Get PDF
    An experimental investigation of the performance of 1.22 m and 1.83 m diameter paraboloid antennas with an f/D ratio of 0.38 and using a feed developed by Kumar is reported. It is found that sidelobes below 30 dB can be obtained only if the paraboloids are relatively free of surface errors. A theoretical analysis of clam shell distortion shows that this is a limiting factor in achieving low sidelobe levels with many commercially available low cost paraboloids. The use of absorbing pads and small reflecting plates for sidelobe reduction is also considered

    Comparison of Gaussian process modeling software

    Get PDF
    Gaussian process fitting, or kriging, is often used to create a model from a set of data. Many available software packages do this, but we show that very different results can be obtained from different packages even when using the same data and model. We describe the parameterization, features, and optimization used by eight different fitting packages that run on four different platforms. We then compare these eight packages using various data functions and data sets, revealing that there are stark differences between the packages. In addition to comparing the prediction accuracy, the predictive variance--which is important for evaluating precision of predictions and is often used in stopping criteria--is also evaluated

    Coaxial prime focus feeds for paraboloidal reflectors

    Get PDF
    A TE11 - TM11 dual mode coaxial feed for use in prime focus paraboloidal antenna systems is investigated. The scattering matrix parameters of the internal bifurcation junction was determined by the residue calculus technique. The scattering parameters and radiation fields of the aperture were found from the Weinstein solution. The optimum modeing ratio for minimum cross-polarization was determined along with the corresponding optimum feed dimensions. A peak cross-polarization level of -58 dB is predicted. The frequency characteristics were also investigated and a bandwidth of 5% is predicted over which the cross-polarization remains below -30 dB, the input VSWR is below 1.15, and the phase error is less than 10 deg. Theoretical radiation patterns and efficiency curves for a paraboloidal reflector illuminated by this feed were computed. The predicted sidelobe level is below -30 dB and aperture efficiencies greater than 70% are possible. Experimental results are also presented that substantiates the theoretical results. In addition, experimental results for a 'short-cup' coaxial feed are given. The report includes extensive design data for the dual-mode feed along with performance curves showing cross-polarization as a function of feed parameters. The feed is useful for low-cost ground based receiving antennas for use in direct television satellite broadcasting service

    Mesoscopic Quantum Thermo-mechanics: a new frontier of experimental physics

    Full text link
    Within the last decade, experimentalists have demonstrated their impressive ability to control mechanical modes within mesoscopic objects down to the quantum level: it is now possible to create mechanical Fock states, to entangle mechanical modes from distinct objects, store quantum information or transfer it from one quantum bit to another, among the many possibilities found in today's literature. Indeed mechanics is quantum, very much like spins or electromagnetic degrees of freedom. And all of this is in particular referred to as a new engineering resource for quantum technologies. But there is also much more beyond this utilitarian aspect: invoking the original discussions of Braginsky and Caves where a quantum oscillator is thought of as a quantum detector for a classical field, namely a gravitational wave, it is also a unique sensing capability for quantum fields. The subject of study is then the baths to which the mechanical mode is coupled to, let them be known or unknown in nature. This Letter is about this new potentiality, that addresses stochastic thermodynamics, potentially down to its quantum version, the search for a fundamental underlying (random) field postulated in recent theories that can be affiliated to the class of the Wave-function Collapse models, and more generally open questions of Condensed Matter like the actual nature of the elusive (and ubiquitous) Two-Level Systems present within all mechanical objects. But such research turns out to be much more demanding than the usage of a few quantum mechanical modes: all the known baths have to be identified, experiments have to be conducted in-equilibrium, and the word "mechanics" needs to be justified by a real ability to move substantially the centre-of-mass when a proper drive tone is applied to the system

    Project of a superfluid He3 detector for direct detection of non-baryonic dark matter : MACHe3

    Full text link
    MACHe3 (MAtrix of Cells of superfluid Helium 3) is a project of non-baryonic Dark Matter search using superfluid He3 as sensitive medium. Simulations on a high granularity matrix show very good rejection against background events. First results on a prototype cell are very encouraging. Neutron detection has been highlighted as well as cosmic muon detection. A phenomenological study has been done with the DarkSUSY code to investigate complementarity of MACHe3 with existing Dark Matter detectors.Comment: 5 pages, 5 figures, to appear in Proceedings of the 4th Marseille International Cosmology Conferenc

    The Gut Microbiome in Neuromyelitis Optica.

    Get PDF
    Neuromyelitis optica (NMO) is a rare, disabling, sometimes fatal central nervous system inflammatory demyelinating disease that is associated with antibodies ("NMO IgG") that target the water channel protein aquaporin-4 (AQP4) expressed on astrocytes. There is considerable interest in identifying environmental triggers that may elicit production of NMO IgG by AQP4-reactive B cells. Although NMO is considered principally a humoral autoimmune disease, antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subclass, indicating that AQP4-reactive T cells have a pivotal role in NMO pathogenesis. When AQP4-specific proliferative T cells were first identified in patients with NMO it was discovered that T cells recognizing the dominant AQP4 T-cell epitope exhibited a T helper 17 (Th17) phenotype and displayed cross-reactivity to a homologous peptide sequence within a protein of Clostridium perfringens, a commensal bacterium found in human gut flora. The initial analysis of gut microbiota in NMO demonstrated that, in comparison to healthy controls (HC) and patients with multiple sclerosis, the microbiome of NMO is distinct. Remarkably, C. perfringens was the second most significantly enriched taxon in NMO, and among bacteria identified at the species level, C. perfringens was the one most highly associated with NMO. Those discoveries, along with evidence that certain Clostridia in the gut can regulate the balance between regulatory T cells and Th17 cells, indicate that gut microbiota, and possibly C. perfringens itself, could participate in NMO pathogenesis. Collectively, the evidence linking microbiota to humoral and cellular immunity in NMO underscores the importance for further investigating this relationship
    • …
    corecore