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a b s t r a c t 

Gaussian process fitting, or kriging, is often used to create a model from a set of data. Many available soft- 

ware packages do this, but we show that very different results can be obtained from different packages 

even when using the same data and model. We describe the parameterization, features, and optimiza- 

tion used by eight different fitting packages that run on four different platforms. We then compare these 

eight packages using various data functions and data sets, revealing that there are stark differences be- 

tween the packages. In addition to comparing the prediction accuracy, the predictive variance – which is 

important for evaluating precision of predictions and is often used in stopping criteria – is also evaluated. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

When computer simulation models are used to study com-

lex systems, it is often useful to fit an empirical mathematical

odel to quickly approximate the time-consuming computer sim-

lation at input values that have not yet been evaluated. If fit

o sufficient accuracy, these metamodels can replace the original

omputer models in optimization or “what if” analyses. Gaussian

rocess (GP) modeling is commonly used for fitting metamodels

n simulation experiments since it provides a flexible model and

odel-based estimate of prediction error even if the simulation

tself is deterministic. Gaussian process models can also be used

hen the simulation is stochastic, although this requires an ex-

ension of the model. Gaussian process models have become a

arge part in the expanding machine learning toolbox ( Rasmussen

 Williams, 2006 ). 

In this paper we are concerned with how GP models are used

y practitioners, so we compare the performance of some com-

only used software packages. Many practitioners are not famil-

ar with the particulars of GP fitting, so we investigate packages

hat are relatively easy to use and do not require extensive knowl-

dge of all the options and parameters that can be specified. GP

tting is unlike linear regression where, for a given data set, all

oftware packages will produce exactly the same parameter esti-

ates and fitted surface (up to round-off error). Most GP fitting

ackages use essentially the same equations, but there is variability
∗ Corresponding author. 
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n how parameters are defined and estimated through numerical

ptimization. So, in practice, different packages can give substan-

ially different results. Since GP fitting is often used over other fit-

ing techniques because of its model-based estimate of prediction

rror, the quality of a software implementation depends not only

n the accuracy of the fitted surface, but also the accuracy of the

rror predictions. In many applications, random noise or computa-

ional limitations do not allow for extrinsic measures of prediction

ccuracy, and thus an easily obtained estimate of the uncertainty

f prediction is valuable if it is at least reasonably accurate. 

.1. Motivation 

Our major interest in GP fitting is its use to sequentially build

n accurate metamodel of a computer simulation over a broad

ange of input values. This global metamodel could be built au-

omatically using excess computing capacity and then when the

eed for real-time decision making arises, the quickly-evaluated

etamodel can be used in place of the time-consuming computer

imulation model. 

Sequential algorithms require a stopping criterion. For building

n accurate global metamodel, a stopping criterion that is a func-

ion of the estimated prediction error makes sense. Many fitting

ethods, such as splines and neural networks, provide no estimate

f prediction error apart from extrinsic methods like cross valida-

ion which are not related to the fitted model itself. This is where

he model-based estimate of GP fitting is very attractive. In addi-

ion to its use as a stopping criterion, prediction error estimates

an be used by a sequential algorithm to determine the location of

he next set of design points to run with the actual computer sim-

lation model. We think of the sequential selection of these design

https://doi.org/10.1016/j.ejor.2017.10.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.10.002&domain=pdf
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180 C.B. Erickson et al. / European Journal of Operational Research 266 (2018) 179–192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

s  

a  

b  

f  

a  

t  

s  

t

 

a  

s  

a  

a  

p  

t  

v  

q  

e  

t  

e  

e  

r

2

2

 

a  

I  

 

t

 

i  

f

y

 

p  

2  

G  

i  

I  

g  

“  

u  

r  

p  

o  

fi

 

v  

o  

b  

s  

c  

c  

m  

a  

t  

l  

g  

t  

p  
points as a sequential experiment design. A sequential experiment

design is called non-adaptive if the location of each additional de-

sign point is related only to the location of the previous design

points in the input space. An adaptive sequential experiment de-

sign uses not only the location of the previous design points, but

also the observed value of the response at those design points. If

the objective is to find the location of an optimum, adaptive de-

signs are vastly more efficient because they can select locations

where the response is likely to be desirable. However, for build-

ing an accurate global metamodel, the response information can

be used to select design points where the prediction error is esti-

mated to be large or locations that would help estimate the meta-

model parameters more accurately. Our goal is to determine which

software packages have the capability of effectively and reliably es-

timating locations for new design points by estimating the meta-

model and its prediction error. 

GP metamodels are well suited for fitting an accurate global

metamodel since they can fit complicated surfaces, however they

are computationally slow for large data sets. On the other hand, if

the goal is to find a optimum, then a GP can also be used as a sur-

rogate model to search for extrema (e.g., Jones, Schonlau, & Welch,

1998 ). 

1.2. Emerging/growing usage of GP in the simulation community 

Many practitioners in the simulation community use Gaussian

processes as a simple fitting model approach and often are not fa-

miliar with the intricacies of the model. These scientists often use

the basic kriging model and do not delve into the advanced pa-

rameter settings, optimization routines, and alternative correlation

models that are available. 

For example, in aerospace design, Christen, Ichchou, Troclet,

and Ouisse (2014) use GPs to model the acoustic transmission on

launchers in an effort to reduce damage to the payload. The GP

model allows them to perform global sensitivity analysis to see

which parameters in their acoustic model affect the transmission.

Yin et al. (2014) use these models in materials science for mod-

eling functionally graded foam-filled tapered tubes to see which

designs have the best energy absorption characteristics. Du, Xue,

Shyy, and Martins (2014) model the current density of lithium-

ion batteries as a function of eight input parameters. GPs are used

for metamodeling in simulations for corn crops by Villa-Vialaneix,

Follador, Ratto, and Leip (2012) ; their metamodels predict the “ni-

trogen dioxide ( N 2 O ) fluxes and nitrogen leaching from European

farmlands.” Gidaris and Taflanidis (2015) use kriging for earth-

quake engineering to see how the configuration of fluid viscous

dampers affects costs. GPs are used as metamodels in sensitivity

analysis for traffic simulation models by Ciuffo, Casas, Montanino,

Perarnau, and Punzo (2013) . 

These examples highlight the need for Gaussian process soft-

ware to be stable and reliable, in the same way that regression

modeling is trusted for fitting linear models. Of particular impor-

tance for these applications are reliable predictions and accurate

error estimates. The error predictions are especially useful in de-

termining whether more data is needed. 

1.3. Software discrepancies 

This study is inspired by our previous research where we found

discrepancies between two software packages that were using the

same GP model but were giving different results, particularly in

the estimation of the prediction error. We believe that others may

also encounter similar issues with GP fitting and would benefit

from an in-depth study of the various software options. Knowl-

edgeable users may know how to improve the results by setting

advanced options or tuning parameters. However, we are trying
o find what works best for practitioners who may not have this

pecific knowledge. Thus, we select packages that are easy to use,

nd we have left as many options to the default setting as possi-

le. For our comparisons we use packages from a mixture of plat-

orms: the R ( R Core Team, 2014 ) packages DiceKriging, GPfit, laGP,

nd mlegp; JMP, produced by SAS; the MATLAB toolbox DACE; and

he Python modules GPy and sklearn (scikit-learn); These are de-

cribed in more detail in Section 3 . JMP is a commercial package,

he rest are free and publicly available. 

Fig. 1 is a simple example that demonstrates problems that can

rise. It displays a sample of size six (black points) in one dimen-

ion fit using common options for three different software pack-

ges, which then give predictions of the output for x between 0

nd 1. The details of the packages will be explained later in this

aper. The predictions given by laGPE smoothly interpolate be-

ween the observations. We can see that mlegpE exhibits mean re-

ersion, where it predicts the observed points correctly, but then

uickly reverts to the mean away from those points. At the other

xtreme, Dice2 oversmooths, causing its predictions to be far from

he observed points. Furthermore, the predictions of the standard

rror across the range of x values will also be significantly differ-

nt. Thus, even for a simple data set, we can obtain very different

esults. 

. GP fitting 

.1. Model 

A Gaussian process is characterized such that the output from

ny set of input points has a multivariate normal distribution.

f we have n inputs in d dimensions, then the i th input is x i =
(x i 1 , . . . , x id ) 

T . These are stored in the rows of the n by d input ma-

rix X . The output is one dimensional y = (y 1 , . . . , y n ) 
T . 

Following Sacks, Welch, Mitchell, and Wynn (1989) the surface

s modeled as a mean, μ, plus a Gaussian process, z , which is a

unction of x as follows: 

 = f (x ) = μ + z(x ) . 

In general, a linear combination of functions can be used in

lace of μ, which is called universal kriging (e.g., Bastos & O’Hagan,

009 ). Many authors use only a constant term for μ, since the

aussian process is flexible enough to model any linear behavior

n addition to many other more interesting features of the surface.

n this paper we also use a mean-only model, following the sug-

estion of Chen, Loeppky, Sacks, and Welch (2016) , who claim that

there is little to be gained (and maybe even something to lose) by

sing other than a constant term for μ.” One explanation is that

eplacing this constant by a more complicated function f ( x ) (e.g., a

olynomial of an order higher than zero) requires the estimation

f additional (often extraneous) parameters (e.g., polynomial coef-

cients). 

Under this model, the distribution of the outputs, y , is multi-

ariate normal with mean μ1 n , where 1 n is the n -length vector

f ones. The covariance matrix of this multivariate normal distri-

ution is proportional to a correlation matrix, which has a special

tructure such that the points will create a smooth surface. The

onstant of proportionality between the covariance matrix and the

orrelation matrix is a variance that is denoted σ 2 . The correlation

atrix is constructed such that the correlation of the outputs from

ny two distinct points in the input domain is inversely related

o the distance between those two points. In particular, the corre-

ation goes to one as the distance between the two input points

oes to zero, and the correlation goes to zero as the distance goes

o infinity. This allows the output points to form a surface, but also

laces few constraints on the shapes and features of that surface.
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Fig. 1. Comparison of Gaussian process fits from three software packages, laGPE, mlegpE, and Dice2, on one-dimensional data. The black points are the input/output data 

given to each package to fit a GP model. The lines are the predicted mean over the interval [0,1] for each package, showing significant differences. 
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hus the model is 

 ∼ MV N 

(
μ1 n , σ

2 R 

)
, (1) 

here R is the correlation matrix of y . R ij denotes the element in

he i th row and the j th column of R , and is the correlation between

 i and y j . 

The covariance matrix is determined by the correlation func-

ion, for which there are many options. The most common covari-

nce function, which we use here, is the Gaussian correlation that

efines the correlation between the outputs at x i and x j as 

 i j = 

d ∏ 

k =1 

exp 

(
−θk 

(
x ik − x jk 

)2 
)
. (2) 

he estimator for the mean is 

ˆ = 

(
1 n R 

−1 1 n 

)−1 (
1 n R 

−1 y 
)
. 

Then the best linear unbiased predictor (BLUP) of y at x is given

y Sacks et al. (1989) . Using our notation and following the deriva-

ions in MacDonald, Ranjan, and Chipman (2015) , we find 

ˆ 
 = 

ˆ f (x ) = ˆ μ + r T R 

−1 
(
y − ˆ μ1 n 

)
= 

[
(1 − r T R 

−1 1 n ) 

1 

T 
n R 

−1 1 n 

1 

T 
n + r T 

]
R 

−1 y = C T y, (3) 

here r T = (r 1 (x ) , . . . , r n (x )) , r i ( x ) is the covariance between x i 
nd x , and C is a vector of length n defined as shown. The asso-

iated mean squared error of ˆ y at x is 

ϕ(x ) = σ 2 
[
1 − 2 C T r + C T RC 

]
= σ 2 

[
1 − r T R 

−1 r + 

(1 − 1 

T 
n R 

−1 r) 2 

1 n R 

−1 1 n 

]
. 

(4) 

These parameters can be estimated, and then used in Eqs. (3)

nd ( 4 ) to get the predictions. The error added from parameter

stimation is generally not included in the predictive equations,

ut can be estimated through bootstrap techniques, see Kleijnen

2015) . 

.2. Nugget effect 

The model of Eq. (1) does not account for random noise. This

an be done by adding a nugget parameter. To account for random
omoscedastic (constant variance) noise, the model above must be

ugmented as follows: 

 ∼ MV N 

(
μ1 n , σ

2 (R + δI) 
)
. 

If a nugget, δ, is included in the model, then the correlation

atrix is increased along the diagonal by δ: 

 δ = R + δI. 

hen the predictive Eqs. (3) and ( 4 ) can be used with R δ in place of

 . Note that R δ is no longer a correlation matrix since the diagonal

alues are greater than one. 

The nugget has the effect of smoothing the function and al-

owing for noise. Another reason for using a nugget is to provide

omputational stability. The calculations above all require inverting

 , which can be near singular. Adding a nugget will improve this

tability. When the noise is heteroscedastic (i.e. the noise variance

aries across the input domain) then stochastic kriging methods

ust be used as explained in Section 6.1 . 

.3. Parameters 

When fitting a model to data, at least d + 2 parameters must be

stimated: the mean μ, the d correlation parameters θ, and the σ 2 

arameter. One additional parameter, δ, must also be estimated if

he nugget is used. Given the same parameters and the same data,

ifferent software should give the same predictions since they are

sing the same equations. Thus, the differences that we have ob-

erved in predicted values between software packages are likely

aused by different parameter estimates. Each software package

ses some type of numerical optimization method to seek esti-

ators for these parameters that maximize the likelihood func-

ion, see Section 3.3 . Practitioners typically trust these optimization

ethods to work without intervention. Later in this paper, empir-

cal studies essentially demonstrate the performance of the opti-

ization methods for various software packages. 

The mean for the Gaussian process is μ. Predictions far away

rom design points will revert to the mean since they will have

ow correlation with the observed data, but μ has a much smaller

ffect on predictions near design points. As previously discussed,

he mean term can be replaced with a linear model-type function
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Table 1 

Packages we are using. 

Package Version Platform Primary source 

DiceKriging 1.5.5 R Roustant et al. (2012) 

GPfit 1.0–0 R MacDonald et al. (2015) 

laGP 1.3–2 R Gramacy (2015) 

mlegp 3.1.4 R Dancik and Dorman (2008) 

JMP Pro 13.0.0 JMP JMP: Gaussian Process (2016) 

DACE 2.5 MATLAB Lophaven et al. (2002b) 

GPy 1.5.6 Python The GPy authors (2012–2015 ) 

sklearn 0.18.1 Python Pedregosa et al. (2011) 
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βT f , but we do not consider such an expanded model in this paper.

Some analysts prefer to not use a mean term at all. 

The vector of hyperparameters, θ = (θ1 , . . . , θd ) 
T , contains the

correlation parameters of the covariance function. There is one pa-

rameter for each dimension that determines how strong the corre-

lation is between points in corresponding dimension. Sometimes a

different parameterization is used (see Section 3.1 ), which can lead

to changes in the ease and stability of numerical optimization. 

The parameters in θ help determine the correlation, but the pa-

rameter σ 2 also affects the fitting since the covariance between

any two points is cov (y i , y j ) = σ 2 R i j . Note that this variance pa-

rameter is not the variance of a sample from the output surface.

By itself it can be interpreted as the variance of a point “infinitely

far” from all other points. 

The nugget allows for measurement error or stochasticity of the

response. If the nugget is not used (i.e., set to zero), then the model

will interpolate exactly, so the prediction error at a design point

will be zero. This is often useful for deterministic computer ex-

periments, but if the data is stochastic then a nugget should be

estimated and used. Using a nugget improves the numerical sta-

bility by making the correlation matrices easier to invert; this in-

version can be a problem when there is a large number of sample

points. Ranjan, Haynes, and Karsten (2011) provide a method to

use the smallest nugget value that makes the computations stable,

which can help balance the benefits of having stability and a small

nugget. Gramacy and Lee (2012) argue that the nugget provides

protection when the assumption of stationarity is violated or the

data is sparse, and they claim this protection is more important

than stability. 

3. Gaussian process fitting in various software packages 

Table 1 lists the primary sources for our comparison of pack-

ages. Most of the packages provide users with options. We try

to leave most options at their default settings, since that is what

most practitioners are likely to use. However, in order to have fair

comparisons, we make some simple selections so all packages use

comparable models. This section provides overviews of the pack-

ages and describes the selections we use in our study. 

DiceKriging is an R package for kriging created by the DICE

Consortium, which has also released the R packages DiceOptim,

DiceDesign, and DiceEval ( Roustant, Ginsbourger, & Deville, 2012 ).

DiceOptim does the optimization performed when fitting DiceKrig-

ing models. DiceKriging provides many options for fitting and is

very thorough, so it may be a good choice for many R users. 

GPfit , another R package, was created by MacDonald, Ran-

jan, and Chipman. GPfit does the most extensive search in

optimizing the maximum likelihood parameters, as detailed in

MacDonald et al. (2015) . Even when the control parameters for the

optimization were set to reduced values, GPfit was still slower

than the other packages by orders of magnitude. With more than

a hundred design points GPfit becomes prohibitively slow, while

the other packages still run quickly. One advantage of GPfit is that

it focuses on computational stability, using the ideas put forth in
anjan et al. (2011) . It sets the nugget to be the smallest value that

ill avoid singularity, meaning that the nugget is never estimated.

hus GPfit is best suited for noiseless data. Since the default expo-

ential power is 1.95 (instead of 2; see Eq. (2 )), we include it as a

eparate model in some of the testing below. However, we change

he power to 2 for most of the testing to be comparable with the

ther packages. 

laGP is an R package created by Robert Gramacy that provides

n entirely new method for fitting using GPs ( Gramacy, 2015 ). The

la” stands for “local approximate” since the model is designed for

arge data sets. In the laGP model, sparsity is exploited so the krig-

ng is done on a small number of design points that are most im-

ortant for prediction at a given point ( Gramacy & Apley, 2015 ).

hus, it can be run when there are a million design points, since it

ses only a small number of points to make predictions and lever-

ges parallelism. For the purpose of this research, we only use the

asic GP fitting functions provided by the package. Although it is

n R package, the heart of it is a C implementation wrapped in

, meaning it should be faster than a basic R implementation. In

ts current state it is a rather minimal package with a focus on

peed, so it has fewer additional options and may require more

ne-tuning – but is extremely fast. 

The R package mlegp (Maximum Likelihood Estimates of Gaus-

ian Processes) was created by Dancik (2013) . It provides full GP

odeling capabilities. A distinctive feature of mlegp is that the

ser can specify the nugget matrix up to a multiplicative con-

tant, which can be useful when the response is heteroscedastic

s in Dancik and Dorman (2008) . Another feature is the ability to

erform sensitivity analysis, letting the user quantify how the re-

ponse is affected by parameters and how much variability in the

utput can be attributed to changes in the design matrix. 

We also use the Gaussian Process capability of JMP , a data anal-

sis software tool provided by SAS ( SAS Products: JMP, 2016 ). This

rogram is commonly used by practitioners since it provides a

lean interface, makes data analysis simple, and provides useful

utput displays. 

DACE is a MATLAB toolbox for fitting data from deterministic

omputer experiments, so it does not allow for noisy data (see

ophaven, Nielsen, & Søndergaard, 2002b ). Thus it is only suitable

hen there is no random error at any given design point. DACE

as created and last updated in 2002, so while it is commonly

sed, it lacks many of the additional features that other packages

nclude. 

GPy is a Python Gaussian process implementation created by

he Sheffield machine learning group ( The GPy authors, 2012–

015 ). GPy has a tremendous amount of functionality available

or many different cases. During our preliminary tests, GPy gave

oor results due to computation problems when it was version 0.6.

hese problems were fixed after GPy version 1.0 was released in

pril 2016, and we report results for version 1.5.6 in this paper. 

Another open source library for Python is scikit-learn, which

e call sklearn since that is the name of the Python module

 Pedregosa et al., 2011 ). It is targeted for machine learning, not

ust kriging, so there are many other modeling options available

n the module. Up through version 0.17, the kriging implementa-

ion was based on DACE. However, the Gaussian process function-

lity was vastly upgraded with version 0.18, released in September

016 ( scikit-learn developers, 2016a ). The update added options for

he correlation function, called the kernel, including the Gaussian,

atérn, rational quadratic kernel, and others, as well as sum or

roduct combinations of kernels. 

Since they all use nearly the same equations, the real challenge

n model fitting is estimating the parameters. Whereas the predic-

ions are calculated using formulas, parameters must be estimated

y solving an optimization problem. Generally, the parameters are

hosen to be those that maximize the likelihood. However, the so-
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ution found to this depends on starting values, bounds, the al-

orithm used, and the parameterization. There is additional am-

iguity since real data is typically not truly samples from an actual

aussian process. The Gaussian process model is just a useful ap-

roximation technique, and thus there are no true parameter val-

es. The rest of this section examines the differences between the

ackage parameterizations, the options available, and the estima-

ion methods. 

.1. Correlation functions and parameterizations 

The commonly used Gaussian correlation function is shown in

q. (2) above, but there are many variations on it and many other

orrelation functions that can be used. DACE and JMP use this

tandard formulation. The mlegp package uses a different notation

or the correlation parameters, β = θ, but this does not affect the

alculations at all. GPfit uses β = log 10 θ in order to focus the op-

imization search near the center of the search space. 

The Gaussian correlation can be generalized by allowing the

xponent to be changed to any value in the range [1, 2], which

llows for different smoothness in the surface. The default corre-

ation function for GPfit uses 1.95 in the exponent. Ranjan et al.

2011) justifies this change by explaining that it helps to reduce the

omputational problems caused by a near-singular correlation ma-

rix when a space-filling design is used. In our tests, we evaluate

wo versions of GPfit: one using the Gaussian correlation function,

hich we call GPfit2, and one using 1.95 as the exponent, which

e call GPfit1.95. 

The package laGP moves θ to the denominator, and calls it the

ength-scale parameter, as shown in Eq. (5) . This change is simply a

eparameterization and does not affect the model at all. However,

t will affect the optimization routine used to estimate d , the p -

ength vector where the k th element is d k . This formulation is used

y other authors such as Rasmussen and Williams (2006) . The cor-

elation function is 

 i j = 

p ∏ 

k =1 

exp 

(
−
(
x ik − x jk 

)2 
/d k 

)
, (5) 

here p is used to denote the number of dimensions. The nota-

ion used for the parameters is also slightly different in the laGP

ode and vignette (a guide for the R package) than the others. The

ugget is referred to as g in the code and η in the vignette, while

he lengthscale parameters are denoted by d in the code and θ in

he vignette ( Gramacy, 2014 ). 

Another parameterization adjusts the correlation function so

hat the lengthscale parameters, denoted as � , appear squared in

he denominator. This puts � on the same scale as x . In addition

 factor of two is added in the denominator so that the correla-

ion function closely resembles the Gaussian probability distribu-

ion function, as shown in Eq. (6) . This is used by DiceKriging ,

klearn and GPy ( The GPy authors, 2015 ). 

 i j = 

p ∏ 

k =1 

exp 

(
−1 

2 

(
x ik − x jk 

)2 
/� 2 k 

)
. (6) 

Another popular correlation function is the Matérn function. It

akes a parameter ν that determines the smoothness. Commonly

sed values for ν are 3/2 and 5/2. The Matérn correlation function

an be seen as a generalization of the Gaussian correlation func-

ion since they are equivalent for ν = ∞ . According to Roustant

t al. (2012) , the default correlation function for DiceKriging is the

atérn with ν = 5 / 2 , which is 

g(h ) = 

(
1 + 

√ 

5 | h | + 

5 

3 

h 

2 
)

exp 

(
−

√ 

5 | h | ), 
here h = 

√ 

p ∑ 

k =1 

(
x ik − x jk 

)2 
/� 2 

k 
. (7) 

GPfit, GPy, and sklearn have the Matérn correlation as an op-

ion. We include two versions of DiceKriging in our comparisons,

ne using the Gaussian correlation, which we label Dice2, and an-

ther using the Matérn ν = 5 / 2 correlation function, since it is the

efault for DiceKriging, which we label DiceM52. 

.2. Nugget options 

There are also options available for the nugget parameter. 

DiceKriging defaults to having no nugget. There is also the op-

ion of setting the nugget to a constant or estimating it. For both

iceKriging with the Gaussian (Dice2) and the Matérn (DiceM52),

e let it estimate the nugget. Preliminary tests involving noiseless

ata did not reveal noticeable differences between fits based on

o nuggest and an estimated nugget. We chose to include the ver-

ion that estimates the nugget since DiceKriging is also useful for

tochastic kriging. See more details in Section 6.1 . 

GPfit uses the smallest nugget value that keeps the computa-

ion stable, as explained in Ranjan et al. (2011) , in order to prevent

ver-smoothing. The nugget value they use is 

lb = max 

{
λn ( κ( R ) − e a ) 

κ( R ) ( e a − 1 ) 
, 0 

}
, 

here λn is the largest eigenvalue of R , a is a parameter set to

5 for space-filling designs, and κ( R ) is the condition number of

 . MacDonald et al. (2015) compare GPfit to mlegp and state that

mlegp occasionally crashes due to near-singularity of the spa-

ial correlation matrix,” which agrees with what we have seen, so

here is a benefit to setting the nugget in this way. 

In laGP the user must either set the nugget to a fixed value or

ell laGP to estimate it, since there is no default option. We tried

everal values for the nugget in preliminary tests, and found that

 × 10 −6 worked best. Thus, in our tests we run laGP both with

he nugget set to 1 × 10 −6 , called laGP6, and with the nugget be-

ng estimated, called laGPE. laGP is also different from the other

ackages we use since it performs the calculations from a Bayesian

erspective. In practice this makes little difference for users, since

he default priors are very general. In addition, laGP is the only

ackage we use that does not estimate a mean term. 

By default, mlegp will not use a nugget unless there are re-

eated design points, but it can be estimated or set to a constant

r a vector ( Dancik, 2011 ). For our tests we run both with nugget

xed to 0, and with a nugget estimated using a starting value of

 × 10 −6 . We call these mlegp0 and mlegpE, respectively. As shown

elow, we find there is little difference. 

JMP provides an option to fit the model with no nugget or with

n estimated nugget. We run JMP using the Gaussian correlation

oth with estimating a nugget and without a nugget, and we refer

o these two as JMPE and JMP0, respectively. 

Since it is designed for noiseless computer experiments, DACE

oes not let the user set or estimate the nugget. Instead it uses a

mall value equal to 2 . 22(10 + n ) × 10 −16 for computationally sta-

ility. 

The nugget can be set or estimated in GPy by setting the noise

ariance parameter when using the GPRegression function. We set

his parameter to a small value, 1 × 10 −8 , which forces the model

o estimate a nugget parameter. 

The nugget is called alpha by sklearn , and defaults to 1 × 10 −10 .

lternatively, the nugget can be specified by using a WhiteKernel,

nd this method allows it to be estimated. We use the default

alue in our investigation. 

Table 2 shows the packages we use in our study, along with

he differences in the parameterization of θ and the options and
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Table 2 

Settings for each software version used in the study. DiceM52 uses the Matérn cor- 

relation function with ν = 5 / 2 , GPfit1.95 uses the power exponential correlation 

with power 1.95, and all other use the Gaussian correlation function. 

Package θ Nugget 

Can Can Setting 

set? estimate? Default used 

DiceM52 

Dice2 

θ2 = 1 / (2 θ) � � 0 Est 

GPfit1.95 

GPfit2 

β = log 10 θ – – δlb δlb 

laGP6 

laGPE 

d = 1 / θ � � NA 1e −6 Est 

mlegp0 

mlegpE 

β = θ � � 0 0 Est 

JMP0 

JMPE 

θ = θ � � NA 0 Est 

DACE θ = θ – – (10+n)2.2e −16 (10+n)2.2e −16 

GPy � 2 = 1 / (2 θ) � � Est Est 

sklearn � 2 = 1 / (2 θ) � � 1e −10 1e −10 
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n  
defaults for the nugget. The last column shows how we set the

nugget for our study. 

3.3. Optimization techniques 

There also many options in most packages for setting up the

optimization routine that estimates the parameters. There are

different algorithms, choices of starting points and number of

restarts, and stopping criteria. We use the default settings for all

packages unless specified otherwise. 

By default, DiceKriging uses the L-BFGS-B algorithm for pa-

rameter optimization. The other option available, but not used in

our study, is the genoud algorithm from the rgenoud R package

( Mebane Jr & Sekhon, 2011 ), that combines genetic (evolutionary

search) algorithms with derivative-based algorithms. 

GPfit uses the most in-depth optimization algorithm. As de-

tailed in MacDonald et al. (2015) , GPfit uses L-BFGS-B ( Byrd, Lu,

Nocedal, & Zhu, 1995 ) with multiple starts to estimate the corre-

lation parameters which they have transformed to be β = log 10 θ.

This transformation focuses the optimization search more to the

middle of the search space than to the edges. In Section 2.3 of

MacDonald et al. (2015) , they describe how GPfit adds bounds for

each βk to create a domain where the optimum is likely to be

found. The function that is minimized is the negative profile log-

likelihood (which they call the deviance), 

−2 log L θ ∝ log | R| + n log 

[ (
y − 1 n ̂  μ(θ) 

)T 
R 

−1 
(
(y − 1 n ̂  μ(θ) 

)] 
. 

GPfit begins its search with a space-filling LHD in the space of all

the β i ’s, then selects a number of parameter sets that have low

deviance. These points are clustered using the k -means algorithm.

Then the L-BFGS-B algorithm is run using these cluster centers as

the starting point in each restart. 

laGP requires an initial value for the correlation parameters and

nugget (if estimated) with no default provided. However laGP pro-

vides the functions darg and garg which provide good initial

starting values for θ and δ using Empirical Bayes ( Gramacy, 2015 ).

We use these two functions in our tests to find starting values. 

The package mlegp estimates the parameters using L-BFGS ( Liu

& Nocedal, 1989 ) in a gradient method ( Dancik, 2013 ). The starting

points are found using multiple Nelder-Mead simplexes. 

JMP is proprietary software and provides no details on the opti-

mization or other details beneath the surface. There are no options

that can be set for the optimization. 

DACE uses a pattern search that iterates through the steps of

exploring, moving, and rotating, after finding a suitable starting
oint as in Lophaven, Nielsen, and Søndergaard (2002a) . By default,

ACE uses a single correlation parameter for all dimensions and

nitializes it to 0.1. In order to be comparable to the other meth-

ds, we retain the 0.1 value, but make it into a d -length vector so

hat these packages fit a correlation parameter for each dimension.

n DACE, upper and lower bounds for each θ i must be provided.

e set these to be generous, with the lower bounds to 1 × 10 −4 

nd the upper bounds to 1 × 10 3 . 

GPy begins with initial correlation parameters set to 1. How-

ver, by default GPy uses the same correlation parameter in ev-

ry direction, so to get a separate parameter for each dimension,

e had to set ARD = True . We also had to set the likelihood vari-

nce to a small value of 1 × 10 −8 , instead of its default of 1, to get

ood results. GPy allows a choice of optimization routines: TNS,

-BFGS-B, and BFGS from Scipy ( Jones, Oliphant, Peterson et al.,

001 ); Adadelta and RProp from the Python module climin; as well

s Nelder-Mead simplex routine and Scaled Conjugate Gradients.

he optimization is run through the Python module “paramz .” We

se the default of L-BFGS-B. We also use five optimization restarts

o ensure the optimization results are favorable, although this in-

reases the run time. 

By default, sklearn uses the “fmin_l_bfgs_b ” optimiza-

ion algorithm from scipy.optimize ( scikit-learn developers, 2016b;

ones et al., 2001 ). This algorithm is an implementation of the L-

FGS-B algorithm ( Byrd et al., 1995 ). There is an option to use mul-

iple restarts to help the optimization avoid getting stuck in a local

inima. By default the number of restarts is zero, which is what

e use in our tests. However, trying more restarts may improve

erformance. In our initial testing with sklearn, we observed poor

esults when the data was not scaled. In our comparison tests in

his paper, we scaled all our data to have mean 0 and range 1, as

iscussed in Section 5 . 

. Empirical study methodology 

In this section, we discuss the criterion on which we will com-

are different GP fitting software packages. When constructing a

lobal metamodel, two properties of GP modeling are of primary

mportance: (1) the accuracy of prediction, and (2) the accuracy of

he estimate of prediction error. The first is important for obvious

easons. The second is important to allow the practitioner to assess

hether the metamodel is fit for use or whether additional data

s needed to improve its fit The differences between parameteri-

ations mentioned in Section 3.1 do not matter here because our

nterest is on the accuracy of the predictions. We focus on global

tting, not on optimization where the comparison criterion would

e the accuracy of the estimation of the optimal input vector and

he estimated output scalar. 

.1. Model accuracy 

When we evaluate model accuracy, we use a known surface and

ompare the actual surface and the model’s predicted values at

 large number of points, called prediction points. The prediction

oints are distributed throughout the area of interest for the input

alues. We use the square root of the mean of the squared errors

t the prediction points as an estimate of the model’s RMSE; for

ase of discussion we will call this estimate the “empirical model

MSE” or “EMRMSE.” Thus, using m prediction points x ∗1 , . . . , x 
∗
m 

, 

MRMSE = 

√ 

1 

m 

m ∑ 

i =1 

( ̂  y (x ∗
i 
) − y (x ∗

i 
)) 2 . 

antner, Williams, and Notz (2003 , p. 108) call this the empiri-

al root mean squared prediction error. Although this metric does

ot account for the distribution of the prediction errors, it is a
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ommonly-used single number that summarizes the quality of the

t of the model across the entire surface. 

We use EMRMSE to assess the quality of the fit for a model.

his measure is primarily useful when comparing two models fit-

ing the same surface since the model with the lower EMRMSE fits

he surface better. Also, in our empirical studies in Section 5 , the

alue of EMRMSE can be very roughly thought of as an average rel-

tive error for the model. This is because EMRMSE estimates the

tandard deviation of the prediction errors, and, as discussed in

ection 5 , we scale the responses (at prediction and design points)

o have a range of 1. 

.2. Accuracy of estimated prediction error 

To evaluate the accuracy of the model’s estimated prediction er-

or, we estimate the model’s mean squared error ϕ( x ), defined in

q. (4) , by ˆ ϕ (x ) , obtained by substituting the fitted model’s param-

ter estimates for the unknown parameters in Eq. (4) . The square

oot of the average of the estimated mean squared errors over all

rediction points is used as the summary measure for the pre-

icted model RMSE and called the “PMRMSE.”

MRMSE = 

√ 

1 

m 

m ∑ 

i =1 

ˆ ϕ (x ∗
i 
) 

Since EMRMSE and PMRMSE both measure the model’s RMSE,

e expect them to be approximately equal. If we observe EMRMSE

PMRMSE, that confirms the accuracy of the model’s prediction

rror. If EMRMSE is much larger than PMRMSE, then the model is

verconfident in its fit, since its estimated prediction errors will be

maller than the empirical errors. Conversely, if EMRMSE is much

ess than PMRMSE, then the model’s estimated prediction errors

re conservative. 

Note that Bastos and O’Hagan (2009) suggest a different way to

ompare predictive errors by using the predictive covariance ma-

rix. For a single prediction point, we could calculate the standard-

zed prediction error, which should follow a t -distribution. For the

ntire set of prediction points, these will be correlated. Intuitively

his makes sense because the prediction functions are continuous

nd the true surface is usually also continuous, so points near each

ther will necessarily have related errors. This error analysis re-

uires the predictive covariance matrix so that the standardized

rrors can be decorrelated. This method places equal importance

n all parts of the surface. However, in practice, one usually fo-

uses on areas where the predicted error is large. Moreover, most

oftware packages do not provide the predictive covariance ma-

rix, and the errors can differ by orders of magnitude depending

n how close they are to sample points. For these reasons, we use

MRMSE and PMRMSE as the basis for assessing the accuracy of

he estimated prediction error for a given model. 

.3. Comparison to linear model 

Fitting GPs can be computationally intensive when the number

f points is large. Thus we only want to make the computational

nvestment when we will see a significant improvement over sim-

ler models. In preliminary investigations, we found that when the

urface is too trivial or the sample size is too small that fitting a

inear model – or even just the mean – can give predictions simi-

ar to the fitted GP model. Thus, in our empirical study, whenever

e fit a GP model in d dimensions, we also fit a d -dimensional

yperplane, which we call the linear model (LM). Using the same

rediction points, we then calculate the EMRMSE for the LM. Use

f the complicated GP model is only beneficial if the EMRMSE of

he GP model is substantially less than that of the LM. When the

MRMSE of the GP model is greater than or equal to that of the
M, it indicates that the GP model is unsuitable for the situation.

n either case, comparisons of GP model fitting are not of interest.

hus throughout the empirical study we will define ξ (M) as the

atio of the EMRMSE of the fitted GP model M, and the EMRMSE

f the LM, as shown in Eq. (8) : 

( M ) = 

EMRMSE(M) 

EMRMSE(LM) 
. (8) 

This is similar to the normalized RMSE measure, e rmse, ho , used

y Chen et al. (2016) , which is the ratio of the RMSE of the GP

odel to the RMSE of the model that only fits the mean. We be-

ieve ξ is more useful because practitioners are more likely to con-

ider a linear model as an alternative to the Gaussian process. 

To keep PMRMSE on the same scale, we also define π (M) as the

atio of the PMRMSE of M to the EMRMSE of the LM, as shown in

q. (9) : 

( M ) = 

PMRMSE(M) 

EMRMSE(LM) 
. (9) 

. Empirical study results 

In this section we compare the aforementioned software pack-

ges on four test functions: the borehole function, the output

ransformer-less (OTL) circuit function, the Dette and Pepelyshev

-dimensional model, and the Morris function. For all the func-

ions, we created independent maximin Latin hypercube samples

LHSs) using the R package MaxPro ( Ba & Joseph, 2015 ) for the de-

ign matrices, and a much larger (20 0 0 point) maximin LHS for

he prediction points. Using a maximin LHS helps ensure that the

ata represents the input space well. We use x i ∈ [0, 1] d , which is

ommonly done to avoid numerical issues and make sure the data

cale is reasonable for the correlation function. When calculating

unction values, the input values, x i , are scaled to be in the appro-

riate domain of each function. The output, y , can also be stan-

ardized before fitting the model to it since the range can affect

ow much of the variation in the data is seen as noise. Many soft-

are packages do this standardization automatically or have the

ption to do so. For all of our comparisons shown in Section 5 , the

utput data is scaled to have mean 0 and range 1, as recommended

y Gramacy (2007) . 

A common recommendation in computer experiments is to use

 sample size of ten times the number of input dimensions, i.e.,

hoose n = 10 d ( Loeppky, Sacks, & Welch, 2009 ). We find that this

ample size is often too small, giving predictions only slightly bet-

er than a linear model. Thus we use input samples of size n = 10 d

nd n = 20 d taken from space-filling designs in our comparisons

hat follow. The amount of data needed to get a good fit depends

n the curvature of the data, the quality of the design, and the de-

ired accuracy of the model. 

On each sub-plot of the following figures, we generate five sur-

aces, called macroreplicates, and fit them using thirteen software

ackage versions. Different shaped icons represent the results for

ifferent macroreplicates. The five macroreplicates are generated

y five different sets of design and prediction points. Thus, we

ave 65 fitted metamodels on each plot – thirteen packages fit-

ing five macroreplicates each. The x-axis plots ξ (M i ) and π (M i )

or each macroreplicate, as defined in Eqs. (8) and ( 9 ), where M i 

epresents one of the 65 metamodels. ξ (M i ) is plotted on the solid

ine for each package with solid icons, while the gray icons slightly

bove each solid line are π (M i ). Lines connecting the π value to

he ξ value for each macroreplicate make it easy to see whether

he packages are underestimating or overestimating the actual er-

or. A positive slope for the line indicates overestimation of the er-

or, while a negative slope indicates underestimation of the error.

hus, a good metamodel M i will have a ξ (M i ) near zero and will

lso have π (M ) roughly equal to ξ (M ). Each macroreplicate uses
i i 
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the same icon shape for ξ (M i ) and π (M i ) so they can be compared

to each other and across the different software packages. 

The range of the plots are selected to allow the reader to see

the relationships between the ξ and π values across all packages.

Several of the problematic values appear to the left of the plots,

indicating that their values are too small to fit on the plot. Values

that are too large are shown to the right of the plots. All of the

data values in the examples in this paper, including those that ap-

pear outside of the plot ranges, are available in the data in brief

article associated with this paper ( Erickson, Ankenman, & Sanchez,

2017 ). 

5.1. The borehole function 

The borehole function described by Worley (1987) is commonly

used for testing emulators ( Morris, Mitchell, & Ylvisaker, 1993 ). The

input is 8-dimensional and each variable is confined to specified

ranges. The borehole function, f ( x ), is 

f (x ) = 

2 πT u (H u − H l ) 

log (r/r w 

)[1 + 

2 LT u 
log (r /r w ) r 2 w K w 

+ T u /T l ] 
. 

We used an R implementation based on the one provided by

Surjanovic and Bingham (2016) , where they recommend selecting

sample points following a normal distribution for r w 

, a lognormal

distribution for r , and uniform distributions for the other six vari-

ables in their respective ranges. We followed these recommenda-

tions for choosing sample points in each dimension, transforming

them to be uniform in [0, 1]. 

We ran the full 8-dimensional function, and then projected that

surface on the 4-dimensional subspace of r w 

, T u , T l , and L , with the

other values set to the middle value of their range. Fig. 2 shows

the results in plots of our comparisons. The top row has the 4-

dimensional function, the bottom row has the full 8-dimensional

function, and we use two different sample sizes for each dimen-

sion. The left column of plots in Fig. 2 has results for the smaller

sample sizes ( n = 40 for 4 dimensions and n = 80 for 8 dimen-

sions). The right column has results for the larger sample sizes

( n = 80 for 4 dimensions and n = 160 for 8 dimensions). 

When the input sample size is increased by a factor of 2, the

ξ and π values are typically reduced by about 30%. All four plots

in Fig. 2 have been put on the same scale for easier comparison

of this effect. The GP metamodels clearly fit the borehole surface

better than the linear model since almost all of the ξ values are

less than one. The exceptions are one macroreplicate of sklearn in

Fig. 2 (b) and some of the JMP0 macroreplicates in Fig. 2 (c) and

(d); these have been cut from the plot and placed to the right to

indicate that they could not fit on the plot without skewing the

axes. 

We can see that there is a problem in the error estimates for

all of the packages. For almost every macroreplicate, π is less than

ξ , often by a factor of two or more. Users should be aware of the

possibility of systematic underestimation of model error as seen in

the borehole example. These discrepancies between predicted er-

rors and actual errors are likely due to the data not actually com-

ing from a Gaussian process, so the surface does not match the

model assumptions. Methods such as cross-validation can be used

to check for this problem. 

Overall, GPfit, mlegp, JMPE, and GPy have the best perfor-

mances on all four examples shown. sklearn has trouble on some

of the macroreplicates in four dimensions, but does better in eight

dimensions. DiceKriging, laGP, and DACE generally perform a little

worse than the others, while JMP0 has some serious problems on

the 8-dimensional surfaces. 

Fig. 3 shows how long (in seconds on a log scale) it took to

fit each macroreplicate and make m = 20 0 0 predictions for the

8-dimensional borehole surface with n = 80 and n = 160 design
oints. All macroreplicates for all packages were run on the same

ode of a Linux cluster, except for JMP which was run on a per-

onal Dell laptop running Windows. The relative run times for each

ackage are the same for both sample sizes, and the same pattern

s found on other test functions as well. GPfit is by far the slow-

st, taking over 15 minutes per macroreplicate for n = 160 . JMP is

he next slowest, taking two minutes per macroreplicate, but this

ata is unreliable since it was run on a different computer. The

ext slowest is mlegp, taking about eight minutes, with GPy only

lightly faster. The fastest packages were DiceKriging, laGP, sklearn,

nd DACE, which only took a handful of seconds. Thus we see that

here is a massive difference in the run times, with a factor of over

0 0 0 between the fastest and the slowest packages performing the

ame task. The times shown in this plot are for the borehole func-

ion, but the relative times are similar for the other functions. In

articular, GPfit and JMP are extremely slow, mlegp is also very

low, and the rest are much faster. Therefore when one is choosing

 package, it may be necessary to consider not only the model op-

ions and capability, but also how quickly it runs. Run times must

lso be considered in the context of the data being used. If the data

omes from a simulation model that takes hours per observation,

hen the difference of a minute may be negligible. 

.2. The OTL circuit function 

Ben-Ari and Steinberg (2007) use a test function that describes

n output transformer-less (OTL) push-pull circuit. There are six

nput parameters, five for resistors ( R b 1 , R b 2 , R f , R c 1 , R c 2 ) and one

or circuit gain ( β). The equation is given by 

 m 

= 

(R b1 + 0 . 74) β(R c2 + 9) 

β(R c2 + 9) + R f 

+ 

11 . 35 R f 

β(R c2 + 9) + R f 

+ 

0 . 74 R f β(R c2 + 9) 

(β(R c2 + 9) + R f ) R c1 

ith 

 b1 = 

12 R b2 

R b1 + R b2 

. 

e used an R implementation provided by Surjanovic and Bing-

am (2016) . Fig. 4 shows our results, based on five macroreplicates

f n = 60 and n = 120 observations. 

On this function, most of the fits are much better than the lin-

ar model since most of the ξ values are below 0.1. Some of the

aGPE and JMP0 points are placed to the right of the plot to in-

icate that their values are off the scale. The problems exhibited

y some of these packages, such as DiceKriging and laGPE, may be

educed by tuning the optimization parameters, but we did not at-

empt this as not all practitioners may have this insight. For both

ample sizes, the best ξ values come from GPfit2, mlegp, JMPE,

Py, and sklearn, with GPfit1.95, laGP6, and DACE performing only

lightly worse. DiceKriging, laGPE, and JMP0 perform poorly com-

ared to the best packages. 

The prediction errors, π values, are fairly accurate on this data.

ost of the π values are less than the corresponding ξ values by

 small margin, but not by as much as in the borehole results of

ig. 2 . Doubling the sample size reduced the ξ and π by about a

actor of two, showing that increasing the sample size beyond 10 d

an have a large impact. 

.3. Dette and Pepelyshev 

Dette and Pepelyshev (2010) present an 8-dimensional model

which is highly curved in some variables and has less curvature in

nother variables.” The input is in [0, 1] 8 , and the output is given

y the equation below: 
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Fig. 2. Borehole 4-D and 8-D comparison. All four plots are on the same scale. 
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(x ) = 4(x 1 − 2 + 8 x 2 − 8 x 2 2 ) 
2 + (3 − 4 x 2 ) 

2 

+16 

√ 

(x 3 + 1) (2 x 3 − 1) 2 + 

8 ∑ 

k =4 

k log 

( 

1 + 

k ∑ 

i =3 

x i 

) 

. 

his function and its R implementation were also taken from

urjanovic and Bingham (2016) . 

Fig. 5 shows the results when we test this function with n = 80

nd n = 160 design points in 8 dimensions. There are clear differ-

nces between the packages in these plots. GPy has the smallest ξ
alues for both plots, with GPfit2 not far behind. There is a large

ifference in the ξ values between GPy and the worst perform-

rs, so again we see that the software used makes a difference.

MP0 is consistently bad on these examples, while JMPE is very

nconsistent, with a mixture of good and bad fits. laGP6 is gen-

rally very good, while laGPE, despite being consistent, is one of

he worst performers. GPfit, mlegp, GPy, and sklearn perform the

est on this function. The error predictions for all packages ex-

ept JMP are generally good, being within 25% of the actual er-
or. We can also see that the performance ordering of the pack-

ges on this problem is similar to those for the OTL circuit exam-

le in Fig. 4 . Again increasing the number of observations beyond

0 d had a decidedly beneficial effect, roughly halving the ξ and π
alues. 

.4. Morris function 

The Morris function is a 20-dimensional function created by

orris (1991) , and we use the version presented by Le Gratiet,

arelli, and Sudret (2016) : 

f (x ) = 

20 ∑ 

i =1 

βi w i + 

20 ∑ 

i< j 

βi, j w i w j + 

20 ∑ 

i< j<l 

βi, j,l w i w j w l + 5 w 1 w 2 w 3 w 4 . 

Here, x ∈ [0, 1], w i = 2(1 . 1 x i / (x i + 0 . 1) − 1 / 2) for i = 3 , 5 , 7 , and

 i = 2(x i − 1 / 2) for all other values of i . The coefficients are

i = 20 for i = 1 , . . . , 10 , βi, j = −15 for i, j = 1 , . . . , 6 , βi, j,l = 10 for

, j, l = 1 , . . . , 5 . All other coefficients are set to βi = (−1) i , βi, j =
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Fig. 3. Run times (seconds) for borehole 8-D with n = 80 and n = 160 , both with m = 20 0 0 . There are enormous differences among the packages, but the relative speeds of 

the packages are similar. 

Fig. 4. OTL circuit comparison. 
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(−1) i + j and βi, j,l = 0 . The results from using the Morris func-

tion are shown in Fig. 6 using input samples of size n = 200 and

n = 400 . 

DACE has fitting problems, especially for n = 200 , but the rest

are fairly consistent. The ξ values are all fairly large, many around

0.4. This demonstrates that in higher dimensions it is more diffi-

cult to get a fit that is substantially better than the linear model,

especially when the function is relatively linear. GPfit, laGP6, JMPE,

GPy, and sklearn perform the best, but they all underestimate the

error by a significant amount. 

6. Recent literature/Advanced models 

In this paper, we have focused on an ordinary GP model. How-

ever, there are many variations of this model that can be used

in situations where there is domain knowledge about the data or

where the basic model is inadequate. If the data is noisy then a
ugget should always be used and estimated. There are also many

ifferent correlation functions beyond the Gaussian and Matérn

hat may perform better with certain types of data. If the data set

s large then there are approximation models that should be used

nstead, since they will run much faster with a small loss of accu-

acy. If there are n design points, then the computation complexity

or kriging is O ( n 3 ), which is far too slow for modern problems

ith millions of data points. 

.1. Stochastic kriging 

While computer experiments often assume that there is no

ariability in the data, this is not the case in stochastic simula-

ions. When the noise is similar across the entire response sur-

ace, then the basic model should suffice by using the nugget term.

owever, when the noise level varies across the surface, called

eteroscedasticity, stochastic kriging should be used. Stochastic
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Fig. 5. Dette–Pepelyshev comparison. 

Fig. 6. Morris comparison. 
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riging, by Ankenman, Nelson, and Staum (2010) , accommodates

or noise in data collected by assuming that the variance in the

ata is different at each design point. In order to estimate the

oise at each point, replicates must be collected at every point

n the design. This is equivalent to having a different nugget at

ach design point. Thus instead of adding δI to the diagonal of

he correlation matrix, diag( δ) is added, where δi ∝ Var( x i ). This re-

uires Var( x i ) to be estimated by replicates at each unique design

oint. 

Stochastic kriging has been used for modeling simulation data

rom many fields, such as in game theory simulations ( Pousi,

oropudas, & Virtanen, 2010 ) and finance for measuring portfolio

isk ( Liu & Staum, 2010 ). Stochastic kriging models are often run in

wo stages. In the first stage, a small number of samples are taken

or all design points. For the second stage, the number of samples
or each point is allocated according to Eq. (29) in Ankenman et al.

2010) , which puts more replicates at points that have large sample

ariances and are centrally located. 

Of the software packages discussed above, only mlegp and

iceKriging are able to perform stochastic kriging. For each pack-

ge a variance estimate at each point must be provided. In mlegp,

his vector is passed as the “nugget” parameter, and the diagonal of

he nugget matrix is set to be proportional to these values ( Dancik,

011 ). The nugget scaling parameter is estimated along with the

ther parameters. In DiceKriging, this same vector as passed as the

noise.var” parameter ( Roustant et al., 2012 ). The prototype soft-

are developed for the paper Ankenman et al. (2010) used off-the-

helf optimization algorithms that do not scale to larger problems

nd often have convergence issues. It will not be considered in this

omparison. 
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Fig. 7. M/M/1 stochastic kriging comparison using mlegp and DiceKriging. Both use 5 samples at each point in the first stage, and then the total number of points allocated 

in the second stage is n 2 = 100 for Fig. 7 (a) and n 2 = 200 for Fig. 7 (b). 
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To demonstrate the use of mlegp and DiceKriging for stochastic

kriging, we use data taken from the standard M/M/1 queue model.

6.1.1. M/M/1 queue 

The M/M/1 queue is a service model that represents a system

with one server and interarrival and service times that are inde-

pendently exponentially distributed. We set the service rate λ = 1

and the arrival rate 0 ≤ x < 1. We model the number of customers

waiting in the queue as a function of the arrival rate, which is

known to have mean y (x ) = x/ (1 − x ) and variance x/ (1 − x ) 2 . For

design points we use seven equally-spaced points at (0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9). In the first stage, we take n 1 = 5 samples at each

point. Then the second stage is run with a total of n 2 = 100 and

n 2 = 200 points allotted to the individual design points accord-

ing to the square root of the variance of the output for the first

stage samples. The results are shown in Fig. 7 , where there is no

distinguishable difference between the two packages. Even with

n 2 = 100 observations the ξ values are relatively large, showing

that stochastic kriging typically needs more observations to fit a

surface. Both packages tend to underestimate the error when the

sample size is small. 

6.2. Other models 

Many advances in Gaussian process fitting have been adapting

the method to be suitable for large amounts of data, such as by ex-

ploiting sparsity. Snelson and Ghahramani (2005) present a sparse

GP method that reduces the size of the covariance matrix by using

pseudo-input points. Hensman, Fusi, and Lawrence (2013) produce

a method that works for data sets with millions of data points,

which would be prohibitively slow for the standard model. Spar-

sity can be induced into the correlation matrix by having a cor-

relation function with compact support, meaning that it is zero

for points that are sufficiently far away ( Rasmussen and Williams,

2006 , p. 87–8). These functions usually are piecewise polynomi-

als that resemble the Gaussian correlation function. Gramacy and

Apley (2015) provides a way to fit GPs to large experiments

quickly. Their model induces sparsity by only selecting the points

that provide the greatest reduction in predictive variance when

calculating the metamodel function at a given point. They also al-

low for quick sequential updating and trivial parallelization, mak-

ing their method very practical. Gramacy (2015) has provided the R

package laGP that implements most of these methods, in addition

to the basic model that we explore in this paper. Further work in

Sung, Gramacy, and Haaland (2016) makes the search for the best

sub-design much faster. 
The recent paper by Binois, Gramacy, and Ludkovski (2016) pro-

ides a significant improvement to stochastic kriging. They provide

 more favorable framework by putting the problem in an inferen-

ial scheme with a single objective and explicit derivatives. They

ntroduce some smoothing techniques that allow design points

ithout replicates to be used in the model, which is a short-

oming of previous versions of stochastic kriging. Also, they use

oodbury ’s (1950) identity to ensure that the computational com-

lexity is similar to other stochastic kriging methods. 

Advances have also come by combining the Gaussian pro-

ess with other models. Neural networks inspired the work of

amianou and Lawrence (2013) , who present a deep Gaussian

rocess model that uses hierarchical Gaussian process mappings.

ramacy and Lee (2008) add GPs to the Bayesian partition tree

odel of Chipman, George, and McCulloch (1998) so that a GP is

t to each partition. Williams and Barber (1998) create a model

hat uses GPs for Bayesian classification. There have also been

dvances by allowing the model to take categorical input. Platt,

urges, Swenson, Weare, and Zheng (2002) use GPs with cate-

orical input to generate music playlists. Chen, Wang, and Yang

2013) address the use of stochastic kriging with categorical input. 

Some of the packages we investigate have advanced models

vailable for users. GPy has many models, including classification,

parse regression, latent variable models, and more. In addition

o providing GP classification models, scikit-learn also has other

achine learning models such as clustering, neural networks, and

upport vector machines. laGP provides the approximate GP model,

s explained above, that is useful for massive data sets. When

hoosing a software package, users should consider the depth of

ptions available on the platform, and what types of models they

ould potentially use beyond the basic GP model to get better re-

ults. 

. Discussion 

.1. Summary of packages 

In this paper, we study various Gaussian process fitting soft-

are packages, see Table 1 , and compare their performance using

he GP model with Gaussian correlation for global fitting. We do

ot compare their performance for optimization, i.e., accurately lo-

ating an optimal point. We assess them based on the quality of

heir response predictions and their error estimates, each of which

re averaged across the region of interest. Other possible criteria

hat we do not consider include maximum error and relative error.

n many cases the different packages give similar, or even indis-

inguishable, results—which is expected since they are using the
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ame models on the same surfaces. However, due to differences in

he parameter estimation routines, the packages often give differ-

nt results on complicated surfaces. 

DiceKriging , an R package, performed somewhat worse than

any of the other packages in our examples. However, DiceKrig-

ng runs faster than the R packages mlegp and GPfit, and provides

ore customization options than laGP. It has multiple correlation

unctions available and can estimate a nugget. By default the cor-

elation function is the Matérn with ν = 5 / 2 , but we did not see

 large difference between that and the Gaussian correlation func-

ion. DiceKriging also provides functionality for stochastic kriging,

s demonstrated in Section 6.1 . 

Another R package, GPfit , uses the most extensive parameter

ptimization, which makes it very dependable. In our tests we

ound GPfit to be reliable and give good results. The cost of this is

hat it takes significantly longer to use on larger data sets, taking

oticeably longer on samples larger than even 50. On the borehole

est, each macroreplicate for GPfit for a sample size of 500 took

ver two hours, while all the other packages finished in minutes

r even seconds. For this reason we do not recommend using GPfit

hen the data set is large and time is valuable. We ran GPfit with

ts default exponent of 1.95 in the correlation function and also

sed the Gaussian process model where that exponent is 2.00. In

eneral we did not see a large difference between the two in per-

ormance or run time. GPfit uses 1.95 as the default because it is

upposed to provide computational stability. 

The R package laGP is the fastest package we tested. We used it

ith estimating a nugget and with setting a small nugget, the lat-

er of which gave better results. The main benefit of laGP is that it

uns very quickly, especially when repeatedly adding data in a se-

uential manner. In addition, it provides some additional complex

odels that are useful for large data sets. Thus we do not recom-

end laGP for kriging with small sample sizes, but we do suggest

ooking into its advanced functionality if there are thousands of

ample points. 

The final R package we evaluated, mlegp , performed well in our

esting. We used it with both setting the nugget to zero and esti-

ating the nugget, and did not see a large difference. In addition,

legp was a little slower than the other packages, though not as

low as GPfit. One benefit of mlegp is that it also can do stochastic

riging, as shown in Section 6.1 . 

JMP is a commercial software platform that makes data anal-

sis easy for practitioners. When the nugget was set to zero, JMP

erformed poorly on most of our test functions. When the nugget

as estimated, however, JMP performed substantially better, often

n par with the best packages. JMP seems to run relatively slow.

or our testing, JMP was run on a laptop and the other packages

ere run on a cluster. However in our experience, the other pack-

ges (except for GPfit) ran faster when also run on the same laptop.

hus users should be careful when using JMP, particularly when

he nugget is not estimated, since the results may be spurious, and

sers might get better and faster results using a different software

ption. 

The MATLAB toolbox DACE was fast but generally provided a

lightly worse fit than the best models. DACE is very basic and has

ot been updated in years, so we recommend using other packages

f there is a desire to progress to more advanced models. 

GPy , a Python module, gave the best fitting results in most of

ur tests. It was an order of magnitude slower than the fastest

ackage, and was generally in the middle in terms of speed. GPy

lso provides many options and advanced models that the practi-

ioner can explore once they have mastered the basic model. 

Finally, the Python module scikit-learn contains GP fitting ca-

ability in addition to many other machine learning algorithms. It

as near the best on most examples, but occasionally exhibited in-

onsistency. In preliminary tests, we found that it performed better
hen the data is scaled and more optimization restarts are used.

t was also one of the fastest packages. Although we only included

he results using scikit-learn with the Gaussian correlation func-

ion in this paper, we have found in some of our tests that us-

ng the Matérn correlation function gives better results. Although

cikit-learn does not provide advanced GP models, it does provide

ther machine learning models such as support vector machines

nd random forests. Thus it would be a useful tool for those who

ant to use a single platform for multiple machine learning meth-

ds. 

.2. Conclusion 

This paper focuses on the traditional Gaussian process model

ith Gaussian correlation. Despite specifying the same type of

P metamodel, we found that there are often significant differ-

nces between the metamodel predictions made by various soft-

are packages on the same data. Practitioners should be aware

f the quality of predictions, typical run time, and model options

hen choosing a modeling software to use. 

There are many modifications of the model and other correla-

ion functions that will often give better and faster results if there

s prior knowledge about the structure of the data or if there is a

arge number of observations. We focus on the simple model be-

ause it is used by many practitioners who do not want to spend

he time to learn the intricacies of the model, but wish to use the

ower of GP fitting. However, if unstable or nonsensical results are

bserved when fitting the simple GP model, we encourage mod-

lers to consider using the packages with more advanced features

hat we allude to in Section 7.1 . 
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