

COAXIAL PRIME FOCUS FEEDS FOR PARÁBOLOIDAL REFLECTORS

(HASA-CR-167934) COAXIAL RBIAE POCUS FEEDS N82-31585
for parabcloidal efflicto is (Case Western Reserve Univ.) 138 p HC A07/AF A01 CSCL 20 n

G3/32. Unclas
by
R.E. COLLIN, H. SCHILLING, and L. HEBERT

ELECTRICAL ENGINEERING \& APPLIED PHYSICS DEPARTMENT
Case Institute of Technology
Case Western Reserve University
Cleveland, Ohio 44106

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
NASA Lewis Research Center
Contract NAS3-22342

- For sate by the Mational Technical Information Service, Speinglield. Virginia 22161

PRECEDING PAGE BLANK NOT FLMEDD

FORWARD

The reported work on the dual-wode coaxial feed is a follow "p to earlier work done on NASA Contract NAS3-21365 (Technical Report NASA CR-159703). The analytical and computer numertcal work was carried out by H. Schilling and was supported by the National Science Foundation under Grant ECS-7910269. The detailed theoretical analysis is presented in the Ph. D. dissertation submitted by H. Schilling.

TABLE OF CONTENTS

Page
CHAPTER] - PRIME FOCUS FEEDS - A REVIEW 1
1.1 Introduction 1
1.2 Prime Focus Feeds 2
1.3 Overview 6
1.4 Radiation from Paraboloidal Reflectors 8
CHAPTER 2 - THE LONG-CUP DUAL-MODE FEED 23
2.1 Outline of Analytical Procedure 23
2.2 Scattering Matrix for Internal Bifurcation 25
2.3 Aperture Scattering Matrix 29
2.4 Dual-Mode Feed Radiation Patterns and Cross-polarization 29
2.5 Optimum Feed Dimensions 37
2.6 Coaxial Feed Performance - Theoretical 42
2.7 Coaxial Feed Performance - Experimental 65
2.8 Paraboloidal Radiation Patterns 74
CHAPTER 3 - THE SHORT-CUP COAXIAL FEED 83
3.1 Introduction 83
3.2 Short-Cup Coaxial Feed - Radiation Patterns 84
3.3 Paraboloidal Radiation Patterns - Short-Cup Feed 87
CHAPTER 4 - CONCLUSIONS AND RECOMMENDATIONS 93
REFERENCES 94
Appendix A - Scattering Matrix for Bifurcation Junction Al
Appendix B - Aperture Scattering Parameters Bl
Appendix C - Radiation From a Circular Waveguide Cl (Approximate Theory)

fRIME FOCUS FEEDS - A REVIEW

1.1 INTRODUCTION

Receiving station atennas for use in the 12-14 ghz. band direct television satellite broadcast service are envisoned to use small paraboloidal reflectors illuminated by a simple prime focus feed for economical reasons. Although simplicity and cost are dominating factors the required prime focus feed paraboloidal antenna system is required to have a relatively high level of performance as regards low sidelobe levels, low cross-polarization, and high aperture illumination efficiency. Typical performance features are first and second sidelobes below - 30 dB . with the remaining sidelobes below $\mathbf{- 4 0} \mathrm{dB}$., aperture illumination efficiency of 65% to 70%, cross-polarization below -30 dB . for frequency re-use applications, a bandwidth of 5% and an input VSWR of 1.5 or less. The last requirement, an input VSWR of less than 1.5, can be readily met by using well known matching techniques since the bandwidth of operation is only 5\%. The requirement of low sidelobes can be met by using a sufficiently large amount of edge taper in the aperture illumination but at the expense of reduced aperture illumination efficiency. In theory sidelobes below -30 dB. and an aperture efficiency as high as 80 \% is realizable but not necessarily by any presently known simple feed structure. For example, with an aperture illumination function $1 / 7+6 / 7\left(1-r^{2}\right)^{2}$ where r is the normalized aperture radius the aperture efficiency is 71% and the largest sidelobe is -33.22 dB . below the main lobe peak (Kouznetsov, 1978). If a particular feed is chosen it will have its own characteristic radiation
pattern and when a paraboloid with the correct i/D (focal length/ diameter) is chosen so as to meet the sidelobe specification there is no control over the aperture efficiency that can be obtained.
L.ow cross-polarization is obtained from feeds that have rotationally symmetric radiation patterns, which implies equal E - and H-plane patterns. Feeds with rotationally symetric patterns yield higher aperture efficiencies since the amount of taper in the illuaination that is required for a given sidelobe level is the same in all pl 3 . A feed with an unsymetric pattern generally leads to more tapering than desired in one plane in order to achieve the required sidelobe level in the plane with the least amount of taper. Feeds that will result in secondary patterns with sidelobes below -30 dB . usually produce an illumination edge taper of -15 dB . to -20 dB . and as a result exhibit very little spill over loss. A feed that produces very little cross-polarized radiation also leads to increased efficiency since there is less unwanted radiation in the polarization not used.

1.2 PRIME FOCUS FEEDS

Two basic approaches have been used to design feeds with rotationally symmetric radiation patterns. One approach is based on exciting the correct mixture of $\mathrm{TE}_{1 \mathrm{~m}}$ and $\mathrm{TM}_{1 \mathrm{~m}}$ modes in a circular waveguide, conical horn, or coaxial waveguide structure while the other is based on the use of a corrugated waveguide or horn that will support a dominant $H E 11$ hybrid mode that radiates a rotationally symmetric pattern. Feeds based on both design principles have been considered by various authors and a reasonably complete review is given in a recent paper (Clarricoats and Poulton, 1977).

Figure 1.1 illustrates several feed configurations that can yield a cross-polarization of order -30 dB . or less. The corrugated horn, first introduced by Kay (Kay, 1964), in Fig. 1.la normally produces a beam that is too directive for a paraboloid with an angular aperture greater than 130°. Wooci reports that R. W. Ashton found a cross-polarization ranging from -30 dB . to -50 dB . for a 2.5° corrugated horn as the aperture diameter was varied from 1.5 to 10 wavelengths (Wood, 1980). For the 90° corrugated horn shown in Fig. 1.1c Hockham found that the peak cross-polarization level was around -26 dB. (Hockham, 1976). The measured on axis cross-polarization was -32 dB . The 90° corrugated horn has also been examined by James (James, 1977). It was found that using only a flange of radius 1.7 cm . on a circular guide of radius 1.34 cm . a cross-polarized radiation level of -26 to -29 dB . over the band 7.5 to 11.5 ghz . could be achieved. With the addition of 1 slot the cross-polarization was -25 to -26 dB . and with 3 slots it was -26 dB . to -28 dB . over the same band. The advantage of corrugated structures is the relatively large bandwidth but the cost is a rather heavy feed that is difficult to construct. The dual mode horn of Potter (Potter, 1963) shown in Fig. 1.ld and its variation shown in sig. 1.le and due to Satoh (Satoh, 1972) can produce very low crosspolarization over a bandwidth of a few percent when the step at the throat or the dielectric insert is properly adjusted to produce the optimum ratio (moding ratio) of the $T E_{11}$ and $T M 11$ modes in the aperture. The horn is excited by the TE_{11} mode in the input waveguide while the ${ }^{T M}{ }_{11}$ mode is excited parasitically by the discontinuity.

Figure 1．1－Low cross－polarization feeds．

For paraboloids with large angular apertures the horns are too directive and the coaxial waveguide feeds shown in Fig's. l.lf- are more suitable. The feed in Fig. l.lf is relatively complex and is described by Koch (Koch, 1973) and can yield a high aperture efficiency as well as low cross-polarization (-35 dB . or better). The feeds in Fig's. 1.1 l and 1.1 h have been studied by Scheffer and also by Kumar (Scheffer, 1975; Kumar, 1978). In an experimentally optimized two coaxial waveguide feed kumar reported a cross-polarization of -30 dB . to -31 dB . over a band from 8 to 9 ghz . This feed has the configuration shown in Fig. l.lh and would be a multi-mode feed because of the excitation of many modes in the aperture. The feed show.a in Fig. 1.1h is also due to Kumar and has a comparable performance (Kumar, 1976).

It is worth mentioning that a circular waveguide operated with the $T E_{11}$ mode close to cutoff (diameter equal to $0.7 \lambda_{0}$) has a low crosspolarization. Wood states that cross-polarization of -48 dB . is predicted using the approximate E and H aperture field method to compute the radiation pattern (Wood, 1980, p. 110). The cross-polarization level was computed for a TE_{11} mode in a circular waveguide with a radius of 0.36 λ_{0} and found to have a cross-polarization peak of -40 dB . at $\theta=45^{\circ}$ and a second peak of -32 dB . at $\theta=90^{\circ}$ (see Figure C3). The computation was based on the $E-H$ aperture field method. Although approximate methods for calculating the co-polarized patterns may be quite accurate these methods usual. rail to give good results for the cross-polarized pattern which depends on the difference in the $E-$ and $H-p l a n e$ patterns and hence show large errors for small errors in the principle plane patterns.

When the exact solutions for the radiation from the $T E{ }_{11}$ circular waveguide mode, (as given by Weinstein) is used the predicted peak crosspolarization level varies fram -22.5 dB . to -30 dB . as the diameter varies from $0.64 \lambda_{0}$ to $1.1 \lambda_{0}$ according to James and Greene (James and Greene, 1978). For a dipole excited circular waveguide it has been found that the cross-polarization was dependent on the length of the guide also (Hansen and Shafai, 1977). With a waveguide $2 \lambda_{0}$ long and a $0.7 \lambda_{0}$ diameter the cross-polarization was computed numerically to have one peak of -37 dB . and a second peak of -33 dB . at $\theta=90^{\circ}$. With a $3 \lambda_{0}$ long guide the cross-polarization was about 3 dB . higher. It was also noted that the cross-polarization was dependent on the wall thickness. It is thus apparent that a number of factors enter in that can result in the cross-polarization for an actual feed to differ from that computed theoretically for an idealized model.

Although the circular waveguide excited by the $T E{ }_{11}$ mode can yield low cross-polarization the radiation pattern is very broad so this feed is useful only for paraboloids with a large angular aperture approaching 180°.

1.3 OVERVIEW

The reported experimental results for the coaxial waveguide feeds were deemed to be sufficiently attractive to warrant carrying out a complete analytical study to fully assess the merits of such feeds ard to obtain design information. The feed chosen for detailed analysis is the "long-cup" coaxial dual-mode feed shown in Fig.1.2a. The parameters were restricted such that in the input guide and coaxial section only the ${ }^{T E} E_{11}$ mode propagated while in the output guide both the $T E_{11}$ and TM_{11} mode could propagate. An exact analytical solution for this
feed was obtained and from this optimum design data and performance was derived. A spot frequency cross-polarization as low as -58 dB. was predicted along with a bandwidth of around 5\% for cross-polarization below - 30 dB . Experimental results are also reported that shows that a feed of this type when used with a suitable paraboloidal reflector will have sidelobes below -30 dB . and a secondary radiation pattern with a cross-polarization below $-30 \mathrm{~dB} .$, including the effects of scatter from the support rods, aperture blocking, etc.

Some experimental work was also done on the "short-cup" coaxial feed in Fig. 1.2b and the results obtained are in accord with those reported by Kumar. It would be desirable to carry out a complete analytical study of the short-cup feed also since it was found to have a greater bandwidth of operation (from 10\% to 15\%).

It was found that a cross-polarization level of -30 dB . or somewhat better could be measured for the feeds studied without any unusual precautions being taken. However, the experimental set-up was not adequate to verify that the cross-polarization could be as low as -50 dB . In a practical feed and measurement set up a number of factors enter in, such as finite feed length, finite wall thickness, less than perfect circular symmetry, scatter from the feed support, etc. that limits the minimum cross-polarization levei that can be achieved and measured. Nevertheless the results obtained verify that simple coaxial feeds can be built to give cross-polarization below -30 dB . without any difficulty.

Figure 1.2 (a) Long-cup or dual-mode coaxial feed,
(b) Short-cup or multi-mode coaxial feed.

1.4 RADIATION EROM PARABOLOIDAL REFLECTOR

In this section the formulas that are used later on to evaluate the radiation pattern and the cross-polarization properties of a paraboloidal reflector are presented.

One procedure for calculating the far zone radiation field from a reflector antenna such as a paraboloid is based on the use of geometrical ray optics to obtain an approximation to the aperture field produced by the reflection of the field from the feed by the reflector.

Another approach is based on calculating the radiation field in terms of the currents induced on the reflector surface (Silver, 1949). In this method the reflector is ireated as an infinite flat plate at each point so that locally the induced current is given by $\vec{J}_{s}=2 \vec{n} \times \vec{H}$ inc where \vec{n} is a unit normal to the reflector surface and $\vec{H}_{i n c}$ is the incident
magnetic field from the feed as in Fig. 1.3. When the reflector is in the far zone of the feed $\vec{H}_{i n c}=Y_{0} \vec{s}_{i} \times \vec{E}_{i n c}$ where \vec{s}_{i} is a unit vector along the incident ray.

Figure 1.3 - Induced current on reflector surface

Hence we can write

$$
\begin{equation*}
\vec{J}_{s}\left(\vec{r}^{\prime}\right)=2 \vec{n} \times\left(Y_{0} \vec{s}_{i} \times \vec{E}_{i n c}\right)=2 Y_{0}\left[\left(\vec{n} \cdot \vec{E}_{i n c}\right) \vec{s}_{i}-\left(\vec{n} \cdot \vec{s}_{i}\right) \vec{E}_{i n c}\right] \tag{1.1}
\end{equation*}
$$

The radiation field may be found from the general expression
given below

$$
\begin{equation*}
\vec{E}(\vec{r})=-j k_{0} z_{0} \frac{e^{-j k_{0} r}}{4 \pi r} \int_{s}\left[\vec{J}_{s}\left(\vec{r}^{\prime}\right)-\vec{a}_{r} \cdot \vec{J}_{s}\left(\vec{r}^{\prime}\right) \vec{a}_{r}\right] e^{j k_{0} \vec{a}_{r} \cdot \vec{r}^{\prime}} d s^{\prime} \tag{1.2}
\end{equation*}
$$

where the integration is over the surface of the reflector and \vec{J}_{s} is given by (l.1). It is generally felt that the induced current metiod is more accurate than the aperture field method since it involves one less geometrical optics approximation, i.e., the ray tracing of the field from the reflector surface to the aperture surface. In many instances, such as for large pargoloids, the
induced current method agrees closely with the fields calculated using the aperture field method.

Cross-Polarization In Paraboloidal Antenna

With regard to cross polarization there are several definitions of cross polarized radiation that can be adopted. Three definitions are discussed by Ludwig (Ludwig, 1973). For paraboloidal antennas the most useful definition is Ludwig's definition No. 3. This definition is based on the following measurement method. A linearly polarized horn antenna is used for receiving and oriented for maximum reception on the bore sight axis of the paraboloid antenna whose pattern is being measured. It is assumed that the paraboloid antenna radiates a linearly polarized field on axis. Let the field radiated by the paraboloid antenna be $\vec{E}(\theta, \phi)$ where θ, are defined as in Figure 1.4. The neasured reference polarization pattern is then given by

$$
\begin{equation*}
R(\theta, \phi)=\vec{E}(\theta, \phi) \cdot\left[\sin B \vec{a}_{\theta}+\cos \beta \vec{a}_{\phi}\right] \tag{1.3}
\end{equation*}
$$

where B is the polarization angle of the receiving horn. To measure the cross polarized pattern for the same pattern cut (same value of $\|$) the horn is rotated by 90°, i.e., B is increased by 90°. The measured cross pularization pattern is then given by

$$
\begin{equation*}
C(\theta, \phi)=\vec{E}(\theta, \phi) \cdot\left[\cos \beta \vec{a}_{\theta}-\sin \beta \vec{a}_{\phi}\right] \tag{1.4}
\end{equation*}
$$

If the transmitted field is along the y axis in the bo:e sight direction then for a patterr cut at angle the values of B is for the reference polarization and $\phi \pm \pi / 2$ for the cross polarization pattern since rotation of the paraboloid about its axis by an angle ϕ will require similar rotation of the receiving horn and such a rotation is necessary to obtain a pattern cut at the angle ϕ.

Figure 1.1- Islustration of pattern measurement procedure. In practice, receiving horn is fixed and paraboloid antenna is rotated.

For a linearly polarized paraboloid antenna with a field along the y exis for $\theta=0,1=0$, we have $B=$ or $\pm \pm / 2$, so that

$$
\begin{align*}
& R(\theta, \phi)=\vec{E}(\theta, \phi) \cdot\left[\sin \phi \vec{a}_{\theta}+\cos \phi \vec{a}_{\phi}\right] \tag{1.5a}\\
& C(\theta, \phi)=\vec{E}(\theta, \phi) \cdot\left[\cos \phi \vec{a}_{\theta}-\sin \phi \vec{a}_{\dagger}\right] \tag{1.5b}
\end{align*}
$$

These relations show that if \vec{E} has the form

$$
\begin{equation*}
E_{\theta} \cos \phi=E_{\phi} \sin \phi \tag{1.6}
\end{equation*}
$$

then

$$
C(\theta, \phi)=E_{\theta} \cos \phi-E^{\sin \phi}=0
$$

and there is zero cross polarization.

$$
\begin{aligned}
& \text { (4) Notar tagh is } \\
& \text { 1.) } 1 \text { : \& 4. ! }
\end{aligned}
$$

A feed with equal E and H plane amplitude and phase patcerns and satisfying the relation(1.0)has zero cross polayization, Such a feed when used to illuminate a paraboloid results in an antenna with very small cross polarization as will be shown below.

Coaxial feeds excited by a mixture of $\mathrm{TF} \mathrm{Im}_{\mathrm{m}}$ and TM Im modes produce a feed primary pattern of the form

$$
\vec{E}_{f}\left(\theta^{\prime}, \phi^{\prime}, r^{\prime}\right)=\frac{e^{-i k_{0} r^{\prime}}}{r^{\prime}} 1 c_{\theta^{\prime}}\left(\theta^{\prime}\right) \sin \phi^{\prime} \vec{a}_{0^{\prime}}+e_{\phi^{\prime}}\left(\theta^{\prime}\right) \cos \phi^{\prime} \vec{a}_{\phi^{\prime}} 1
$$

where ${ }_{0},\left(\theta^{\prime}\right)$ and ${ }^{\prime}{ }^{\prime},\left(0^{\prime}\right)$ depwnd on the particollar feed and excitation used.

In rectangular coordinates this field is given by

$$
\begin{align*}
\vec{E}_{f}=\frac{e^{-j k_{0} r}}{r} & \overrightarrow{l a}_{x}\left(e_{\theta} \cos \theta \cos \phi \sin \phi-\sin \theta \cos \phi\right) \\
& \left.+\vec{a}_{y}\left(e_{\theta} \cos \theta \sin ^{2}+\theta \cos ^{2} \phi\right)-\vec{a}_{z} e_{\theta} \sin \theta \sin \phi\right) \tag{1.8}
\end{align*}
$$

Now assume that at $\theta=0$ the field is polarised along y, then e θ o at θ - 0 . In the 0 plane or H-plane the feed pattern is proportional to $\vec{H}_{y}=\vec{a}_{\phi}$ while in the $\pi / 2$ or E-plane the pattern is proportional to $\vec{a}_{y} e_{\theta} \cos \theta-\vec{a}_{z} e_{\theta} \sin \theta-e_{\theta} \vec{a}_{\theta}$. The E and $H-p l a n e$ paterns will be equal if ef (θ) - (θ) for all values of θ. The cross polarized pattern as given by 1 . H will then also be zero for all values of θ and .

With reference to Figure 1.5 the unit normal \vec{n} to the paraboloid is given by $\vec{n}=-\vec{a}_{0} \cos \frac{\theta^{\prime}}{2}+\vec{a}_{\theta}, \sin \frac{\theta^{\prime}}{2}$.

Figure 1.5 Coordinates used to describe fields associated with a paraboloid antenna.

The incident magnetic field on the paraboloid is $\vec{H}_{f}=Y_{0} \overrightarrow{\mathbf{a}}_{p} \times \vec{E}_{f}$ where \vec{E}_{f} is given by (1.7)but in terms of the variables $\theta^{\circ}, \phi^{\prime}$, p, i.e.

$$
\left.\vec{E}_{f}=\frac{e^{-j k_{0} \rho}}{p} \quad l e_{\theta},\left(\theta^{\prime}\right) \sin \phi^{\prime} \vec{a}_{\theta},+e_{\phi} d^{\prime}\right) \cos \phi^{\prime} \vec{a}_{\phi^{\prime}},
$$

On the parabola: surface $\rho=2 f /\left(1+\cos \theta^{\circ}\right)=f \sec ^{2} \frac{\theta}{}^{\prime}$. If each portion of the paraboloid is treated as flat reflecting surface then the surface currents produced on the paraboloid are given by

$$
\begin{align*}
& \vec{J}_{s}=2 \vec{n} \times \vec{H}_{f}=2 y_{0} \vec{n} \times\left(\vec{a}_{0} \times \vec{E}_{f}\right) \\
& = \tag{1.9}\\
& \frac{2 e^{-j k_{0}}}{2_{0}{ }^{0}}\left[\cos \frac{\theta^{\prime}}{2}\left(\theta_{\theta}, \sin \phi^{\prime} \vec{a}_{\theta},+\theta_{\theta^{\prime}}, \cos \phi^{\prime} \vec{a}_{\theta^{\prime}}\right)+\sin \frac{\theta^{\prime}}{2} \theta_{\theta}, \sin \phi^{\prime} \vec{a}_{0}\right]
\end{align*}
$$

In terms of these currents the radiated electric field is given by $\vec{E}(\vec{r})=\frac{-j k_{0} z_{o}}{4 \pi r} e^{-j k_{o} x} \int_{S}\left[\vec{J}\left(\vec{r}{ }^{\prime}\right)-\vec{a}_{r} \cdot \vec{J}(\vec{r},) \vec{a}_{r}\right] e^{j k_{0} \vec{a}_{r} \cdot \vec{r}^{\prime}} d S$
where \vec{r} ' is the position vector to a point on the paraboloid. By using (1.9) in (1.10) and carrying out the integration over ϕ we obtain

$$
\begin{align*}
& \vec{E}(\vec{r})=\frac{j k_{0} f e^{-j k_{0} x}}{I} \int_{0}^{\theta}\left(\left(e_{\theta}+e_{\phi}\right) J_{0}\left(v_{1}\right)\left(\vec{a}_{\theta} \cos \theta \sin \phi+\vec{a}_{\theta} \cos \phi\right)\right. \\
& -\left(e_{\theta},-e_{\phi},\right) J_{2}\left(v_{1}\right)\left(\vec{a}_{\theta} \cos \theta \sin \phi-\vec{a}_{\phi} \cos \phi\right)-2 j J_{1}\left(v_{1}\right) e_{\theta}, \sin \theta \sin \phi \tan \frac{\theta}{2} \vec{a}_{\theta} l \\
& \tag{1.11}\\
& \quad\left(e^{-j v_{2}} \tan \frac{e^{\prime}}{2} j d e .\right.
\end{align*}
$$

where $v_{1}=2 k_{o f} \sin e \tan \frac{e^{\prime}}{2}$
$v_{2}=2 k_{0} f \frac{1+\cos \theta \cos \theta^{\circ}}{1+\cos \theta^{\prime}}$

$$
J_{n}=\text { Bessel function of order } n
$$

and ${ }^{2 \theta}$ of the angular aperture of the paraboloid with focal length f.
In the aperture field method the reflected field at the aperture surface is first found from the relation

$$
\begin{equation*}
\vec{E}_{y}=-\vec{E}_{f}+2 \vec{n} \cdot \vec{E}_{f} \vec{n} \tag{1.12}
\end{equation*}
$$

This field then is assumed to propagate as a plane wave to the aperture surface which will be taken as the $z=0$ plane. The total path length
is $2 f$ and hence we find that the x and y components of the aperture field are

$$
\begin{align*}
\vec{E}_{a}=\frac{e^{-j 2 k_{o} f}}{\rho} \quad\left[\vec{a}_{x}\left(e_{\phi},-e_{\theta},\right) \sin \phi^{\prime} \cos \phi^{\prime}\right. & +\vec{a}_{y} e_{\phi}, \cos ^{2} \phi^{\prime} \\
& \left.+\vec{a}_{y} e_{\theta}, \sin ^{2} \phi^{\prime}\right] \tag{1.13}
\end{align*}
$$

In terms of the aperture electric field alone, the radiated electric
field is given by
$\vec{E}(\vec{r} \cdot)=\frac{j k_{0} f e^{-j k_{0} r-2 j k_{0} f}}{x} \int_{0}^{\theta} i\left(e_{\theta},+e_{\phi}\right) J_{0}\left(v_{l}\right)\left(\vec{a}_{\theta} \sin \phi+\vec{a}_{\phi} \cos \theta \cos \phi\right)$
$\left.-\left(e_{\theta},-e_{\phi},\right) J_{2}\left(v_{1}\right) \quad\left(\vec{a}_{\theta} \sin \phi-\vec{a}_{\phi} \cos \theta \cos \phi\right)\right] \tan \frac{\theta^{\prime}}{2} d \theta \cdot$

If the radiated field is detemined in terms of the tangential magnetic field alone on the aperture surface then it is found that $\vec{E}(\vec{r})=\frac{j k_{0} f e^{-j k_{o} r-2 j k_{0} f}}{x} \int_{0}^{\theta}\left[\left(e_{\theta}+e_{\phi},\right) J_{0}\left(v_{1}\right)\left(\vec{a}_{\theta} \cos \theta \sin \phi\right.\right.$ $\left.+\vec{a}_{\phi} \cos \phi\right)-\left(e_{\theta},-e_{\phi},\right) J_{2}\left(v_{1}\right)\left(\vec{a}_{\theta} \cos \theta \sin \phi-\vec{a}_{\phi} \cos \phi\right) \tan \frac{\theta^{\prime}}{2} d \theta \theta^{\prime}$

If a formulation in terms of both electric and magnetic fields on the aperture surface is used the result is the average of (1.14) and (1.15).

This latter formulation is commonly used.

In the region close to the axis i.e., θ small, the use of the approximation $\cos \theta=1$ makes v_{2} in (1.11) equal to $2 k_{0} f$. With this approximation (1.11) and (1.15) will agree with the exception of the small term involving $J_{1}\left(v_{1}\right)$ in (1.11). This latter term vanishes at $\theta=0$ and remains small since it is multiplied by $\sin \theta$. It is due to the z component of current on the paraboloid.

The difference in the phase function in the surface current formulation and that in the aperture field method is due to the difference in path lengths as shown in Figure 1.6. In the aperture field method propegation from the paraboloid surface to the aperture surface is along a path parallel to the z axis in accordance with the geometrical optics theory that is used to de*ermine the aperture field. The difference in phase between the two me'hods is $2 k_{0} f-v_{2}=2 k_{o} f \frac{(1-\cos \theta) \cos \theta^{\circ}}{1+\cos \theta^{\circ}}$. For a paraboloid with $f=18 \lambda_{0}$ and $\theta=10^{\circ}$ this phase difference varies from 0.547π at $e^{\prime}=0^{\circ}$ to 0.365π at $\theta^{\prime}=60^{\circ}$ or a total variation of $0.18 \pi\left(32.4^{\circ}\right)$ over the aperture. This amount of phase variation would not be expected to produce a significant change in the radiated pattern in the region $\theta \leq 10^{\circ}$.

Figure 1.6 - Path lengths $O P_{1} P_{2}$ for aperture field method and $O P_{1} P_{3}$ for surface current method of computing radiation from a paraboloid.

All of the above formulas show that low cross polarization is achieved by making e_{θ}. e_{0}; As long as cose can be approximated by unity the radiated electric field will then satisfy the relationship given by (1.6)provided the small term involving $J_{1}\left(v_{1}\right)$ in the expression for E_{θ} in (1.11) is neglected. This approximation mill be good for values of θ up to at least 10° where $\cos \theta=0.985$ and hence the cross polarization will be small over the region of intereat for paraboloids with diameters exceeding 50 wavelengths. It is thus concluded that the desirable feed pattern should be of the form given by (1.7). This type of feed pattern also leads to emall polarization loss in a paraboloid antenna (Ludwig, 1965). The objective in coaxial waveguide feed design is to excite the proper combination of $T E_{11}, T M_{11}$ and $T E_{12}$ modes in the aperture of the fead so as to obtain a pattern of the desired form as given by (1.7). The paraboloid sidelobe level is determined by the amplitude taper over the paraboloid and this is directly related to the directivity of the feed pattern.

With reference to (1.11) it is seen that the dominant part of the radiated field comes from the terms multiplied by $J_{0}\left(v_{1}\right)$. The radiated field can be resolved as components along the unit vectors $\vec{a}_{1}=\vec{a}_{\theta} \sin \phi+$ $\left.\vec{a}_{\phi} \cos \phi\right)$ and $\vec{a}_{2}=\left(\vec{a}_{\theta} \cos \phi-\vec{a}_{\phi} \sin \phi\right)$ which define the co-polarized and cross-polarized fields. It is then found that the co-polarized patcern in the $\phi=\pi / 4$ plane is given by

$$
E_{c o}=\frac{j k_{0} f}{r} e^{-j k_{0} r} \int_{0}^{\theta}\left[e_{\theta,}+e_{\phi},\right) J_{0}\left(\frac{\cos \theta+1}{2}\right)-\left(e_{\theta,}-e_{\phi},\right) J_{2}\left(\frac{\cos \theta-1}{2}\right)
$$

$$
\begin{equation*}
\left.-j J_{1} e_{\theta}, \sin \theta \tan \frac{\theta^{\prime}}{2}\right]\left[e^{-j v_{2}} \tan {\frac{\theta^{\prime}}{}}_{\prime}^{\prime}\right] d \theta^{\prime} \tag{1.16}
\end{equation*}
$$

The term multiplied by J_{0} is the contribution from the co-polazized feed pattern, the term multiplied by J_{2} comes from the feed cross-polarized pattern, and the last term multiplied by $J_{1} \sin \theta$ comes from the 2 component of the induced current on the reflector.

The cross-poarized pattern is given by
$E_{\text {cross }}=\frac{j k_{0} f}{r} e^{-j k_{0} r} \int_{0}^{\theta}\left[\left(e_{\theta},+e_{\phi}, J_{0}(\cos \theta-1) \sin \phi \cos \phi\right.\right.$
$-\left(e_{\theta^{\prime}}-e_{\phi},\right) J_{2}(\cos \theta+1) \sin \phi \cos \phi-2 j J_{1} e_{\theta^{\prime}} \sin \theta \sin \phi \cos \phi \tan \frac{\theta^{\prime}}{2}\left[e^{-j v_{2}} \tan \frac{\theta^{\prime}}{2}\right] d \theta^{\prime}$

The three terms contributing to the cross-polarized field consist of a contribution from the feed co-polarized pattern (term with J_{0} factor) caused by reflector depolarization, a contribution from the feed crosspolarized pattern, and a contribution from the z component of the induced current. Usually the amount of depolarization caused by the reflector is small. Note that the cross-polarized field is zero in the principal planes and is a maximum in the 45° planes.

Significant cross-polarization will occur only when $e_{\theta} \neq e_{\phi}$.
For example consider the x-directed dipole field shown in Figure $1.6 a$.
Apart from irrelevant constants the feed pattern is given by

$$
\begin{aligned}
\vec{E}_{f} & =\frac{e^{-j k_{0} r}}{r}\left[\vec{a}_{\theta} \cos \theta \cos \phi-\vec{a}_{\phi} \sin \phi\right] \\
& =\frac{e^{-j k_{0} x}}{x}\left[\left(\cos \theta \cos ^{2} \phi+\sin ^{2} \phi\right)\left(\vec{a}_{\theta} \cos \phi-\vec{a}_{\phi} \sin \phi\right)\right] \\
& +\frac{e^{-j k_{0} x}}{x}\left[\frac{1}{2} \sin 2 \phi(\cos \theta-1) \quad\left(\vec{a}_{\theta} \sin \phi+\vec{a}_{\phi} \cos \phi\right)\right]
\end{aligned}
$$

The second factor is the cross-polarized field and since θ can be as large as the half-argular width of the dish the dish illunination has a significant cross-polarized component over the Outer regions. At $\theta=45^{\circ}$ the cross-polarized field is only 15 dB . below the co-polarized component. Thus a dipole feed does not give a low-cross polarization when used to iliuminate a paraboloid.

Figure 1.7 Elementary Feeds, (a) dipole, (b) Huygen's source,

A Huygen's source is a small patch of a plane electromagnetic wave as shown in Figure 1.7. If the radiation from this patch is calculated using both the electric and magnetic fields it is found that

$$
\left.\vec{E}_{f}=\frac{e^{-j k_{0} r}}{r}(1+\cos \theta) f_{x} \backslash \vec{a}_{\theta} \cos \phi-\vec{a}_{\phi} \sin \phi\right]
$$

where f_{x} is the pattern function $\frac{\sin k_{x} a}{k_{x}{ }^{a}} \frac{\sin k_{y} a}{k_{y}{ }^{a}}$ with
$k_{x}=k_{0} \sin \theta \cos \phi_{1} k_{y}=k_{0} \sin \theta \sin \phi$. This feed pattern has no cross pclarization.

If the radiation from the Huygen's source is calculated using only the electric field or only the magnetic field then it is found that the feed pattern is proportional to $\vec{a}_{\theta} \cos \phi-\vec{a}_{\phi} \cos \theta \sin \phi$ and $\vec{a}_{\theta} \cos \theta \cos \phi-\vec{a}_{\phi} \sin \phi$ respectively. These patterns have the same level of cross-polarization as the dipole feed does so depending on the point of view the Huygen's source can be considered to either have no cross-polarization or to have the same cross-polarization as a dipole.

Aperture Ffficiency

By using (l.11) the radiated field on the z axis is readily found by setting $\theta=0$, thus

$$
\vec{E}(\vec{r})=\vec{a}_{Y} \frac{j k_{o}^{f}}{r} e^{-j k_{o} r-j 2 k_{o} f} \int_{0}^{\theta} 0 \quad\left[e_{\theta},\left(\theta^{\prime}\right)+e_{\phi},\left(\theta^{\prime}\right)\right] \tan \frac{\theta^{\prime}}{2} d \theta^{\prime}
$$

The radiated power per unit solid anqle is $1 / 2 y_{o} r^{2}|\vec{E}|^{2}$.
Let P_{a} be the total power radiated from the aperture. If the aperture illumination was uniform the aperture electric field would be

$$
E_{a}=\left(2 z_{o} F_{a} / \pi a^{2}\right)^{1 / 2}
$$

where a is the aperture radius. With uniform illumination the radiated power per unit solid angle on the z axis would be

$$
\frac{1}{2} Y_{o} r^{2}\left(\frac{k_{o}}{2 \pi r} \pi a^{2} E_{a}\right)^{2}=\frac{k_{0}^{2} \pi a^{2}}{4 \pi^{2}} P_{a}
$$

The aperture efficiency η_{A} is qiven by

$$
\eta_{A}=\frac{\frac{1}{2} Y_{0} r^{2}|\vec{E}|^{2}}{k_{0}^{2} \pi a^{2} P_{a} / 4 \pi^{2}}=\frac{\lambda_{0}^{2} Y_{0} r^{2}|\vec{E}|^{2}}{2 \pi a^{2} P_{a}}
$$

The total pownr radiated from the aperture equals the incident power from the feed that is intercepted by the aperture, thus

$$
\begin{aligned}
P_{a} & =\frac{1}{2} Y_{0} \int_{0}^{2 \pi} \int_{0}^{\theta}\left[\left|e_{\theta},\left.\right|^{2} \sin ^{2} \phi^{\prime}+\left|e_{\phi^{\prime}}\right|^{2} \cos ^{2} \phi^{\prime}\right] \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}\right. \\
& =\frac{\pi Y_{0}}{2} \int_{0}^{\theta}\left[\left|e_{\theta},\left.\right|^{2}+\left|e_{\phi^{\prime}}\right|^{2}\right] \sin \theta^{\prime} a^{\prime}\right.
\end{aligned}
$$

Hence

$$
\begin{equation*}
\eta_{A}=\frac{4 f^{2}}{a^{2}} \frac{\left[\left.\int_{0}^{\theta} 0\left(e_{\theta^{\prime}}+e_{\phi^{\prime}}\right) \tan \frac{\theta^{\prime}}{2} d \theta^{\prime}\right|^{2}\right.}{\left.\int_{0}^{\theta}| | e_{\theta^{\prime}}\right|^{2}+\left|e_{\phi^{\prime}}\right|^{2} \mid \sin \theta^{\prime} d \theta^{\prime}} \tag{1.18}
\end{equation*}
$$

For a feed with a very low cross-polarization $e_{\theta}, \not \approx e_{\phi}$, and then $\eta_{A}=\frac{8 \pi f^{2}}{\pi a^{2}} \frac{\left.\int_{0}^{\theta} e_{\theta \cdot} \tan \frac{\theta^{\prime}}{2} d \theta^{\prime}\right|^{2}}{\left.\left.\left.\int_{0}^{\theta}\right|_{0}\right|_{\theta^{\prime}}\right|^{2} \sin \theta^{\prime} d \theta^{\prime}}$

The definition used here for the aperture efficiency includes crosspolarization loss, phase error loss, and cross-polarization, i.e., η_{A} can be factored into the product η_{p}, η_{i}, and η_{x} as defined by Thomas (Thomas, 1971).

The gain of the antenna can be expressed as

$$
\begin{equation*}
G=\frac{4 \pi}{\lambda_{0}^{2}} \quad \eta_{A} \eta_{s} \eta_{f} \pi a^{2} \tag{1.20}
\end{equation*}
$$

where η_{s} is the spillover efficiency and η_{f} is the feed efficiency that accounts for feed losses. For a large edge taper of order -20 dB . the spillover efficiency is close to unity.

THE LONG-CUP DUAL-MODE COAXIAL FEED

In this chapter the results of the analytical and experimental investigation of the dual-mode coaxial feed are presented. Section 2.1 outlines the analytical procedure followed, Sec. 2.2 presents numerical results for the scattering matrix parameters. The following sections give results for the optimum feed parameters, typical feed radiation patterns, and the frequency sensitivity of the cross-polarization, phase error, and input reflection coefficient. The experimentally measured patterns for a typical feed are given in Sec. 2.7 while Sec. 2.8 gives measured patterns for a 1.22 m paraboloid with $\mathrm{f} / \mathrm{D}=0.33$ when illuminated with this feed.

2.1 OUTLINE OF ANALYTICAL PROCEDURE

The long-cup dual-mode coaxial feed is shown in Fig. 2.1. The waveguide dimensions a and b were chosen so that only the $T E_{11}$ mode would propagate in regions 1 and 3 and only the TE_{11} and TM_{11} modes would propagate in region 2 . The length T is chosen long enough so that the only modes incident at the aperture are the TE_{11} and TM_{11} modes - hence this is a dual-mode feed. The parameter s is adjusted to obtain the optimum moding ratio and T is adjusted to obtain the correct phase relationship between the $T E_{11}$ and $T M_{11}$ modes at the aperture. The two parameters are inter-related. The steps followed in analyzing this feed and oprimizing its parameters were as follows:

ORIGHAL PAGE IS
 OF POOR QUALITY

(1) The scattering matrix parameters for the inner junction, which is that of a bifurcated circular waveguide, were found using the residue calculus method.
(2) The $T E_{11}$ and $T M_{11}$ mode reflection coefficients and the $T E{ }_{11}$ to TM $_{11}$ mode coupling coefficient at the aperture was determined using Weinstein's solution for radiation from a circular waveguide.
(3) The $T E{ }_{11}$ and T_{11} mode radiation patterns were computed using the solution given by Weinstein. The ratio of the incident ${ }^{T M} 11$ mode to T_{11} mode amplitudes was varied urtil the minimum cross-polarization in the combined radiation pattern was obtained. This provided the optimum moding ratio as a function of the waveguide radius b.

Internal bifurcation junction

Figure 2.1 Dual-mode coaxial feed.
(4) By using the scattering matrices for the internal junction and the aperture the ratio of the $T E_{11}$ to TM_{11} incident mode amplitudes at the aperture was computed with a unit amplitude TE_{11} mode incident in the input waveguide. A computer optimization procedure was then used to find the values of S and T for given radii a and $b s o$ as to obtain the optimum moding ratio found in step 3 .

2. 2 SCATTERING MATRIX FOR INTERNAL BIFURCATION

The scattering matrix parameters $S_{i j}$ have been determined for the internal bifurcation junction shown in Fig. 2.1 by the residue calculus method. The analytical sulution is outlined in Appendix A. The only propagating modes are the TE_{11} modes in regions 1 and 3 and the $T E_{11}$ and T_{11} modes in region 2 so the junction is a fou:-port network. The subscripts refer to the modes in the various regions according to the following scheme:
$S_{i j}, i=1,2,3,4 ; \quad j=1,2,3,4$
Subscript 1 corresponds to TE_{11} mode in reqion 1
Subscript 2 corresponds to TE_{11} mode in region 2
Subsčipt 3 corresponds to TE_{11} mode in region 3
Subscript 4 corresponds to TM_{11} mode in region 4
The numerical values of the $S_{i j}$ are shown in Fig.'s 2.2a through $2.2 j$ as contours in the complex plane with a and b, the waveguide radii, as parameters. The numerical values are for a frequency of 12 ghz . and with a and b in $c m$. The values for the $S_{i j}$ are, of course, valid at any frequency for the same a / λ_{0} and b / λ_{0} values.

When region 3 is terminated in a short circuit at distance s to the left of the bifurcation (see Fig. 2.1) the junction may be viewed as a 3 -port with scattering matrix parameters $s_{i j}^{\prime}$ given by

$$
\begin{equation*}
s_{i j}^{\prime}=s_{i j}-\frac{s_{i 3} s_{j 3}}{s_{33}+e^{j \theta}} \tag{2.1}
\end{equation*}
$$

where $i, j=1,2,4$, and $\theta=2 \beta_{31} S$ is the total phase shift through the short-circuited coaxial wavequide section.

${ }^{\varepsilon} z_{\text {S }}$ Kıеиبุ̣еш

$\varepsilon^{\varepsilon} \varepsilon_{S}$ Kxeutisewi

Figure 2.2 h , Scattering matrix parameter S_{33}
Figure 2.2 , (c: : :)) Scattering matrix parameters for internal bifurcation junction.

Žs Kxeuị8euI

Figure 2.2i, Scattering matrix parameter S_{34}

Figure $2.2 j$, Scattering matrix parameter S_{44}

Figure 2.2, (cont.) Scattering matrix parameters for internal bifurcation junction.

2.3 APERTURE SCATTERING MATRIX

When a unit amplitude TE_{11} mode from the waveguide is incident on the aperture with radius b in Fig. 2.1 a reflected TE_{11} mode with reflection coefficient Γ_{11} and a scattered T_{11} mode of amplitude Γ_{12} is produced. Similarly an incident TM_{11} mode of unit amplitude produces a refler ed TM_{11} mode with amplitude Γ_{22} and a scattered TE_{11} mode with amplitude Γ_{12}. The aperture internal scattering matrix parametens were found from the solution given by Weinstein (Weinstein, 1969). They may also be obtained from the scattering parameters given by Johnson and Moffatt ${ }^{\dagger}$ (Johnson and Moffatt, 1980). The aperture internal scattering matrix parameters are shown 'n Fig.'s $2.3 a-c$ as anction of b in cm . for $f=12 \mathrm{ghz}$. Notc that in particular the TM_{11} mode reflection coefficient can be quite large for values of b close to the cutoff value for the TM_{11} mode e.g. for $\mathrm{b}=1.6,\left|\Gamma_{22}\right|=0.45$. Also the TE_{11} to TM_{11} mode coupling at the aperture is not negliqible. It is thus apparent that there will be significant interaction between the internal bifurcation junction and the aperture and this interaction must be taken into account in optimizing the feed parameters.

2.4 DUAL-MODE FEED RADIATION PATTERNS AND CROSS-POLARIZATION

The Weinstein solutions were used to compute the E- and H-plane patterns as well as the co-polarized and cross-polarized radiation patterns for pure $T E_{11}$ and pure TM_{11} mode excitation as well as for

[^0] OF POOR QUALITY

rig. 2.3a TE_{1}, mode aperture reflection coefficient.

Fig. 2.3b TE_{11} to TM_{11} mode coupling coefficient.

Fig. 2.3c TM_{11} mode aperture reflection coefficient.
Figure 2.3, TE_{11} and TM_{11} mode aperture reflection and coupling coefficients.
various relative amplitude values of combined incident TE_{11} and TM_{11} modes. The moding ratio qiving the smallest maximum cross-polarization was found through a computer evaluation of the cross-polarization as a function of the moding ratio. The Weinstein solution is summarized in Appendix B.

The pure mode $E-$ and $H-p l a n e$ patterns are shown in Fig.'s 2.4a-0. For comparison the patterns were also computed with the aperture field approximate method using the aperture electric field alone or using both the aperture electric and magnetic fields and taking the mode reflection coefficients into account (see Silver, 1949). The formulas used in the latter computation are summarized in Appendix C. Although the approximate methods give reasonably accurate patterns the accuracy is not sufficient to predict the cross-polarization with good accuracy.

The optimum moding ratio (ratio of incident TE_{11} mode amplitude to incident TM_{11} mode amplitude) for minimum cross-polarization is shown in Fig. 2.5. The moding ratio depends on the waveguide radius b and becomes smaller (a larger amount of the $T M 11$ mode is required) as b becomes larger. The amplitude ratio is complex with a small positive imaginary component.

The total radiated field in the $\phi=0$ plane (E-plane) and the phase deviation from that of a spherical wave are shown in Fig.'s 2.6a-f. Note that for polar angles such that the field is above the -20 dB . level that the phase error is small - less than 10°. This is the useful range of the pattern for illuminating a paraboloid.

[^1]
Fig. 2.4b $T E_{11}$ mode k -plane pattern, $\mathrm{b}=1.6 \mathrm{~cm}$. ___ exact, E-fieid only,

\ldots exact,E-field only, E-H field.

Fig. $2.4 \mathrm{c}{ }^{\mathrm{TM}}{ }_{11}$ mode E-plane radiation pattern, $\mathrm{b}=1.6 \mathrm{~cm}$. , Fig. 2.4d TM_{11} mode H -plane radiation pattern, $\mathrm{b}=1.6 \mathrm{~cm}$., eact, aperture field method gives zero. Figure 2.4, Circular waveguide radiation patterns.

ORIGINAL PAGE IS
OF POOR QUALITY

exact, aperture field method give zero.

Figure 2.4 , (cont.) Circular waveguide radiation patterns.

Fig. $2.4 j T E_{11}$ mode $H-p l a n e$ radiation pattern, $b=2 \mathrm{~cm}$.

exact, $\ldots \ldots$ E-field only, -....-- E-H field.
OFIGINAL PAGE S
OF POOR QUALITY

Fig. 2.4 n TE 11 mode H -plane radiation pattern, $\mathrm{b}=5 \mathrm{~cm}$. . exact,E-field only, -

ORIGINAL PAGE IS OF POOR QUALITY

oricmal pact is of poon qualivi

Figure 2.5 Optimum $\mathrm{TE}_{11} / \mathrm{TM}_{11}$ incident mode ratio at aperture for minimum
cross polarization as a function of b in $c m$.

The co- and cross-polarized patterns in the $\phi=45^{\circ}$ plane for the dualmode feed with the optimum moding ratio is shown in Fig's. 2.7a-f. The maximum cross-polarization is very small being close to -58 dB . With the optimum moding ratio the dual-mode feed has excellent cross-polarization discrimination. Dual mode horns of the type studied by Potter and with small flare angles and apertures should have comparable performance.

For comparison purposes the radiation patterns and cross-polarization properties of the dual-mode feed was also evaluated using the aperture field method to evaluate the radiated field and neglecting reflection and mode conversion at the aperture. The results of this evaluation is summarized in Appendix C. It was found that the optimum moding ratio when using the combined aperture electric and magnetic fields was -2.5 and the predicted cross-polarization was higher than that given by the exact theory. The conclusion arrived at is that approximate methods of computing the radiation from small aperture feeds will not, in general, give good results for the cross-polarized field.

2.5 OPTIMUM FEED DIMENSIONS

By using the bifurcation junction scattering matrix and the aperture scattering matrix parameters the resultant $T E_{11}$ and $T M{ }_{11}$ incident mode amplitudes at the aperture can be found using conventional transmission line theory. The moding ratio can then be computed as a function of the parameters S and T for a qiven set of wavequide radii a and b. In addition the cross-polarization level can be readily found for any given set of parameters as well as the ootimum values of S and T that gives the smallest cross-polarization.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2.6, Dual-mode circular waveguide radiation patterns (optimum modeing ratio).

CHGGINAL FAGE IS
OF POOR QUALITY

Fig. $2.6 f \mathrm{~b}=2 \mathrm{~cm} ., \phi=0^{\circ}$

: 1. $2.6 \mathrm{e} \mathrm{b}=1.9 \mathrm{~cm} ., \Phi=0^{\circ}$
$2.7 \mathrm{a} \quad \mathrm{b}=1.6 \mathrm{~cm} ., \phi=45^{\circ}$
Fig. $2.7 \mathrm{~b} \quad \mathrm{~b}=1.65 \mathrm{~cm} ., \quad=45^{\circ}$

ire 2.7, Dual-mode circular waveguide radiation patterns (optimum modeing ratio).
$\therefore \equiv \stackrel{i}{i}$

OKiGINAL PAGE IS OF POOR QUJALITY

$$
\text { Fig. } 2.7 e \quad b=1.9 \mathrm{~cm} ., \phi=45^{\circ}
$$

 Figure 2.7, (cont.) F

sunsifed (----) perinelod-ssody pue (-) paztalivd-0]
Fig. $2.7 \mathrm{~d} b=1.8 \mathrm{~cm} ., \phi=45^{\circ}$

The ratio of the $\mathrm{TF}{ }_{11}$ to TM_{11} incident mode amplitudes at the aperture is given by

where $\theta_{1}=\beta_{21} T$ and $\theta_{2}=\gamma_{21} T$. The $S_{i j}$ depend on the parameter S as given by (2.1).

Figures 2.8-2.10 show the minimian cross-polarization in dB. as a function of the inner guide radius a for a given value of outer guide radius b, and the corresponding best values for the parameters S and T Note that unless a is above a certain minimum value the smallest cross-polarization obtained is not as low as can be achieved, e.g. in Fig. 2.8, a must be greater than 1.28 cm . for $b=1.6 \mathrm{~cm}$. in order to obtain a cross-polurization as low as -58 dB . There are two solutions for S and T shown in the figures - the second solution being indicated by the dotted curves. For a pair of values for a and b that yield minimum cross-polarization the figures give the optimum values for S and T. In the figures a and b are in cm . and the data applies for a frequency of 12 ghz . but may be scaled for other frequencies.

In order to show the sensitivity of the cross-polarization to changes in S and T, contour plots of cross-polarization in the $S-T$ plane for various a and b values were generated. These are shown in Fig's. 2.11a2.11 f for $\mathrm{b}=1.6 \mathrm{~cm}$. , in Fig's. 2.12a-f for $b=1.7 \mathrm{~cm}$. and ${ }^{\prime}$ Fig's. $2.13 \mathrm{a}-\mathrm{d}$ for $b=1.8 \mathrm{~cm}$. Note that for $b=1.8 \mathrm{~cm}$. the minimum cross-polarization
cannot he achieved without increasing a beyond 1.45 cm . which would then allow the ${ }^{T M}{ }_{11}$ moxde to propagate in the smaller wavequide. These figures also show the minimum cross-polarization that can be obtained for a qiven pair of a and b values. For example, Fig. 2.lla shows that with $a=1 \mathrm{~cm}, b=1.6 \mathrm{~cm}$. the minimum cross-polarization is only -32.1 dB. For optimum cross-polarization a must be increased to arcund 1.3 cm . as shown in Fig. 2.1le (see also Fig. 2.8).

2.6 COAXIAL FEED PERFORMANCE - THEORETICAL

The minimum cross-polarization at a particular frequency for the dual-mode coaxial feed was shown to be around -58dB. in the previous section. In order for this feed to be useful for a satellite system it must have a reasonable bandwidth. In order to obtain information on the bandwidth the following quantities: maximum cross-polarization, maximum phase error in radiation pattern, and the input reflection coefficient $\left|s_{11}\right|$ were evaluated as a function of the percent deviation in frequency from the design value of 12 ghz . This data is given in Figures 2.14 a through 14 p for various optimum feeds with different a and b values. ${ }^{\dagger}$ The bandwidth will be chosen as the frequency band over which the cross-polarization remains below -30 dB . On this basis the bandwidth is in the range of 4.5 to 5 percent. The curves indicate that the cross-polarization, input reflection coefficient, and phase error increase more rapidly with frequency below the design value than for frequencies above the design value. Over the bandwidth, as defined above, the input zeflection coefficient remains below 0.05 corresponding to a VSWR of 1.1 . Hence the feed does have a very good impedance match to the input waveguide.

[^2]\[

$$
\begin{aligned}
& \text { WGH: PRAF } 13 \\
& \text { WHOR QUM, }
\end{aligned}
$$
\]

Fiq. 2.8a Cross-polarization vg. a for $b=1.6 \mathrm{~cm}$.

Fia. 2.fe T vs. a for $b=1.6 \mathrm{~cm}$.
Figure 2.8. Optimura feed parameters for $\mathrm{b}=1.6 \mathrm{~cm}$

Figure 2.10, Optimum feed parameters for $b=1.8 \mathrm{~cm}$.

ORIGINAL PAGE IS OF POOR QUALITY

cm . Fig. 2.11b Cross-polarization for $a=1.07 \mathrm{~cm} ., b=1.6 \mathrm{~cm}$.

Fig. 2.11c Cross-polarization for $a=1.1 \mathrm{~cm}, \mathrm{~b}=1.6 \mathrm{~cm}$. Fig. 2.11 d Cross-polarization for $a=1.2 \mathrm{~cm} . \mathrm{b}=1.6 \mathrm{~cm}$. Figure 2.11, Cross-polarization of dual-mode feed as a function of S and T.

Fig. 2.11f Cross-polarization for $a=1.3 \mathrm{~cm} ., b=1.6 \mathrm{~cm}$. Fig. 2.11 e Cross-polarization for $\mathrm{a}=1.3 \mathrm{~cm} ., \mathrm{b}=1.6 \mathrm{~cm}$.
4.10
. $10 \square$
 Fig. 2.11h Cross-polarization for $a=1.35 \mathrm{~cm} ., b=1.6 \mathrm{~cm}$. of dual-mode feed as a function of S and T.

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 2.11i Cross-polarization for $a=1.4 \mathrm{~cm} ., b=1.6 \mathrm{~cm}$.

 figure 2.11, (cont.) Cross-polarization of dual-mode feed as a function of S and T.

ORIGIRAL PAKE S

5.764 .74 Figure 2.12, Cross-polarization of dual-mode feed as a function of S and T.

$$
\text { Figure } 2.14 \text {, Dual-mode feed characteristics as a function of frequency. }
$$

(20.

Fig. $2.14 b$ A $=1.25 E=1.60 \leq=0.8500 \mathrm{~T}=4.2540$
$\stackrel{n}{n}$

Fig. 2.14d $A=1.30$ 0. $1.60 \mathrm{~s}=1.0120 \mathrm{~T}=4.1020$

Fig. 2.14 C A= 1.30 = $1.60 \mathrm{se} 0.7600 \mathrm{~F}=4.3720$
 OF POOK SJSity
$E=0.25$

$\stackrel{9}{9}$
$\stackrel{7}{9} \stackrel{i}{i}$

Fig. 2.14f $A=1.35 日=1.60 \mathrm{~S}=1.2280 \mathrm{~T}=3.972 \theta$
$\stackrel{n}{i}$

$$
\text { Fig. 2.14e } G=1.35 \theta=1.60 \mathrm{~S}=0.6738 \mathrm{~T}=4.4930
$$

-10 -

Fig. $2.149 \mathrm{~A}=1.40 \mathrm{~B}=1.63 \mathrm{~g}=0.1000 \mathrm{i}=3.9050$ Figure 2.14 , (cont.) Dual-mode feed characteristics as a function of frequency.

Figure 2.14, (cont.) Dual-mode feed characteristics as a function of frequency.

ORIGINAL Page is OF POOR QUALITY

The phase error (departure from a spherical phase front) in the radiation pattern is also negligible, typically less than 10° over the band. The efficiency of the feed depends on the f / D ratio of the paraboloid reflector it is used with. Figures 2.15 a -h show the illumination efficiency, spillover efficiency, and total efficiency for various f / D ratios as a function of the outer waveguide radius b. The data is not applicable for b greater than 2.12 cm . at which point the TE_{12} mode begins to propagate. For these feeds the computed phase error loss and cross-polarization loss was entirely negligible being less than 0.25%. With an f / D ratio of 0.33 the efficiency is 57% for $b=1.6 \mathrm{~cm}$. but rises to 68% with f / D increased to 0.4 . The maximum attainable efficiency is around 788 for $b=1.85 \mathrm{~cm}$. and an f / D ratio of 0.6 (see Fig. 2.15h). The maximum efficiency arises from the competition between a rising illumination efficiency and a decreasing spillover efficiency.

The afficiency that can be realized in practice depends on how much aperture field taper is required to obtain sidelobes of a given specified maximum value. Figures $2.16 a-b$ show the first and second sidelobe levels as a function of f / D for $b=1.6 \mathrm{~cm}$, and 1.7 cm . The interesting feature in these curves is that as f / D increases the aperture field taper decreases causing the main lobe to become narrower and causing the first sidelobe to essentially disappear by merging with the main lobe. The second sidelobe then becomes dominant. A further increase in f / D reestablishes the first sidelobe as the dominant one. This behavior can be understood by examining Fig. 2.17 which shows the angular position of the first two sidelobes and the first two nulls as a function of f / D.

Fig.
2.15a fockl Length-otameter ratio 0.30 (thetaee 29.6)

Fig. 2.15 c focal lemgth-diameted patio

2.15E FOCAL LENGTH/OTANETEP RGTID= 0.43 (THETAQ = 60.9)

2.15h FOCGL LENGTH-DIAMETER PATIO: 6.60 (THETAO= 45.2)
efficiency for different f / D ratios.

2.15 E FOCAL LENGTH/DIANETER RATIO $=0.40$ (THETAO: 64.0) Fig.
Fig.

eưozue tepfoqeied (.7U0د) 'GI' \mathcal{C} ainsfy

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 2.16a
Sidelobe levels vs. f/D.

Figure 2.16, Sidelobe characteristics for paraboloidal reflector

Figure 2.17, Sidelobe and null positions vs. f/D.

If the criterion of sidelobes below -30 dB . is chosen then Fig's. 2.16a-b show that this can be met with f / D ratios as large as 0.45 . This means that efficiencies as large as 70% or more can be realized. If the criterion is -35 dB . sidelobes in order to allow for some increase in sidelobe level due to feed blockage and scatter from the feed supports then f / D is restricted to about 0.35 for $b=1.6 \mathrm{~cm}$. and to 0.37 for $b=1.7 \mathrm{~cm}$. which corresponds to an efficiency of around 60\%. The efficiency curves were computed using the formulas given in Chapter 1.

Typical radiation patterns for a 1.22 meter (4 foot) paraboloid of different f / D ratios and for $b=1.6$ and 1.7 cm . are shown in Figures 2.18 and 2.19. The series of figures such as Figures 2.18a-2.18e show the formation of sidelobes as the aperture field taper is reduced with increasing f / D ratios. In Fig. $2: 18 a$ where $f / D=0.3$ the main lobe has a broad shoulder beginning at about the -30 dB . level and having a half

ORIGINA: :EATS IS OF POCR QUingey

61

Figure 2.18, Reflector radiation patterns as a function of $f / D, D=1.22 \mathrm{~m}$. angular width of 4° at the -40 dB . level. The next series of four figures shows this shoulder moving away and becoming a distinct sidelobe with a relative height of -33 dB . at $\theta=3.5^{\circ}$ when $\mathrm{f} / \mathrm{D}=0.4$. For $f / D=0.45$ a new sidelobe at 2.5° begins to form. With $f / D=0.3$ the -33 dB . level is also at about $\theta=3.5^{\circ}$ but is part of the shoulder of the main lobe. The $f / D=0.3$ corresponds to an aperture efficiency of 52% while $f / D=0.4$ corresponds to an aperture efficiency of 68%. If the pattern is measured in terms of the envelope the $f / D=0.4$ pattern is better than the $f / D=0.3$ pattern down to the -40 dB . level. The $\mathrm{b}=1.7 \mathrm{~cm}$. case is similar. These figures thus show that for a given feed and reflector there is an optimum f / D ratio that will give the best aperture efficiency along with the best pattern envelope characteristic. The envelope provides a good measure of the interference rejection characteristics of the overall pattern. A main lobe with a broad shoulder yet with small sidelobes is not as yood as a narrow main lobe
with a higher first sidelobe level as long as the sidelobe level is below that of the shoulder.

The patterns shown in Fig's. 2.18-2.19 are in the $\phi=45^{\circ}$ plane but because of the very low cross-polarization the patterns are essentially the same in all planes. Figure 2.20a shows the co-polarized pattern, the total pattern, and the contribution from the z-component of current on the paraboloid. The field from the cross-polarized field of the feed is below -100 dB . Figure 2.20 b shows the various contributions to the cross-polarized field in the 45° plane. The cross-polarized component due to the z-component of current is comparable in value to that due to the cross-polarized radiation from the feed for an optimum feed.

Figure 2.19a, Reflector radiation pattern
Figure 2.19 , Reflector radiation patterns as a function of $f / D, D=1.22 \mathrm{~m}$.

ORIGINA:
OF FOGA

Figure 2.19d, Reflector radiation pattern
Figure 2.19, Reflector radiation patterns as a function of $f / D, D=1.22 \mathrm{~m}$.
64 ORIGMS:

Figure 2.20a, Reflector co-polarized radiation patterns for $b=1.7 \mathrm{~cm}$., $\mathrm{f} / \mathrm{D}=0.30, \mathrm{D}=1.22 \mathrm{~m}$.

Figure 2.20b, Reflector cross-polarized radiation pattern for $b=1.7 \mathrm{~cm}$. , $\mathrm{f} / \mathrm{D}=0.30, \mathrm{D}=1.22 \mathrm{~m}$.

Figure 2.20, Reflector co- and cross-polarized radiation patterns.

2.7 COAXIAL FEED PERFORMANCE - EXPERIMENTAL

Two long-cup dual-mode coaxial feeds were built and their radiation patterns and cross-polarization properties measured. One of the feeds was not an optimum design since it was constructed from design data that, unfortunately, was in error due to a sign error in the aperture $T E_{11}$ to $T M_{11}$ mode coupling coefficient. This feed was scaled to operate at a center frequency of 10.1 ghz . However, based on the corrected design data the lowest cross-polarization should occur around 10.3 ghz . The data shown in Figure 2.11b applies to this feed, as does the data in Figure 2.14a. The theory predicts a minimum cross-polarization of -34 dB . and a 5% bandwidth over which the cross-polarization should remain below -25 dB . This sub-optimum feed was also tested with a 1.22 meter diameter fiber glass paraboloid with $f / D=0.33$. For the sub-optimum feed $a=1.27 \mathrm{~cm} ., b=1.905 \mathrm{~cm}$. (see Fig.3.1) The co-polarized and cross-polarized radiation patterns in the 45° plane for the sub-optimum feed are shown in Figures 2.21 through $2.21 f$ and cover the frequency range from 9.9 ghz . to 10.6 ghz . At 9.9 ghz . the measured cross-folarization was -18 dB ., at 10 ghz . it was -28 dB ., while at the design center frequency of 10.1 ghz . it was -34 dB . At 10.3 ghz . the measured crosspolarization was -35 dB . which is somewhat better than the theory predicted. At 10.5 ghz . the cross-polarization was found to be -28 dB . and rose to only -24 dE . at 10.6 ghz . The measurements were made on an indoor antenna range with the feed and transmitting horns separated by 0.7 meter. The transmitting horn was approxiluately 5 cm . by 8 cm . Spurious reflections from the ceiling and walls were calculated to be below -40 dB . It was, however, found that some interference between the transmitting and receiving horn mounting structures was present and limited the ability to measure very low crosspolarization levels with good accuracy.

Figure 2.21 - 45° plane radiation patterns for sub-optimum feed at 9.9 ghz .

Figure $2.21 b-45^{\circ}$ plane radiation patterns for sub-optimum feed at 10 ghz .

Figure 2.21, Radiation patterns for sub-optimum feed.

Figure $2.21 \mathrm{c}-45^{\circ}$ plane radiation patterns for sub-optimum feed at 10.1 ghz .

Figure $2 \cdot 2 l d-45^{\circ}$ plane radiation patterns for sub-optimum feed at 10.3 ghz .

Figure 2.21, (cont.) Radiation patterns for sub-optimum feed.

ORIGINAL PAGE IS OF POOR QUALITY

Figure $2.2 l e-45^{\circ}$ plane radiation patterns for sub-optimum feed at 10.5 ghz .

Figure $2.21 f-45^{\circ}$ plane radiation patterns for sub-optimum feed at 10.6 ghz .

Figure 2.21, (cont.) Radiation patterns for sub-optimum feed.

Figure 2.22 shows the $\mathrm{E}-$ and H-plane patterns superimposed on the 45° plane co-polarized pattern at 10.1 ghz . Equal E - and H -plane patterns were not achieved, which is in accord with the theory. Nevertheless the radiation pattern for this suh-optimum feed does have quite good rotational symmetry at the design frequency.

When the sign error was discovered new design data was generated and an optimum feed was built for operation at 10.1 ghz . This optimum design corresponds to the feed that is characterized by the data shown in Figures $2.11 f$ and 2.14 c . The theory predicts a cross-polarization below -30 dB . over a 5\% bandwidth extending from 10 ghz . to 10.5 ghz . The front section

Figure 2.22 - Comparison E-plane, H-plane, and 45° plane co-polarized patterns for sub-optimum feed at 10.1 ghz.
of the feed employed a small tapered horn section as shown in Figure 2.23. The outer cup and inner section were also tapered to a sharp edge so as to be more nearly like the infinitely thin waveguides for which the theory is applicable.

Figure 2.23 - Optimum Feed Configuration.

The E- and H-plane patterns and the co- and cross-polarized 45° plane patterns for the optimum feed are shown in Figures 2.24 a through 2.24f. It can be seen that in the frequency range 10 ghz . to 10.5 ghz . the pattern has very good rotational symmetry and the measured cross-polarization was below -27 dB . At the design frequency the measured cross-polarization was below -40 dB . on one side and below -38 dB . on the other side of boresight. At 9.9 ghz . and 10.7 ghz . the $\mathrm{E}-$ and H -plane patterns are no longer equal and the cross-polarization has risen to -25 dB . and -16 dB . respectively. Overall there is very good correlation of the experimental data with the theoretical predictions. It thus appears that the theoretical design data can be used for design purposes without modification. The inability to measure a cross-

OKIGIVAL FAGE IS OF POOR QUALITY

Figure 2.24a - Radiation patterns for optimum feed at 9.9 ghz .

Figure 2. 24h - Radiation patterns for optimum feed at 10 ghz .
Figure 2.24, Radiation patterns for optimuin feed.

72 OF POOR QUALITY

ORIGINAL PAGE IS

Figure 2.24 c - Radiation patterns for optimum feed at 10.1 ghz .

Figure 2.24 d - Radiation patterns for optimum feed at 10.3 ghz .
Figure 2.24, Radiation patterns for optimum feed.

73
 ORIGNAL PAGE R OF POOR OUALTY

Figure 2.24 f - Radiation patterns for optimum feed at 10.7 ghz .
Figure 2.24, Radiation patterns for optimum feed.
polarization as low as -58 dB . at the design center frequency is believed to be due to spurious reflections as well as various small imperfections in the feed.

2.8 PARABOLOIDAL RADIATION PATTERNS

The sub-optimum feed was used to illuminate a 1.22 meter diameter paraboloid with $f / D=0.33$. The E - and H-plane patterns as well as the 45° plane co- and cross-polarized patterns were measured. ${ }^{\dagger}$ It was found experimentally that when the four feed support rods were located in the Eand H-planes as shown in Figure 2.25a that the sidelobe level was much higher than predicted, of order -22 dB . to -26 dB . By placing the support rods in the 45° planes as shown in Figure 2.25 b the sidelobes remained below -30 dB . In general scatter from the support rods and blockage by the feed makes it difficult to obtain close correlation between measured patterns and theoretical patterns below the -30 dB . level. For this study the objective was to verify that by using sufficient aperture tapering the first two sidelobes could be kept below -30 dB . and the remaining sidelobes below -40 dB . The objective with regard to the first two sidelobes was met but because of scatter it was found that the remaining sidelobes were not always below -40 dB . There also was a limitation of 40 dB . dynamic range for the measurement equipment used.

The measured radiation patterns at 10.3 ghz . with the support rods in the $E-$ and H-planes are shown in Figures $2.26 \mathrm{a}-\mathrm{c}$. It is clear that scatter from the support rods is producing a lot of fill in radiation below the -30 dB . level in addition to producing high sidelobe peaks.

[^3]
(a)

Figure 2.25 - Feed support structure for paraboloid antenna

Figure 2.26a - H-plane pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure 2.26, Radiation patterns for paraboloid iiluminated with a sub-optimum feed, $f / D=0.33$.

Figure $2.26 b$ - E-plane pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure $2.26 \mathrm{c}-45^{\circ}$ plane co-polarized pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure 2.26, Radiation patterns for paraboloid illuminated with a sub-optimum feed, $f / D=0.33$.

The measured radiation patterns over the frequency range 9.9 ghz . to 10.5 ghz . and with the support rods in the 45° plane are shown in Figures 2.27a-k. The measured peak cross-polarization at 10.1 ghz . and 10.3 ghz . was -31 dB . while at 10.5 ghz . it was -27 dB . The crosspolarization level correlates well with that of the feed. When the E-plane, H-plane, and 45° plane co-polarized patterns are superimposed they are found to be essentially identical down to the -24 dB . level over the frequency range 10 ghz . to 10.5 ghz . Thus the good circular symmetry of the feed radiation pattern is verified. The theoretical pattern is 4.25° wide at the -20 dB . level at 12 ghz . which corresponds to a pattern 5° wide at the -20 dB . level at 10.1 ghz . for the same 1.22 meter diameter reflector. The measured patterns are also 5° wide at the -20 dB . level in accordance with the theoretical predictions.

Figure $2.27 a-H-p l a n e$ pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure 2.27, Radiation patterns for paraboloid illuminated with a sub-optimum feed, $f / D=0.33$.

ORICHEL FRE IS OF POOR QUALITY

Figure 2.27 b - E-plane pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure $2.27 c$ - H-plane pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure 2.27, Radiation patterns for paraboloid illuminated with a sub optimum feed, $f / D=0.33$.

Figure 2.27 d - E-plane pattern with 1.22 meter paraboloid illuminated with sub-optimum feed

Figure $\therefore . .27 e-C o-$ and cross-potarized 45° plane patterns of paraboloid illuminated witi su:-optimum feed.

Figure 2.27, Radiation patterns for paraboloid illuminated with a sub-optimum feed, $\mathrm{f} / \mathrm{D}=0.33$.

ORIGINAL PAGE 15 OF POOR QUALITY

Figure 2.27 f - H-plane pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure 2.279
E-plane pattern of 1.22 meter paraboloid illuminated with sub-optimum feed

Figure 2.27, Radiation patterns for paraboloid illuminated with a sub-optimum feed, $\mathrm{f} / \mathrm{D}=9.33$.

Figure 2.27 h - Co- and cross-pclarized 45° plane patterns of paraboloid illuminated with sub-optimum feed.

Figure 2.27i -. H-plane pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure 2.27, Radiation patterns for paraboloid illuminated with a sub-optimum feed, $f / D=0.33$.

Figure 2.27j - E-plane pattern of 1.22 meter paraboloid illuminated with sub-optimum feed.

Figure 2.27 k - Co- and cross-polarized 45° plane patterns of paraboloid illuminated with sub-optimum feed.

Figure 2.27, Radiation patterns for paraboloid illuminated with a sub-optimum feed, $f / D=0.33$

3.1 INTPODUCTION

The short-cup coaxial. feed shown in Figure 3.1 was investigated by Kumar (Kumar, 1978). The experimentally optimized feed had the following parameters: $\mathrm{a}=1.3 \mathrm{~cm} ., \mathrm{b}=3.075 \mathrm{~cm} ., \mathrm{S}=1.6 \mathrm{~cm}$. , and $\mathrm{T}=0 \mathrm{~cm}$. This feed produced a cross-polarization of -31 dB . at 8 ghz . and 8.5 ghz. , -30 dB . at $9 \mathrm{ghz} .$, and -26 dB at 9.5 ghz .

Figure 3.1 - Short-cup coaxial feed

A similar feed was built and the position of the split collar and outer waveguide were varied (S and T parameters) so as to obtain equal E- and H-plane patterns. The waveguide radii used were $a=1.27 \mathrm{~cm}$. and $b=2.54 \mathrm{~cm}$. Since T is small and b is quite large the aperture is excited by $\mathrm{TE}_{11}, \mathrm{TM}_{11}, \mathrm{TE}_{12}, \mathrm{TM}_{12}$ circular waveguide modes when T is non-zero. When T is zero the aperture is excited by the $T E_{11}$ mode in the inner guide and by the $\mathrm{TE}_{11}, \mathrm{TM}_{11}$, plus higher order $\mathrm{TE} \mathrm{lm}_{\mathrm{m}}$ and $\mathrm{TM}{ }_{1 m}$ modes in the coaxial region. The theoretical analysis of this type of feed is thus much more difficult to carry out than is the case for the dual-mode feed.

By experimental adjustment of the S and T parameters good symmetry between the $E-$ and $H-p l a n e$ patterns can be obtained over a 10-15\% frequency band. A cross-polarization of -30 dB. or better can be obtained. The ultimate theoretical minimum cross-polarization and optimum feed parameters have not been determined. It would be desirable to carry out such an analysis since the short-cup feed does appear to have at least twice the bandwidth that the long-cup dual-mode feed does.

3.2 SHORT-CUP COAXIAL FEED - RADIATION PATTERNS

For the chosen a and b parameters, namely $a=1.27 \mathrm{~cm} ., b=2.54 \mathrm{~cm}$. , the best patterns were obtained with $S=1.27 \mathrm{~cm} ., T=0 \mathrm{~cm}$. Neasurements made on a feed with $S=0.95 \mathrm{~cm}$. and $T=0.32 \mathrm{~cm}$. gave almost as good results for the cross-polarization and thus indicates that the S parameter is not very critical. The measured peak cross-polarization as a function of frequency is listed below for $S=1.27 \mathrm{~cm} ., T=0 \mathrm{~cm}$.

Frequency	Maximum Cross-Polarization
8.5 ghz.	-10 dB.
9 ghz.	-31 dB.
9.5 ghz.	-28 dB.
10 ghz.	-27 dB.
10.5 ghz.	-27 dB.
11 ghz.	-12 dB.

The E-plane, $H-p l a n e$, and 45° plane co-polarized and cross-polarized patterns at $9,9.5,10$, and 10.5 ghz . are shown in Figures 3.2a-d. The E - and H-plane patterns exhibit a high degree of symmetry and based OF POOR QUAALITY

Figure 3.2a-E-plane, H-plane, and 45° plane co- and cross-polarized patterns for short-cup feed.

Figure 3.2b-E-plane, H-plane, and 45° plane co- and cross-polarized patterns for short-cup feed.

Figure 3.2, Radiation patterns for short-cup feed.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.2 c - E-plane, $\mathrm{H}-\mathrm{pl}$ ane, and 45° plane co- and cross-polarized patterns for short-cup feed.

Figure 3.2d - E-plane, H-plane, and 45° plane co- and cross-polarized patterns for short-cup feed.

Figure 3.2, Radiation patterns for short-cup feed.
on this symmetry the cross-polarization should have been smaller than was measured. The cross-polarization in $d B$. is given by $20 \log |E-H| / 2$ where $|E-H|$ is the difference in the $E-$ and H-plane normalized pattern amplitudes. A difference of $1 / 2 \mathrm{~dB}$. at the -15 dB . level corresponds to a cross-polarization of -45.5 dB . When there is no phase error in the radiation patterns. When there is a phase difference in the $E-$ and H-plane patterns the cross-polarization will be larger. This is probably the reason why the measured cross-polarization was larger than expected from a consideration of the $E-$ and H-plane amplitude patterns alone. It was also noted during the measurements that placing absorber material behind the feed resulted in lower cross-polarization being measured. There apparently was significant interaction between the transmitting horn and the feed which were spaced only 0.7 meter apart.

A noteable feature of the short-cup coaxial feed is that even though the aperture is larger than that of the long-cup dual-mode feed the radiation pattern is very close to that of the circular waveguide alone. This seems to indicate that the modes in the coaxial region are weakly excited. Measurements of the cross-polarization of the circular waveguide alone with the same inner radius $a=1.27 \mathrm{~cm}$. gave a peak cross-polarization of -25 dB . at $9.5 \mathrm{ghz} .,-30 \mathrm{~dB}$. at 10.5 ghz. and -14 dB . at 11 ghz . In view of these features of the circular waveguide alone it can be expected that only relatively small amplitude modes in the coaxial region will be needed to improve the cross-polarization properties.
3.3 PARABOIOIDAL RADIATION PATTERNS - SHORT-CUP FEED

A 1.22 meter diameter paraboloidal reflector with f / D was illuminated with the short-cup feed and the E- and H-plane as well as the 45° plane coand cross-polarized patterns measured. These patterns are shown in Figures $3.3 \mathrm{a}-\mathrm{i}$ for frequencies $9.5 \mathrm{ghz}, 10 \mathrm{ghz}$. and 10.5 ghz . The cross-
polarization was not as good as for the long-cup feed, possibly because of more interaction of the back radiation of the feed with the feed support structure (the long-cup feed is more directional). The measured peak cross-polarization was -28 dB . at $9.5 \mathrm{ghz} .,-21 \mathrm{~dB}$. at $10 \mathrm{ghz} .$, and -19 dB . at 10.5 ghz . These values are considerably larger than would be expected based on the cross-polarization levels of the feed. It is presumably caused by the feed support structure and its interaction with the radiation from the feed.

Figure 3.3a - H-plane pattern for paraboloidal reflector illuminated with short-cup feed.

Figure 3.3, Radiation patterns of paraboloidal reflector illuminated with the short-cup feed.

Figure 3.3b-E-plane pattern for paraboloidal reflector illuminated with short-cup feed.

Figure $3.3 \mathrm{c}-45^{\circ}$ plane $z 0-$ and cross-polarized patterns for paraboloidal reflector illuminated with short-cup feed.

Figure 3.3, Radiation patterns of paraboloidal reflector flluminated with the short-cup feed.

ORIGINAL PAOR is OF POOR GUAL!TY

Figure 3.3d - H-plane pattern for paraboloidal reflector illuminated with short-cup feed.

Figure $3.3 e$ - E-plane pattern for paraboloidal reflector illuminated with short-cup feed.

Figure 3.3, Radiation patterns of paraboloidal reflector 111 minated with the sho t-cup feed.

91
ORIGINAL PARE S
64 Pran: \therefore.m.

Figure $3.3 f-45^{\circ}$ plane $c o-$ and cross-polarized patterns for paraboloidal reflector illuminated with short-cup feed.

Figure 3.3g - H-plane pattern for paraboloidal reflector illuminated with short-cup feed.

Figure 3.3, Radiation patterns of paraboloidal reflector illuminated with the short-cup feed.

OF POOR QUALITY

ORIGINAL PAGE IS

Figure 3.3h - E-plane pattern for paraboloidal reflector illuminated with short-cup feed.

Figure 3.3i - 45° plane $c o-$ and rross-polarized patterns for paraboloilal reflector illuminated with short-cup feed.

Figure 3.3, Radiation patterns of paraboloidal reflector illuminated with the short-cup feed.

CONCLUSIONS AND RECOMMENDATIONS

The major findings of this study are:

- A long-cup dual-mode feed can be optimized to have a center frequency cross-polarization peak as low as -58 dB .
- Over a 5\% bandw dth the dual-mode feed has a cross-polarization peak below - 30 dB. , a phase error of less than 10°, and an input VSWR of order 1.].
- The dual-mode feed, when used to illuminate a 1.22 meter paraboloidal reflector with f / D of around 0.4 , will result in sidelobes below -30 dB . and an aperture efficiency of over 70\%. The peak cross-polarization level will be comparable to that of the feed.
- The short-cup coaxial feed can be optimized to produce low crosspolarization (or order -30 dB . or less) over a $10-15 \%$ bandwidth. For prime focus antennas designed for sidelobes and cross-polarization below -30 dB . one must pay careful attention to the feed support structure in order to achieve the desired characteristics.

Some of the recommendations for future work are:

- Derive analytical solutions for the short-cup coaxial feed and optimum design data. This feed has the advantage that the bandwidth appears to be 10-15\%.
- Develop optimum feed support structures in order to achieve low cross-polarization and sidelobe levels.
- It would be desirable to repeat the cross-polarization measurements on an antenna range that was carefully designed so as to enable field strengths 60 dB . beluw the radiation maximum to be measured.

REFERENCES

Clarricoais, P.J.B., and G. R. Moulton. High Efficiency Microwave Reflector Antennas - A Review, Proc. IEEE, Vol. 65, pp. 1470-1504, oct. 1977.

Hansen, J.E., and L. Shafai. Cross-polarized Radiation from Waveguides and Narrow Angle Horns, Elec. Letters, Vol. 13, pp. 313-315, 1977.

Hockham, G.A. Investigation of a 90° Corrugated Horn, Elec. Letters, vol. 12, pp. 199-20il, 1976.

James, G.L. Radiation Properties of 90° Concial Horns. Elec. Letters, Vol. 13, pp. 293-294, 1977.

James, G.L., and C. J. Greene. Effect of Wall Thickness on Radiation from Circular Waveguides, Elec. Letters, Vol. 14, pp. 90-91, 1978.

Johnson, T. W., and D. L. Moffatt. Electromagnetic Scattering by Open Circular Waveguides, Tech. Rept. No. 710816-9, Electro-Science Laboratory, The Ohio State University, Dec. 1980.

Kay, A. F. The Scalar Feed, U. S. Air Force Cambridge Res. Labs., Rept. No. 62-347, March 1964.

Koch, G. F. Coaxial Feeds for High Aperture Efficiency and Low Spillover for Paraboloidal Reflector Antennas, IEEE Trans., Vol. AP-21, pp. 164-169, March 1973.

Kouznetsov, V. Sidelobe Reduction in Circular Aperture Antennas, European Antenna Conference Digest, London, 1978.

Kumar, A. Experimental Study of a Dielectric Rod Enclosed by a Waveguide for Use as a Feed, Elec. Letters, Vol. 12, pp. 666-668, Dec. 1976.

Kumar, A. Reduce Cross-Polarization in Reflector Type Antennas, Microwaves, Vol. 17, pp. 48-51, March, 1978.

Kumar, A. Waveguide Feed Reduces Cross-Polarization Levels, Microwave Journal, Vol. 21, pp. 86-88, March 1978.

Ludwig, A. C. Antenna Feed Efficiency, Space Programs Summary 37-26, Vol. IV, pp. 200-208, 1965, Jet Prop. Lab., CIT, Pasadena, Calif.

Ludwig, A. C. The Definition of Cross-Polarization, IEEE Trans., Vol. AP-21, pp. 116-119, Jan. 1973.

Potter, P. D. A New Horn Antenna With Suppressed Sidelobes and Equal Beamwidths, Microwave Journal, Vol. 6, pp. 71-78, 1963.

Satoh, T. Dielectric-Loaded Horn Antenna, IEEE Trans., Vol. AP-20, pp. 199-201, 1972.

Scheffer, H. 'mprovements in the Development of Coaxial Feeds for Parabolus al Reflector Antennas, 5'th European Microwave Conference, Hamburg, Germany, Sept. 1975.

Schilling, H. Dual-Mode Coaxial Feed for Darabolic Antennas, Ph.D. Thesis, Dept. of Electrical Engineering and Applied Physics, Case Western Reserve University, 1982.

Silver, S. Microwave Antenna Theory and Design, McGraw-Hill Book Co. New York, 1949.

Thomas, B. MacA. Theoretical Performance of Prime-Focus Paraboloids Using Hybrid-Mode Feeds, Proc. IEE, Vol. 118, pp. 1539-1549, 1971.

Weinstein, L. A. The Theory of Diffraction and the Factrorization Method, Golem Press, Boulder, Colo., 1969.

Wood, P. J. Reflector Antenna Analysis and Design, Peregrinus Ltd., England, 1980.

The first step in determing the optimum feed dimensions is to solve the problem of mode coupling in the bifurcated waveguide shown in Figure Al. This problem can be formulated as follows: (1) Express the transverse electric and magnetic fields at the junction in terms of a series expansion involving the $T E{ }_{1 n}$ and $\mathrm{TM}_{1 n}$ modes in each waveguide. (2) Make the transverse fields continuous across the junction. (3) From the contin_ity conditions use Fourier analysis to obtain algebraic equations for the mode amplitudes. (4) Solve the infinite set of equations by the residue calculus technique.

Figure Al - Birfurcated circular waveguide showing the three different waveguide regions.

The following notation will be used:

1. Transverse electric field of T eln modes in reqions $1,2,3$ is

$$
\vec{e}_{1 n}, \stackrel{\rightharpoonup}{e}_{2 n}, \stackrel{r}{3 n} .
$$

2. Transverse electric field of $T M_{1 n}$ modes in regions $1,2,3$ is $\vec{E}_{1 n}$, $\vec{E}_{2 n}, \vec{E}_{3 n}$ 。
3. $T E_{1 n}$ mode amplitudes in regions $1,2,3$ are a_{n}^{+}, b_{n}^{+}, and c_{n}^{+}where + stands for incident wave and - for reflected or scattered waye.
4. $T M_{1 n}$ mode amplitudes in regions $1,2,3$ are $A_{n}^{ \pm}, B \frac{+}{n}$, and C_{n}^{+}.
5. $\mathrm{TE}_{1 \mathrm{n}}$ propagation constants in regions $1,2,3$ are $\beta_{1 n^{\prime}} \beta_{2 n^{\prime}} B_{3 n}$ 。
6. ${ }^{T M}{ }_{1 n}$ propagation constants in regions $1,2,3$ are $\gamma_{1 n}, \gamma_{2 n}, \gamma_{3 n}$.
7. Cutoff wave numbers for $\mathrm{TE}_{1 \mathrm{n}}$ modes in the three regions are

$$
k_{1 n^{\prime}} k_{2 n^{\prime}} k_{3 n}
$$

8. Cutoff wave numbers for $T M_{1 n}$ modes in the three regions are

$$
\ell_{1 n^{\prime}} \ell_{2 n^{\prime}} \ell_{3 n} .
$$

It will be assumed that only the $T E_{11}$ mode can propagate in regions 1 and 3 while both $T E_{11}$ and $T M_{11}$ modes can propagate in region 2 . It is also assumed that profigating modes are incident in all three regions. The equations expressing the rortinuity of the transverse electric

$$
\begin{align*}
& \text { field in the } z=0 \text { plane is } \\
& \quad\left(b_{1}^{+}+b_{1}^{-}\right) \vec{e}_{21}+\left(B_{1}^{+}+B_{1}^{-}\right) \vec{E}_{21}+\sum_{n=2}^{\infty}\left(b_{n}^{-} \vec{e}_{2 n}+B_{n}^{-} \vec{E}_{2 n}\right) \\
& =\left\{\begin{array}{l}
\left(a_{1}^{+}+a_{1}^{-}\right) \vec{e}_{11}+A_{1}^{-} \vec{E}_{11}+\sum_{n=2}^{\infty}\left(a_{n}^{-} \vec{e}_{1 n}+A_{n}^{-} \vec{E}_{1 n}\right), 0<r<a \\
\left(c_{1}^{+}+c_{1}^{-}\right) \vec{e}_{31}+C_{1}^{-} \vec{E}_{31}+\sum_{n=2}^{\infty}\left(c_{n}^{-} \vec{e}_{3 n}+C_{n}^{-} \vec{E}_{3 n}\right), a<r<b
\end{array}\right. \tag{Al}
\end{align*}
$$

The equation that expresses the continuity of the transverse magnetic

```
field at 2 = 0 is
```

$$
=\left\{\begin{array}{l}
\left(b_{1}^{+}-b_{1}^{-}\right) \hat{\beta}_{21} \vec{e}_{21}+\left(B_{1}^{+}-B_{1}^{-}\right) \hat{\gamma}_{21}^{-1} \vec{E}_{21}-\sum_{n=2}^{\infty}\left(b_{n}^{-} \hat{\beta}_{2 n} \vec{e}_{2 n}+B_{n}^{-} \hat{\gamma}_{2 n}^{-1} \vec{E}_{2 n}\right) \\
\left(-a_{1}^{+}+a_{1}^{-}\right) \hat{B}_{11} \vec{e}_{11}+A_{1}^{-} \hat{\gamma}_{11}^{-1} \vec{E}_{11}+\sum_{n=2}^{\infty}\left(a_{n}^{-} \hat{\beta}_{1 n} \vec{e}_{1 n}+A_{n}^{-} \hat{\gamma}_{1 n}^{-1} \vec{E}_{1 n}\right), 0<x<a \\
\left(-c_{1}^{+}+c_{1}^{-}\right) \hat{B}_{31} \vec{e}_{31}+c_{1}^{-} \hat{\gamma}_{31}^{-1} \vec{E}_{31}+\sum_{n=2}^{\infty}\left(c_{n}^{-} \hat{B}_{3 n} \vec{e}_{3 n}+c_{n}^{-} \hat{\gamma}_{3 n}^{-1} \vec{E}_{3 n}\right), a<x<b
\end{array}\right.
$$

The waveguide modes are normalized such that power flow is given by $1 / 2\left|a_{n}^{+}\right|^{2}, 1 / 2\left|A_{n}^{+}\right|^{2}$, etc. \quad In (2) $\hat{B}_{21}=\beta_{21} / x_{0}, \hat{\gamma}_{21}=\gamma_{21} / k_{0}$ etc.

Thus we have

$$
\begin{align*}
& \int_{0}^{a} \int_{0}^{2 \pi} \vec{e}_{1 n} \cdot \vec{e}_{\ln } r d r d \phi=\frac{k_{0} z_{0}}{\beta_{1 n}} \tag{ABa}\\
& \int_{0}^{a} \int_{0}^{2 \pi} \vec{E}_{1 n} \cdot \vec{E}_{\ln } x d x d \phi=\frac{r_{1 n} Z_{0}}{k_{0}} \tag{ABb}\\
& \int_{0}^{b} \int_{0}^{2 \pi} \vec{e}_{2 n} \cdot \vec{e}_{2 n} r d r d \phi=\frac{k_{o} z_{o}}{\beta_{2 n}} \tag{ABC}\\
& \int_{0}^{b} \int_{0}^{2 \pi} \vec{E}_{2 n} \cdot \vec{E}_{2 n} r d r d \phi=\frac{\gamma_{2 n} Z_{0}}{k_{0}} \tag{ABd}\\
& \int_{0}^{b} \int_{a}^{2 \pi} \vec{e}_{3 n} \cdot \vec{e}_{3 n} r d r d \phi=\frac{k_{0} 2_{o}}{B_{3 n}} \tag{ABe}\\
& \int_{0}^{b} \int_{a}^{2 \pi} \vec{E}_{3 n} \cdot \vec{E}_{3 n} r d r d \phi=\frac{r_{3 n} z_{o}}{k_{0}} \tag{AB}\\
& \text { where } k_{0}=2 \pi / \lambda_{0} \text { and } z_{0}=\left(\mu_{0} / \epsilon_{0}\right)^{1 / 2} \text {. }
\end{align*}
$$

We now introduce the following mode coupling coefficients:

$$
\begin{align*}
& \int_{0}^{2 \pi} \int_{0}^{a} \vec{e}_{1 n} \cdot \vec{e}_{2 m} r d r d \phi=f_{n m} \tag{AAa}\\
& \int_{0}^{2 \pi} \int_{0}^{a} \vec{e}_{1 n} \cdot \vec{E}_{2 m} r d r d \phi=a_{n m} \tag{Alb}\\
& \int_{0}^{2 \pi} \int_{0}^{a} \vec{E}_{1 n} \cdot \vec{e}_{2 m} r d x d \phi=\delta_{n m}=0 \\
& \int_{0}^{2 \pi} \int_{0}^{a} \vec{E}_{1 n} \cdot \vec{E}_{2 m} r d r d \phi=F_{n m} \\
& \int_{0}^{2 \pi} \int_{a}^{b} \vec{e}_{3 n} \cdot \vec{e}_{2 m} r d x d \phi=g_{n m} \\
& \int_{0}^{2 \pi} \int_{a}^{b} \vec{e}_{3 n} \cdot \vec{E}_{2 m} r d r d \phi=v_{n m} \\
& \int_{0}^{2 \pi} \int_{a}^{b} \vec{E}_{3 n} \cdot \vec{e}_{2 m} r d r d \phi=\mu_{n m}=0 \tag{A4g}\\
& \int_{0}^{2 \pi} \int_{a}^{b} \vec{E}_{3 n} \cdot \vec{E}_{2 m} r d r d \phi=G_{n m} \tag{AAh}
\end{align*}
$$

The normalized mode functions are given by

$$
\begin{equation*}
\vec{e}_{1 n}=\frac{\vec{a}_{z} \times \nabla_{t} J_{1}\left(k_{1 n} r\right) \cos \phi}{\sqrt{\frac{\pi}{2}\left(k_{1 n}^{2} a^{2}-1\right)} J_{1}\left(k_{1 n} a\right)}\left(\frac{k_{0} z_{0}}{B_{1 n}}\right)^{1 / 2} \tag{ASa}
\end{equation*}
$$

where $d J_{1}{ }^{\left(k_{1 n} r\right) / d\left(k_{1 n} r\right)}=J_{1}^{\prime}\left(k_{1 n} r\right)=0$ at $r=a$.
where $J_{1}\left(\ell_{1 n}{ }^{a}\right)=0$.

$$
\begin{equation*}
\vec{e}_{2 n}=\frac{\vec{a}_{z} \times \nabla_{t} J_{1}\left(k_{2 n} r\right) \cos \phi}{\sqrt{\frac{\pi}{2}\left(k_{2 n}^{2} b^{2}-1\right)} J_{1}\left(k_{2 n} b\right)}\left(\frac{k_{0} z_{0}}{\beta_{2 n}}\right)^{1 / 2} \tag{ADC}
\end{equation*}
$$

where $J_{1}^{\prime}\left(k_{2 n} b\right)=0$.

$$
\begin{equation*}
\vec{E}_{2 n}=\frac{\nabla_{t} J_{1}\left(\ell_{2 n} r\right) \sin \phi}{\sqrt{\frac{\pi}{2}} \ell_{2 n} b J_{1}^{\prime}\left(\ell_{2 n} b\right)}\left(\frac{\gamma_{2 n} z_{0}}{k_{0}}\right)^{1 / 2} \tag{ADd}
\end{equation*}
$$

where $J_{1}\left(S_{2 n} b\right)=0$

$$
\vec{e}_{3 n}=\frac{\vec{a}_{z} \times \nabla_{t} z_{1}\left(k_{3 n} r\right) \cos \phi}{\sqrt{\pi} 2.2 \ldots n^{2}(1)}{\left(\frac{k_{0} z_{0}}{B_{3 n}}\right)^{1 / 2}(A 5 e)}^{2}
$$

where $z_{1}\left(k_{3 n} r\right)=J_{1}^{\prime}\left(k_{3 n} a\right) y_{1}\left(k_{3 n} r\right)-y_{1}^{\prime}\left(k_{3 n} a\right) J_{1}\left(k_{3 n} r\right)$ and

$$
z_{1}^{\prime}\left(k_{3 n} a\right)=z_{1}^{\prime}\left(k_{3 n} b\right)=0
$$

$$
\vec{E}_{3 n}=\frac{\nabla_{t} w_{1}\left(\ell_{3 n} x\right) \sin \phi}{\sqrt{\frac{\pi}{2}}\left[\left(\ell_{3 n} b w_{1}^{\prime}\left(\ell_{3 n} b\right)\right)^{2}-\left(\ell_{3 n}^{a} w_{1}^{\prime}\left(\ell_{3 n} a\right)\right)^{2}\right]^{1 / 2}}\left(\frac{r_{3 n} z_{0}}{k_{0}}\right)^{i / 2} \text { (A5f) }
$$

$$
\text { where } w_{1}=J_{1}\left(l_{3 n} a\right) y_{1}\left(l_{3 n} x\right)-y_{1}\left(\ell_{3 n} a\right) J_{1}\left(\ell_{3 n} x\right)
$$

$$
\text { and } w_{1}\left(\ell_{3 n} a\right)=w_{1}\left(\ell_{3 n} b\right)=0 \text {. }
$$

The derivation of the normalization constants will be illustrated for (ALe) and (A5f). Consider (ALe) first for which

$$
\begin{aligned}
I & =\int_{a}^{b} \int_{0}^{2 \pi}\left(a_{z} \times \nabla_{t} z_{1} \cos \phi\right) \cdot\left(\vec{a}_{z} \times \nabla_{t} z_{1} \cos \phi\right) r d r d \phi \\
& =\int_{a}^{b} \int_{0}^{2 \pi}\left[\left(\frac{d z_{1}}{d r} \cos \phi\right)^{2}+\left(\frac{z_{1}}{r} \sin \phi\right)^{2}\right] r d r d \phi \\
& =\pi \int_{a}^{b}\left[\left(\frac{d z_{1}}{d r}\right)^{2} r+\frac{z_{1}}{r}\right] d r \\
& =\left.\pi z_{1} r \frac{d z_{1}}{d r}\right|_{a} ^{b}+\int_{a}^{b}\left(\frac{z_{1}}{r}-z_{1} \frac{d}{d r} r \frac{d z_{1}}{d r}\right) d r
\end{aligned}
$$

upon integrating by parts once. Now $z_{1}=0$ at $I=a, 0$ and $\frac{d}{d r} d \frac{d z_{1}}{d r}=$ $z_{1}\left(\frac{1}{r}-k_{3 n}^{2} r\right)$ so
$I=\pi \int_{a}^{b} k_{3 n}^{2} z_{i}^{2} r d r=\left.\frac{\pi}{2} k_{3 n}^{2} r^{2}\left(\left(z_{1}^{\prime}\right)^{2}+\left(1-\frac{1}{k_{3 n}^{2} r^{2}}\right) z_{1}^{2}\right)\right|_{a} ^{b}$
$=\frac{\pi}{2}\left[\left(k_{3 n}^{2} b^{2}-1\right) z_{1}^{2}\left(k_{3 b} b\right)-\left(k_{3 n^{2}} a^{2}-1\right) z_{1}^{2}\left(k_{3 n} a\right)\right]$

By using this result along with (ABe) we obtain (ALe).

For (A5f) we have
$I=\int_{a}^{b} \int_{0}^{2}\left[\left(\frac{d W_{1}}{d r} \sin \phi\right)^{2}+\left(\frac{W_{1} \cos \phi}{r}\right)^{2}\right] r d r d \phi$
$=\pi \int_{a}^{b}\left[\left(\frac{d W_{1}}{d r}\right)^{2}+\left(\frac{W_{1}}{r}\right)^{2}\right] r d r$

This is the same integral as evaluated earlier with the exception that now $w_{1}=0$ at $r=a, b$ so
$I=\frac{\pi}{2}\left[\ell_{3 n} b W_{1}^{\prime}\left(\ell_{3 n_{1}} b\right)\right]^{2}-\frac{\pi}{2}\left[\ell_{3 n} a W_{1}^{\prime}\left(\ell_{3 n} a\right)\right]^{2}$

Let $U(k r)$ and $V(l r)$ be solutions of the following Bessel differenrial equations:

$$
\begin{aligned}
& \frac{d}{d x} x \frac{d U}{d r}+\left(k^{2} x-\frac{1}{r}\right) U=0 \\
& \frac{d}{d x} x \frac{d V}{d r}+\left(\ell^{2} r-\frac{1}{r}\right) V=0
\end{aligned}
$$

The mode coupling coefficients involve three integrals of the following type (after integration over ϕ):
$I_{1}=\int\left[r \frac{d U\left(k_{i} r\right)}{d r} \frac{d U\left(k_{2} r\right)}{d r}+\frac{U\left(k_{i} r\right) U\left(k_{2} r\right)}{r}\right] d x$, TE to TE coupling $I_{2}=\int\left[r \frac{d V\left(\ell_{i} r\right)}{d r} \frac{d V\left(\ell_{2} r\right)}{d r}+\frac{V\left(\ell_{i} r\right) V\left(\ell_{2} r\right)}{r}\right] d x$, TM to TM coupling
$\left.I_{3}=\int I U(k r) \frac{d V(\ell r)}{d r}+V(\ell r) \frac{d U(k r)}{d r}\right] d r$, TE to TM coupling
I_{1} and I_{2} are evaluated the same way. An integration by parts gives
$I_{1}=r U\left(k_{i} r\right) \frac{d U\left(k_{2} r\right)}{d r}+\int\left[\frac{U\left(k_{i} r\right) U\left(k_{2} r\right)}{r}-U\left(k_{i} r\right) \frac{d}{d r} r \frac{d U\left(k_{2} r\right)}{d r} \int d r\right.$ Now use the differ 1 equation to obtain

original page is OF POOR QUALITY

$$
\begin{align*}
I_{1} & =r U\left(k_{i} r\right) \frac{d U\left(k_{2} r\right)}{d r}+k_{2}^{2} \int U\left(k_{i} r\right) U\left(k_{2} r\right) r d r \\
& =r U\left(k_{i} r\right) \frac{d U\left(k_{2} r\right)}{d r}+\frac{k_{2}^{2} r}{k_{i}^{2}-k_{2}^{2}}\left[k_{2} U^{\prime}\left(k_{2} r\right) U\left(k_{i} r\right)-k_{i} U^{\prime}\left(k_{i} r\right) U\left(k_{2} r\right)\right] \\
& =\frac{k_{i} k_{2} r}{k_{i}^{2}-k_{2}^{2}}\left[k_{i} U\left(k_{i} r\right) U^{\prime}\left(k_{2} r\right)-k_{2} U\left(k_{2} r\right) U^{\prime}\left(k_{i} r\right)\right] \tag{A6a}
\end{align*}
$$

For I_{3} an integration by parts of one term gives $I_{3}=U(k r) V(\ell r)$
(A6b) By using the above results the following expressions for the mode coupling coefficients are obtained:

$$
\begin{align*}
& f_{n m}=\frac{2 z_{o} k_{1 n}^{2} k_{2 m} k_{o}^{a}}{\left(k_{1 n}^{2}-k_{2 m}^{2}\right)\left(\beta_{1 n}^{B}{ }_{2 m}\right)^{1 / 2}} \frac{J_{1}^{\prime}\left(k_{2 m} a\right)}{\left[\left(k_{1 n^{2}}^{2}-1\right)\left(k_{2 m}^{2} b^{2}-1\right)\right]^{1 / 2} J_{1}\left(k_{2 m} b\right)} \tag{A7a}\\
& a_{n m}=2 z_{0}\left(\frac{\gamma_{2 m}}{\beta_{1 n}}\right)^{1 / 2} \frac{J_{1}\left(l_{2 m}^{a}\right)}{l_{2 m} b\left(k_{1 n}^{2} a^{2}-1\right)^{1 / 2} J_{1}^{\prime}\left(l_{2 m} b\right)}
\end{align*}
$$

$$
F_{n m}=-\frac{2 z_{0}\left(\gamma_{1 n} \gamma_{2 m}\right)^{1 / 2} \ell_{2 m}^{a} J_{1}\left(\ell_{2 m} a\right)}{\left(l_{1 n}^{2}-\ell_{2 m}^{2}\right) k_{0} a b J_{1}^{\prime}\left(\ell_{2 m}^{b}\right)}
$$

$$
g_{n m}=\frac{-2 k_{0} a z_{0} k_{3 n}^{2} k_{2 m} z_{1}\left(k_{3 n} a\right) J_{1}^{\prime}\left(k_{2 m}^{a}\right)}{\left[\left(B_{3 n} \beta_{2 m}\right)\left(k_{2 m}^{2} b^{2}-1\right)\right]^{1 / 2}\left[\left(k_{3 n}^{2} b^{2}-1\right) z_{1}^{2}\left(k_{3 n} b\right)-\left(k_{3 n}^{2} a^{2}-1\right) z_{1}^{2}\left(k_{3 n}^{a}\right)\right]^{1 / 2} J_{1}\left(k_{2 m} b\right)}
$$

$$
\begin{equation*}
x \frac{1}{k_{3 n}^{2}-k_{2 m}^{2}} \tag{A7d}
\end{equation*}
$$

$$
\left.v_{n m}=-2 z_{0} \frac{r_{2 m}}{\beta_{3 n}}\right)^{1 / 2} \frac{z_{1}\left(k_{3 n}^{a} a\right) J_{1}\left(l_{2 m}^{a}\right)}{\ell_{2 m} J_{1}^{\prime}\left(l_{2 m} b\right)\left[(k _ { 3 n } ^ { 2 } b ^ { 2 } - 1) z _ { 1 } ^ { 2 } \left(k_{3 n}^{\left.b)-\left(k_{3 n}^{2} a^{2}-1\right) z_{1}^{2}\left(k_{3 n}^{a}\right)\right]^{1 / 2}}\right.\right.}
$$

A9 ORIGINA: $\because \therefore$

$$
\begin{equation*}
G_{n \pi}=\frac{2 z_{0}\left(\gamma_{3 n} \gamma_{2 m}\right)^{1 / 2} l_{2 m} a w_{1}^{\prime}\left(l_{3 n} a\right) J_{1}\left(l_{2 m} a\right)}{k_{0} b\left(l_{3 n}^{2}-l_{2 m}^{2}\right) J_{1}^{\prime}\left(l_{2 m} b\right)\left[b^{2} w_{1}^{\prime 2}\left(l_{3 n} b\right)-a^{2} w_{1}^{\prime 2}\left(l_{3 n} a\right)\right]^{1 / 2}} \tag{A7f}
\end{equation*}
$$

The equatio.s for finding the amplitude coefficients are obtained
from (A1) and (A2) by scalar multiplying by $\vec{c}_{1 n}$ and $\vec{E}_{1 n}$ and integrating over t from O to a and over ϕ from 0 to 2π and then by scalar multiFlying by $\vec{e}_{3 n}$ and $\vec{E}_{3 n}$ and irtegrating from $I=a$ to b and over from 0 to 2π. The results are:

$$
\begin{aligned}
& \frac{k_{0} Z_{0}}{\delta_{1 n}}\left(a_{n}^{+} \delta_{1 n}+a_{n}^{-}\right)=\sum_{m=1}^{\infty}\left[\left(b_{m}^{+} \delta_{1 m}+b_{m}^{-}\right) f_{n m}+\left(B_{m}^{+} \delta_{1 m}+B_{m}^{-}\right) a_{n m}\right] \\
& \cdot A_{n}^{-} \frac{Y_{1 n} Z_{0}}{k_{0}}=\sum_{m=1}^{\infty}\left(B_{m}^{+} \delta_{1 m}+B_{m}^{-}\right) F_{n m}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{k_{0} Z_{0}}{B_{3 n}}\left(c_{n}^{+} \delta_{1 n}+c_{n}^{-}\right)=\sum_{m=1}^{\infty}\left[\left(b_{m}^{+} \delta_{1 n}+b_{m}^{-}\right) g_{n m}+\left(B_{m}^{+} \delta_{1 n}+B_{m}^{-}\right) v_{n m}\right] \\
& c_{n}^{-} \frac{Y_{3 n} Z_{0}}{k_{0}}=\sum_{m=1}^{\infty}\left(B_{m}^{+} \delta_{1 m}+B_{m}^{-}\right) G_{n m}
\end{aligned}
$$

$$
\left(-a_{n}^{+} \delta_{1 n}+a_{n}^{-}\right) k_{0} z_{0}=\sum_{m=1}^{\infty}\left[\left(b_{m}^{+} \delta_{1 m}-b_{m}^{-}\right) B_{2 m} f_{n m}+\left(B_{m}^{+} \delta_{1 m^{-B}}^{--}\right) \gamma_{2 m}^{-1} a_{n m} k_{0}^{\varepsilon}\right]
$$

$$
\frac{A_{n}^{-} Z_{0}}{k_{0}}=\sum_{m=1}^{\infty}\left(B_{m}^{+} \delta_{1 m}-B_{m}^{-}\right) r_{2 m}^{-1} r_{n m}
$$

$$
\left(-c_{n}^{+} \delta_{1 n}+c_{n}^{-}\right) k_{0} z_{0}=\sum_{m^{m} 1}^{\infty}\left[\left(b_{m}^{+} \delta_{1 m}-b_{m}^{-}\right) B_{2 m}{ }^{s} n m+\left(B_{m}^{+} \delta_{1 m}^{\left.\left.\left.-B_{m}^{-}\right) r_{2 m}^{-1} \nu_{n m} k_{0}^{2}\right],\right]}\right.\right.
$$

$$
\begin{equation*}
\frac{C_{n}^{-} z_{0}}{k_{0}}=\sum_{m=1}^{\infty}\left(B_{m}^{+} \delta_{1 m}-B_{m}^{-}\right) \gamma_{2 m}^{-1} G_{n m} \tag{A8h}
\end{equation*}
$$

In these equations $n=1,2,3, \ldots$ and $\delta_{i j}$ equals zero except when $i=j$.

A sumnary of the solution procedure is given below. The starting point is the set of equations (A8).

Define new amplitude coefficients as follows:

$$
\begin{equation*}
\hat{a}_{n}=\frac{a_{n} \overline{\sqrt{\beta_{1 n}\left(k_{1 n}^{2} a^{2}-1\right)}}}{2 k_{1 n}^{2}}, \quad(A 9 a) \quad \hat{b}_{m}=\frac{b_{m} k_{2 m}{ }^{a} J_{1}^{\prime}\left(k_{2 m}{ }^{a}\right)}{\sqrt{\beta_{2 m}\left(k_{2 m}^{2} b^{2}-1\right)} J_{1}\left(k_{2 m} b\right)} \tag{A9b}
\end{equation*}
$$

$\hat{c}_{n}=\frac{-c_{n} 8_{3 n}^{1 / 2}\left[\left(k_{3 n}^{2} b^{2}-1\right) z_{1}^{2}\left(k_{3 n} b\right)-\left(k_{3 n}^{2} a^{2}-1\right) z_{1}^{2}\left(k_{3 n} a\right)\right]^{1 / 2}}{2 k_{3 n}^{2} z_{1}\left(k_{3 n}^{a}\right)}$
$\hat{B}_{m}=\frac{B_{m} r_{2 m}^{1 / 2} J_{1}\left(\ell_{2 m}^{a)}\right.}{\ell_{2 m} b J_{1}^{\prime}\left(\ell_{2 m} b\right)}, \quad$ (A9d) $\quad \hat{A}_{n}=\frac{-k_{0}^{2} a b A_{n}}{2 r_{1 n}^{1 / 2}}$
$\hat{c}_{n}=\frac{c_{n} k_{0}^{2} a b\left[(b / a)^{2} w_{1}^{\prime 2}\left(\ell_{3 n} b\right)-w_{1}^{\prime 2}\left(\ell_{3 n} a\right)\right]^{1 / 2}}{2 r_{3 n}^{1 / 2} w_{1}^{\prime}\left(l_{3 n} a\right)}$
In terms of these new coefficients the system of equations become:

$$
\begin{align*}
& \left.\dot{a}_{n}^{+} \delta_{1 n}+\hat{a}_{n}^{-}=\sum_{m=1}^{\infty} \frac{\left(\hat{b}_{m}^{+} \delta 1 m+b_{m}^{-}\right) \beta_{1 n}}{B_{2 m}^{2}-B_{1 n}^{2}}+\frac{\left(\hat{B}_{m}^{+} \delta_{1 m}+\hat{B}_{m}^{-}\right)}{k_{0} k_{1 n}^{2}} B_{1 n}\right] \tag{Al0a}\\
& \hat{A}_{n}^{-} \delta_{1 n}=\sum_{m=1}^{\infty}\left(\hat{B}_{m}^{+} \delta_{1 m}+\hat{B}_{m}^{-}\right) \frac{l_{2 m}^{2} a b k_{0}^{2}}{\gamma_{2 m}^{2}-\gamma_{1 n}^{2}} \tag{A10b}\\
& \hat{c}_{n}^{+} \delta_{1 n}+\hat{c}_{n}^{-}=\sum_{m=1}^{\infty}\left[\frac{\left(\hat{b}_{m}^{+} \delta_{1 m}+\hat{b}_{m}^{-}\right) B_{3 n}}{\beta_{2 m}^{2}-B_{3 n}^{2}}+\frac{\left(\hat{B}_{m}^{+} \delta_{1 m}+\hat{B}_{m}^{-}\right)}{k_{0} k_{3 n}^{2}} B_{3 n}\right] \tag{A10C}
\end{align*}
$$

(A10f)

From the above equations, we now generate a new system of equations as follows:

$$
\begin{align*}
& \text { (AIDa) }+ \text { (AlOe) gives } \\
& \left.2 \hat{a}_{n}^{-}=\sum_{m=1}^{\infty} 1 \frac{\hat{b}_{m}^{+} \delta_{1 m}}{B_{2 m}^{-\beta_{1 n}}}-\frac{\hat{b}_{m}^{-}}{\beta_{2 m}^{+\beta_{1 n}}}+\hat{B}_{m}^{+} \delta_{1 m} \frac{\left(\frac{B_{1 n}}{k_{0}}+\frac{k_{0}}{\gamma_{2 m}}\right)}{k_{1 n}^{2}}+\hat{B}_{m}^{-} \frac{\left(\frac{\beta_{1 n}}{k_{0}}-\frac{k_{0}}{\gamma_{2 m}}\right)}{k_{1 n}^{2}}\right) \tag{Ally}
\end{align*}
$$

(AlOa)-(AlOe) gives

$$
\begin{equation*}
2 \hat{a}_{n}^{+} \delta_{1 n}=\sum_{m=1}^{\infty}\left(\frac{-\hat{b}_{m}^{+} \delta_{1 m}}{B_{2 m}+\beta_{1 n}}+\frac{\hat{b}_{m}^{-}}{\beta_{2 m}^{-\beta_{1 n}}}+\frac{\hat{B}_{m}^{+} \delta_{1 m}\left(\frac{\beta_{1 n}}{k_{0}}-\frac{k_{0}}{\gamma_{2 m}}\right)}{k_{1 n}^{2}}+\hat{B}_{m}^{-} \frac{\left(\frac{\beta_{1 n}}{k_{0}}+\frac{k_{0}}{\gamma_{2 n}}\right)}{k_{1 n}^{2}}\right) 1 \tag{All}
\end{equation*}
$$

$$
\begin{align*}
& \hat{c}_{n}^{-} \gamma_{3 n}=\sum_{m=1}^{\infty} \frac{\left(\hat{B}_{m}^{+} \delta_{1 m}+\dot{B}_{m}^{-}\right) k_{0}^{2} \ell_{2 n}^{2} a b}{\gamma_{2 m}^{2}-r_{3 n}^{2}} \tag{floOd}\\
& \left(-\hat{a}_{n}^{+} \delta_{1 n}+\hat{a}_{n}^{-}\right)=\sum_{m=1}^{\infty}\left[\frac{\left(\hat{b}_{m}^{+} \delta_{1 m}^{-\hat{b}_{m}^{-}} \beta_{2 m}\right.}{B_{2 m}^{2}-\hat{B}_{1 n}^{2}}+\left(\hat{B}_{m}^{+} \delta_{1 m}-\hat{B}_{m}^{-}\right) \frac{k_{0}}{\gamma_{2 m}{ }^{k_{1 n}^{2}}}\right] \tag{AlOe}\\
& \hat{A}_{n}^{-} \gamma_{1 n}=\sum_{m=?}^{\infty}\left[\left(\hat{B}_{m}^{+} \delta_{1 m}-\hat{B}_{m}^{-}\right) \frac{\gamma_{1 n}}{\gamma_{2 m}} \frac{\ell_{2 m} a b k_{o}^{2}}{r_{2 m}^{2}-\gamma_{1 n}^{2}}\right] \tag{A10f}\\
& \left.i-\hat{c}_{n}^{+} \delta_{1 n}+\hat{c}_{n}^{-}\right)=\sum_{m=1}^{\infty} 1 \frac{\left(\hat{b}_{m}^{+} \delta_{1 m}^{-\hat{b}_{m}^{-}}\right) \beta_{2 m}}{\hat{B}_{2 m}^{2}-\beta_{3 n}^{2}}+\left(\hat{B}_{m} \delta_{1 m}^{\left.-\hat{B_{m}^{-}}\right)} \frac{k_{o}}{\gamma_{2 m} k_{3 n}^{2}}\right] \tag{A10g}\\
& \hat{C}_{n}^{-} \gamma_{3 n}=\left[\tilde{B}_{m}^{\infty}\left(\hat{B}_{1 m} \hat{B}_{m}^{-}\right) \frac{\hat{k}_{o}^{2} \gamma_{3 n}}{\gamma_{2 m}} \frac{\ell_{2 m}^{2} a b}{\gamma_{2 m}^{2}-\gamma_{3 n}^{2}}\right.
\end{align*}
$$

$(\mathrm{AlOC}) \pm(\mathrm{AlOg})$ gives
$i(A 10 b) \pm(A 10 f)$ gives

$$
\begin{equation*}
2 \hat{A}_{n}^{-} \gamma_{1 n}=\sum_{m=1}^{\infty}\left[\frac{\dot{B}_{m}^{+} \delta 1 m_{2 m}^{2} a b k_{o}^{2}}{\gamma_{2 m}\left(\gamma_{2 m}-\gamma_{1 n}\right)}+\frac{\hat{B}_{m}^{-} \ell_{2 m}^{2} a b k_{o}^{2}}{\gamma_{2 m}\left(\gamma_{2 m}+\gamma_{1 n}\right)},\right. \tag{Alle}
\end{equation*}
$$

$$
\begin{equation*}
0=\sum_{m=1}^{\infty}\left[\frac{\hat{B}_{m}^{+} \delta_{1 m} \ell_{2 m}^{2} a b k_{o}^{2}}{\gamma_{2 m}\left(\gamma_{2 m}+\gamma_{i n}\right)}+\frac{\hat{B}_{m}^{-} \ell_{2 m}^{2} a b k_{o}^{2}}{\gamma_{2 m}\left(\gamma_{2 m} \gamma_{1 n}\right)}\right] \tag{Allf}
\end{equation*}
$$

(AlOd) $\pm(A 1 O h)$ gives
$2 \hat{c}_{n}^{-} \gamma_{3 n}=\sum_{m=1}^{\infty}\left[\frac{\hat{B}_{m}^{+} \delta_{1 n} \ell_{2 m}^{2} a b k_{o}^{2}}{\gamma_{2 m}\left(\gamma_{2 m}-\gamma_{3 n}\right)}+\frac{\hat{B}_{m}^{-} \ell_{2 m}^{2} a b k_{o}^{2}}{\gamma_{2 m}\left(\gamma_{2 m}+\gamma_{3 n}\right)}\right]$
$0=\sum_{m=1}^{\infty}\left[\frac{\hat{B}_{m}^{+} \delta_{2 m} \ell_{2 m}^{2} \text { aio } k_{o}^{2}}{\gamma_{2 m}\left(\gamma_{2 m}{ }^{2} \gamma_{3 n}\right)}+\frac{\hat{B}_{m}^{-} \ell_{2 m}^{2} a b k_{o}^{2}}{\gamma_{2 m}\left(\gamma_{2 m}{ }^{-\gamma_{3 n}}\right)}\right]$

Consider a function $Q_{1}(w)$ witlı poles at $w=\gamma_{2 m^{\prime}}-\gamma_{21}$, and with
zeroes at $\gamma_{1 n}, \gamma_{3 n}$.
Let $\hat{\hat{B}}_{m}=\hat{B}_{m} \ell_{2 m}^{2} a b k_{0}^{2} / \gamma_{2 m}$.

$$
\begin{aligned}
& 2 \hat{c}_{n}^{-}=\sum_{m=1}^{\infty}\left[\frac{b_{m}^{+} \delta_{1 m}}{\beta_{2 m}^{-B_{3 n}}}-\frac{b_{m}^{-}}{B_{2 m}+\beta_{3 n}}+\hat{B}_{m}^{+} \delta_{1 m} \frac{\left(\frac{B_{3 n}}{k_{0}}+\frac{k_{0}}{\gamma_{2 m}}\right)}{k_{3 n}^{2}}+\hat{B}_{m}^{-} \frac{\left(\frac{B_{3 n}}{k_{0}}-\frac{k_{0}}{\gamma_{2 m}}\right)}{k_{3 n}^{2}}\right] \\
& \text { (Allc) }
\end{aligned}
$$

CRIGINAL PAGE IS
 Al3 OF POOR QUALITY

The contour integral over a closed circle C of infinite radius gives (residue evaluation)

$$
\begin{equation*}
\frac{1}{2 \pi j} \oint_{C} \frac{Q_{1} d w}{w-\gamma_{1 n}}=\sum_{m=1}^{\infty} \frac{\text { Res } Q_{1} \text { at } \gamma_{2 m}}{\gamma_{2 m}-\gamma_{1 n}}-\frac{\operatorname{Res} Q_{1} \text { at }-\gamma_{21}}{\gamma_{21}+\gamma_{1 n}} \tag{Al2f}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2 \pi j} \oint_{C} \frac{Q_{1} d w}{w+\gamma_{1 n}}=\sum_{m=1}^{\infty} \frac{\text { Res } Q_{1} \text { at } \gamma_{2 m}}{\gamma_{2 m}+\gamma_{1 n}}-\frac{\text { Res } Q_{1} \text { at }-\gamma_{21}}{\gamma_{21}-\gamma_{1 n}}+Q_{1}\left(-\gamma_{1 n}\right) \tag{A12e}
\end{equation*}
$$

Examination of these equations with respect to (Allf) and (Alle) shows that

$$
\hat{\hat{B}}_{\mathrm{m}}^{-}=\operatorname{Res} Q_{1} \text { at } \gamma_{2 m}, \quad \hat{\hat{B}}_{m}^{+} \delta_{1 m}=-\operatorname{Res} Q_{1} \text { at }-\gamma_{21}, \quad 2 \hat{A}_{n}^{-} \gamma_{1 n}=-Q_{1}\left(-\gamma_{1 n}\right)
$$

Likewise

$$
\frac{1}{2 \pi j} \oint_{C} \frac{Q_{1} d w}{w \pm Y_{3 n}} \text { will solve }(\text { Allg }),(\text { Allh })_{w i t h ~} 2 \hat{C}_{n}^{-} \gamma_{3 n}=-Q_{1}\left(-\gamma_{3 n}\right)
$$

The construction of $Q_{1}(w)$ will be given later.

The set of equations (Alle), (Allf) and (Allg) and (Allh) are of the form that occur in bifurfacted parallel plate waveguides so the solution procedure was well known. The function Q_{1} will contain two arbitrary constants as dictated by the edge conditions, but only one incident mode amplitude is specified, namely \hat{E}_{9}^{+}. Thus Q_{1} is not completely known and must still be determined in part by the remaining equations in tha set (All). Equations (Alla), (Al|b),(Allc), and (Alld) are not of the type encountered before. It was only when we discovered how to express these equations as a contour integral

Al4 GRISNAL PAGE B OF POOR QUALITY

involving another function $Q_{2}(w)$ and how to relate Q_{1} and Q_{2} that the whole system of equations could be solved. The procedure is summarized below.
(Alla) and (Allb) can be written as

$$
\begin{equation*}
2 \hat{a}_{n}^{-}=\sum_{m=1}^{\infty}\left\{\frac{\hat{b}_{m}^{+} \delta_{1 m}}{\beta_{2 m}^{-\beta} 1 n}-\frac{\hat{b}_{m}^{-}}{\beta_{2 m}+\beta_{1 n}}+\frac{\hat{\hat{B}}_{m}^{+} \delta_{1 m}\left(\gamma_{2 m} \beta_{1 n}+k_{0}^{2}\right)}{k_{0}^{3} a b\left(k_{0}^{2}-\gamma_{2 m}^{2}\right) k_{1 n}^{2}}+\frac{\hat{\hat{B}}_{m}^{-}\left(\gamma_{2 m}^{\beta} 1 n^{-k_{0}^{2}}\right)}{k_{0}^{3} a b\left(k_{0}^{2}-\gamma_{2 m}^{2}\right) k_{1 n}^{2}}\right] \tag{A13a}
\end{equation*}
$$

$-2 \hat{a}_{n}^{+} \delta_{1 n}=\sum_{m=1}^{\infty}\left[\frac{\hat{b}_{m}^{+} \delta_{1 m}}{B_{2 m}^{+\beta_{1 n}}}-\frac{\hat{b}_{m}^{-}}{B_{2 m}^{-\beta_{1 n}}}-\frac{\hat{B}_{m}^{+} \delta_{1 m}\left(\gamma_{2 m} \beta_{1 n}-k_{0}^{2}\right)}{k_{0}^{3} a b\left(k_{0}^{2}-\gamma_{2 m}^{2}\right) k_{1 n}^{2}}-\frac{\hat{\hat{B}}_{m}^{-}\left(\gamma_{2 m}^{B} 1 n+k_{0}^{2}\right)}{k_{0}^{3} a b\left(k_{0}^{2}-\gamma_{2 m}^{2}\right) k_{1 n}^{2}}\right.$

Introduce $\frac{Q_{2}(w)}{w^{2}-k_{0}^{2}}$ with Q_{2} having poles at $\varepsilon_{2 m^{\prime}}-\beta_{21}$ and zeroes at
$B_{1 n}, B_{3 n}$ but not at B_{11}, B_{31}. Then consider the residue evaluation of the following integral.

$$
\begin{aligned}
& \frac{1}{2 \pi j} \oint_{C}\left[\frac{Q_{2}}{\left(w^{2}-k_{0}^{2}\right)\left(w-\beta_{1 n}\right)}+\frac{Q_{1}(w)\left(\beta_{1 n} w+k_{0}^{2}\right)}{k_{0}^{3} a b k_{1 n}^{2}\left(k_{0}^{2}-w^{2}\right)}\right] d w \\
& =\sum_{m=1}^{\infty} \frac{\operatorname{Res} Q_{2} \text { at } B_{2 m}}{\left(B_{2 m}^{2}-k_{0}^{2}\right)\left(B_{2 m}-B_{1 n}\right)}-\frac{\operatorname{Res} Q_{2} \text { at }-B_{21}}{\left(B_{21}^{2}-k_{0}^{2}\right)\left(B_{21}+\beta_{1 n}\right)}+\sum_{m 1}^{\infty} \frac{\operatorname{Res} Q_{1} \text { at } \gamma_{2 m}\left(B_{1 n} \gamma_{2 m}+k_{0}^{2}\right)}{k_{0}^{3} a b\left(k_{0}^{2}-\gamma_{2 m}^{2}\right) k_{1 n}^{2}} \\
& +\frac{Q_{2}\left(B_{11}\right)^{\delta} 1 n}{B_{11}^{2}-k_{0}^{2}} \\
& -\frac{\operatorname{Res} Q_{1} a t-\gamma_{21}\left(B_{1 n} \gamma_{21}-k_{0}^{2}\right)}{k_{0}^{3} a b\left(k_{0}^{2}-\gamma_{21}^{2}\right) k_{1 n}^{2}}=0
\end{aligned}
$$

provided $\frac{Q_{2}\left(\pm k_{0}\right)}{ \pm k_{0}-\beta_{1 n}}=\frac{Q_{1}\left(\pm k_{0}\right)\left(\pm \beta_{1 n}+k_{0}\right)}{k_{0}^{2} a b\left(k_{0}-\beta_{1 n}\right)\left(k_{0}+\beta_{1 n}\right)}$
or $\quad \varepsilon_{2}\left(k_{0}\right)=\frac{Q_{1}\left(k_{0}\right)}{k_{0}^{2} a b}, \quad Q_{2}\left(-k_{0}\right)=\frac{-Q_{1}\left(-k_{0}\right)}{k_{0}^{2} a b}$
The residues at the poles $\pm k_{0}$ must cancel and this relates g_{1} to g_{2}.
We also have

$$
\begin{aligned}
& \hat{b}_{m}^{-}=\frac{\text { Res } Q_{2} \text { at } \beta_{2 m}}{B_{2 m}^{2}-k_{0}^{2}}, \hat{b}_{m}^{+}=\frac{\text { Res } Q_{2} a t-B_{21}}{B_{21}^{2}-k_{0}^{2}}, 2 \hat{a}_{1}^{+}=\frac{Q_{2}\left(B_{11}\right)}{B_{11}^{2}-k_{0}^{2}} \\
& \hat{B}_{m}^{-}=\text {Res } Q_{1} \text { at } \gamma_{2 m}, \hat{\hat{B}}_{m}^{+} \delta_{1 m}=-\operatorname{Res} Q_{1} \text { at }-\gamma_{21}
\end{aligned}
$$

Thus we see that the above solves (A13b). Consider next

$$
\begin{aligned}
& \frac{1}{2 \pi j} \oint_{c}\left[\frac{Q_{2}}{\left(w^{2}-k_{0}^{2}\right)\left(w+B_{1 n}\right)}-\frac{Q_{1}\left(B_{1 n} w-k_{0}^{2}\right)}{k_{0}^{3} a b k_{l n}^{2}\left(k_{0}^{2}-w^{2}\right)}\right] d w \\
& =\sum_{m=1}^{\infty} \frac{\text { Res } Q_{2} \text { at } \beta_{2 m}}{\left(B_{2 m}^{2}-k_{0}^{2}\right)\left(\beta_{2 m}+B_{1 n}\right)}-\frac{\text { Res } Q_{2} \text { at }-B_{21}}{\left(B_{21}^{2}-k_{0}^{2}\right)\left(\beta_{21}-\beta_{1 n}\right)}+\frac{Q_{2}\left(-B_{1 n}\right)}{\left(\beta_{1 n}^{2}-k_{0}^{2}\right)} \\
& +\sum_{m=1}^{\infty} \frac{-\operatorname{Res} Q_{1} \text { at } \gamma_{2 m}\left(\gamma_{2 m} B_{1 n}-k_{0}^{2}\right)}{k_{0}^{3} a b k_{1 n}^{2}\left(k_{0}^{2}-\gamma_{2 m}^{2}\right)}+\frac{\text { Res } Q_{1} \text { at }-\gamma_{21}\left(\gamma_{21} \beta_{1 n}+k_{0}^{2}\right)}{k_{0}^{3} a b k_{1 n}^{2}\left(k_{0}^{2}-\gamma_{21}^{2}\right)}=0
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{r:=1}^{\infty} \frac{\hat{b}_{m}^{-}}{B_{2 m}^{+\beta_{1 n}}-\frac{\hat{b}_{m}^{+} \delta_{1 m}}{\hat{B}_{21}^{-B_{1 n}}}+\frac{Q_{2}\left(-B_{1 n}\right)}{B_{1 n}^{2}-k_{0}^{2}}} \\
& +\sum_{m=1}^{\infty}-\frac{\hat{B}_{m}^{-}\left(\gamma_{2 m} B_{1 n}^{\left.-k_{0}^{2}\right)}\right.}{k_{0}^{3} a b k_{l n}^{2}\left(k_{0}^{2}-\gamma_{2 m}^{2}\right)}-\frac{\hat{B}_{m}^{+} \delta_{1 m}\left(\gamma_{21} B_{1 n}+k_{0}^{2}\right)}{k_{0}^{3} a b k_{l n}^{2}\left(k_{0}^{2}-\gamma_{21}^{2}\right)}
\end{aligned}
$$

Thus $2 \hat{a}_{n}^{-}=\frac{Q_{2}{ }^{\left(-\beta_{1 n}\right)}}{B_{1 n}^{2}-k_{o}^{2}}$.

Again we require the residues $a t \pm \mathbf{k}_{0}$ to cancel, thus

$$
\frac{Q_{2}\left(+k_{0}\right)}{ \pm k_{0}+\beta_{1 n}}=-\frac{Q_{1}\left(+k_{0}\right)\left(+\beta_{1 n} k_{0}-k_{0}^{2}\right)}{k_{0}^{3} a b\left(k_{0}-\beta_{1 n}\right)\left(k_{0}+\beta_{1 n}\right)}
$$

or

$$
Q_{2}\left(k_{0}\right)=-\frac{Q_{1}\left(k_{0}\right) k_{0}\left(\beta_{1 n}^{-k_{0}}\right)}{k_{0}^{3} a b\left(k_{0}^{-\beta_{1 n}}\right)}=\frac{Q_{1}\left(k_{0}\right)}{k_{0}^{2} a b}
$$

and

$$
Q_{2}\left(-k_{0}\right)=\frac{\left(\beta_{1 n}-k_{0}\right)\left(-Q_{1}\left(-k_{0}\right)\right)\left(-\beta_{1 n}-k_{0}\right)}{k_{0}^{2} a b\left(k_{0}-\beta_{1 n}\right)\left(k_{0}+\beta_{1 n}\right)}=\frac{-Q_{1}\left(-k_{0}\right)}{k_{0}^{2} a b}
$$

This is consistent with the previous relationship derived for Q_{1} and Q_{2}. Hence the above solves (Al3b).
We can also find $2 \hat{c}_{n}^{-}=\frac{Q_{2}\left(-\beta_{3 n}\right)}{\beta_{3 n}^{2}-k_{0}^{2}}$ and $-2 \hat{c}_{1}^{+}=\frac{Q_{2}\left(\beta_{31}\right)}{B_{31}^{2}-k_{0}^{2}}$
From a study of the edge conditions we find thet Q_{2} has four unknown constants. Thus Q_{1} and Q_{2} together contain 6 constants which can be determined in terms of the 4 incident mode amplitudes and the two relations between Q_{1} and Q_{2}.

The function $Q_{1}(w)$ is given by

$$
\begin{equation*}
O_{1}(w)=\prod_{n=1}^{\infty} \frac{\left(1-w / \gamma_{1 n}\right)\left(1-w / \gamma_{3 n}\right)}{\left(1-w / \gamma_{2 n}\right)} \frac{h(w)}{w+\gamma_{21}}\left(K_{1}+K_{2} w\right) \tag{A14}
\end{equation*}
$$

with

$$
h(w)=\exp \left[-\frac{j w}{\pi}\left(a \ln \frac{a}{b}-c \ln \frac{b}{c}\right)\right]
$$

Let $P_{1}(w)$ be the infinite product in (Al4) and let $P_{1}(w)=P_{I}(s) h(w)$ so that

$$
\begin{equation*}
Q_{1}(w)=\frac{\tilde{P}_{1}(w)\left(K_{1}+K_{2} w\right)}{w+\gamma_{21}} \tag{A15}
\end{equation*}
$$

The function Q_{1} has poles at $w=\gamma_{2 m \prime}-\gamma_{21}, m=1,2, \ldots$ and zeroes at $w=Y_{1 n^{\prime}} Y_{3 n^{\prime}} n=1,2, \ldots$ and has algebraic behavior like $w^{-1 / 2}$ as $|w| \rightarrow \infty$.

The function $Q_{2}(w)$ has poles at $w=B_{2 m^{\prime}}-B_{21}, n=1,2, \ldots$, , has zeroes at $w=B_{1 n}, B_{3 n}, \quad n=2,3, \ldots \quad$ and behaves like $w^{1 / 2}$ as $|w| \rightarrow \infty$. This function is given by

$$
\begin{equation*}
Q_{2}(w)=\frac{\tilde{P}_{2}(w)}{w+B_{21}} \quad\left(R_{1}+R_{2} w+R_{3} w^{2}+R_{4} w^{3}\right) \tag{A16}
\end{equation*}
$$

where $\tilde{P}_{2}=P_{2} h, R_{i}$ are constants, and

$$
\begin{equation*}
P_{2}(w)=\prod_{n=2}^{\infty} \frac{\left(1-w / \beta_{1 n}\right)\left(1-w / \beta_{3 n}\right)}{\left(1-w / \beta_{2 n}\right)} \frac{1}{\left(1-w / B_{21}\right)} \tag{A17}
\end{equation*}
$$

$$
\begin{aligned}
& \operatorname{cor} \pi \\
& \text { or } x,
\end{aligned}
$$

With reference to the scattering matrix parameters $S_{i i}$ the subscripts are chosen as follows (see Fig. A2). 1 refers to TE_{11} mode in region 1 , amplitude is a_{1}, propagation constant is B_{11}. 2 refers to TE_{11} mode in region 2, amplitude is b_{1}, propagation constant B_{21}. 3 refers to $T E_{11}$ mode in region 3 , amplitude C_{1}, propagation constant B_{31}. 4 refers to TM_{11} mode in region 2 , amplitude B_{1}, propagation constant γ_{21}. The scattering matrix equation is

$$
\left[\begin{array}{c}
a_{1}^{-} \tag{Ais}\\
b_{1}^{-} \\
c_{1}^{-} \\
B_{1}^{-}
\end{array}\right]_{-} \left\lvert\,\left[\begin{array}{c}
a_{1}^{+} \\
b_{1}^{+} \\
c_{1}^{+} \\
c_{1} \\
B_{1}^{+}
\end{array}\right]\right.
$$

Figure A2 - Bifurcated circular waveguide.

In order to find expression for the $S_{i j}$ four special cases are considered:
I. $a_{1}^{+}=1, b_{1}^{+}=c_{1}^{+}=B_{1}^{+}=0$

$$
S_{11}=a_{1}^{-}, \quad S_{21}=b_{1}^{-}, \quad S_{31}=c_{1}^{-}, \quad s_{41}=B_{1}^{-}
$$

II. $b_{1}^{+}=1, a_{1}^{+}=c_{1}^{+}=B_{1}^{+}=0$

$$
s_{12}=a_{1}^{-}, \quad s_{22}=b_{1}^{-}, s_{32}=c_{1}^{-}, \quad s_{42}=B_{1}^{-}
$$

III. $c_{1}^{+}=1, \quad a_{1}^{+}=b_{1}^{+}=B_{1}^{+}=0$

$$
s_{13}=a_{1}^{-}, \quad s_{23}=b_{1}^{-}, \quad s_{33}=c_{1}^{-}, \quad s_{43}=B_{1}^{-}
$$

IV. $\quad B_{1}^{+}=1, \quad a_{1}^{+}=b_{1}^{+}=c_{1}^{+}=0$

$$
s_{14}=a_{1}^{-}, \quad s_{24}=b_{1}^{-}, \quad s_{34}=c_{1}^{-}, \quad s_{44}=B_{1}^{-}
$$

The required equations are sumarized below (notation and parameters are given in earlier progress reports).

$$
\begin{aligned}
& a_{1}^{+}=\hat{f}_{n=1} \hat{a}_{1}^{+}=\frac{\hat{f}_{n=1}}{a k_{11}^{2}} \quad Q_{2}\left(B_{11}\right) \\
& b_{1}^{+}=\hat{b}_{1}^{+} / \hat{f}_{m=1}=-\frac{\text { Residue } Q_{2} \text { at }-B_{21}}{\hat{f}_{n=1} k_{21}^{2}} \\
& c_{1}^{+}=\hat{c}_{1}^{+} \hat{g}_{n=1}=\frac{\hat{g}_{n=1} Q_{2}\left(\beta_{31}\right)}{2 k_{31}^{2}} \\
& B_{1}^{+}=\hat{B}_{1}^{+} / \hat{a}_{n=1}=\frac{\gamma_{21} \hat{\bar{B}}_{1}^{+}}{\ell_{21}^{2} k_{0}^{2} a b \hat{a}_{m=1}}=\frac{-\gamma_{21} \text { Residue } Q_{1} a t-\gamma_{21}}{\ell_{21}^{2} k_{0}^{2} a b \hat{a}_{m=1}} \\
& a_{1}^{-}=\hat{f}_{n=1} \hat{a}_{1}^{-}=-\frac{\hat{f}_{n=1} Q_{2}^{\left(-\beta_{11}\right)}}{2 k_{11}^{2}} \\
& b_{1}^{-}=\hat{b}_{1}^{-} / \hat{f}_{m=1}=-\frac{\text { Residue } Q_{2} \text { at } B_{21}}{k_{21}^{2} \hat{f}_{m=1}} \\
& c_{1}^{-}=\hat{g}_{n=1} \hat{c}_{1}^{-}=-\frac{\hat{g}_{n=1} Q_{2}\left(-B_{21}\right)}{2 k_{31}^{2}}
\end{aligned}
$$

OFIGMir me st

 of poco cusimyA20

$$
\begin{aligned}
& \mathrm{B}_{1}^{-}=\frac{\gamma_{21}}{\ell_{21}^{2} k_{0}^{2} a b \hat{\alpha}_{m=1}} \hat{\hat{B}}_{1}^{-}=\frac{\gamma_{21} \text { Residue } Q_{1} \text { at } \gamma_{21}}{\ell_{21}^{2} k_{0}^{2} a b \hat{\alpha}_{m=1}} \\
& Q_{2}\left(k_{0}\right)=\frac{Q_{1}\left(k_{0}\right)}{k_{0}^{2} a b}, \quad Q_{2}\left(-k_{0}\right)=-\frac{Q_{1}\left(-k_{0}\right)}{k_{0}^{2} a b}
\end{aligned}
$$

Case I

From the conditions $b_{1}^{+}=c_{1}^{+}=0$ we see that Q_{2} has a zero at B_{31} and no pole at $-B_{21}$. Since $B_{1}^{+}=0$ also we require that Q_{1} does not have a pole at $-\gamma_{21}$. Hence

$$
Q_{1}=\tilde{P}_{1} K_{1}, \quad Q_{2}=\tilde{P}_{2}\left(1-w / B_{31}\right)\left(R_{1}+R_{2} w\right)
$$

The equations that determine K_{1}, R_{1}, and R_{2} are

$$
\begin{align*}
& \frac{\hat{f}_{n=1} \tilde{P}_{2}\left(B_{11}\right)}{2 k_{11}^{2}}\left(1-\frac{B_{11}}{B_{31}}\right)\left(R_{1}+R_{2}^{\beta_{11}}\right)=1 \tag{A19a}\\
& +\frac{k_{1} \tilde{P}_{1}\left(\pm k_{0}\right)}{k_{0}^{2} a b}+\tilde{P}_{2}\left(\pm k_{0}\right)\left(1 \mp \frac{k_{0}}{\beta_{31}}\right)\left(R_{1} \pm R_{2} k_{0}\right)=0 \tag{A19b,C}
\end{align*}
$$

The matrix elements $S_{i l}$ are given by:

$$
\begin{align*}
& S_{11}=-\frac{\hat{f}_{n=1}}{2 k_{11}^{2}} \tilde{F}_{2}\left(-B_{11}\right)\left(1+\frac{B_{11}}{B_{31}}\right)\left(R_{1}-R_{2} B_{11}\right) \\
& S_{21}=-\frac{1}{k_{21}^{2} \hat{f}_{m=1}}\left(1-\frac{B_{21}}{B_{31}}\right)\left(R_{1}+R_{2} B_{21}\right) \text { Residue } \tilde{p}_{2} \text { at } B_{21} \tag{A2Ob}
\end{align*}
$$

$$
\begin{equation*}
s_{31}=-\frac{\hat{g}_{n=1}}{k_{31}^{2}} \quad \tilde{P}_{2}\left(-\beta_{31}\right)\left(R_{1}-R_{2} R_{31}\right) \tag{A20C}
\end{equation*}
$$

$$
\begin{equation*}
S_{41}=\frac{\gamma_{21} k_{1}}{\ell_{21}^{2} k_{0}^{2} \text { ab } \hat{a}_{m=1}} \quad \text { Residue } \tilde{P}_{1} \text { at } \gamma_{21} \tag{A20d}
\end{equation*}
$$

Case II

From $a_{1}^{+}=c_{1}^{+}=0$ we get that Q_{2} has zeroes at $w=B_{11}$ and B_{31}.
From $B_{1}^{+}=0$ we get that Q_{1} has no pole at $w=-\gamma_{21}$

$$
Q_{1}=K_{1} \tilde{P}_{1}, \quad Q_{2}=\frac{\tilde{p}_{2}\left(1-w / \beta_{11}\right)\left(1-w / \beta_{31}\right)}{w+B_{21}}\left(R_{1}+R_{2} w\right)
$$

The equations that determine X_{1}, R_{1}; and R_{2} are:
$-\frac{\tilde{p}_{2}\left(-B_{21}\right)}{k_{21}^{2} \hat{f}_{m=1}}\left(1+\frac{B_{21}}{B_{11}}\right)\left(1+\frac{B_{21}}{B_{31}}\right)\left(R_{1}-R_{2} B_{21}\right)=1$
$\mp \frac{k_{1} \tilde{P}_{1}\left(\pm k_{0}\right)}{k_{0}^{2} a b}+\frac{\tilde{P}_{2}\left(\pm k_{0}\right)\left(1+\frac{k_{0}}{\beta_{11}}\right)\left(1 \mp \frac{k_{0}}{\beta_{31}}\right)\left(R_{1} \pm R_{2} k_{0}\right)}{\beta_{21} \pm k_{0}}=0 \quad$ (A21b,C)
The scattering matrix parameters $S_{i 2}$ are given by:

$$
\begin{aligned}
& s_{12}=\frac{\hat{f}_{n=1}}{k_{11}^{2}} \frac{\tilde{P}_{2}\left(-B_{11}\right)\left(1+\frac{B_{11}}{\beta_{31}}\right)\left(R_{1}-R_{2} \beta_{11}\right)}{\beta_{11}-\beta_{21}} \\
& s_{22}=-\frac{1}{k_{21}^{2} \hat{f}_{m=1}}\left(1-\frac{B_{21}}{B_{11}}\right)\left(1-\frac{B_{21}}{\beta_{31}}\right) \frac{R_{1}+R_{2} B_{21}}{2 \beta_{21}}
\end{aligned}
$$

$S_{32}=\frac{\hat{S}_{n=1} \tilde{P}_{2}\left(-\beta_{31}\right)\left(1+\frac{\beta_{31}}{\beta_{11}}\right)\left(R_{1}-R_{2} \beta_{31}\right)}{k_{31}^{2}\left(\beta_{31}-\beta_{21}\right)}$
$s_{42}=\frac{\gamma_{21} K_{1}}{\ell_{21}^{2} k_{0}^{2} a b \hat{a}_{m=1}} \quad$ Residue \tilde{P}_{1} at γ_{21}

Case III

From $a_{1}^{+}=b_{1}^{+}=0$ we find that Q_{2} has a zero at $w=B_{11}$ and no
pole at $w=-B_{21}$. From $B_{1}^{+}=0$ we get that Q_{1} has no pole at $-\gamma_{21}$.
Thus

$$
Q_{1}={X_{1}}_{1} \tilde{P}_{1}, \quad Q_{2}=\tilde{P}_{2}\left(1-\frac{w}{\beta_{11}}\right)\left(R_{1}+R_{2} w\right)
$$

The equations that determine K_{1}, R_{1}, and R_{2} are:

$$
\begin{align*}
& \frac{\hat{g}_{n=1}}{2 k_{31}^{2}} \tilde{P}_{2}\left(B_{31}\right)\left(1-\frac{B_{31}}{B_{11}}\right)\left(R_{1}+R_{2} B_{31}\right)=1 \tag{A23a}\\
- & \frac{k_{1} \tilde{P}_{1}\left(\pm k_{0}\right)}{k_{0}^{2} a b}+\tilde{P}_{2}\left(\pm k_{0}\right)\left(1+\frac{k_{0}}{B_{11}}\right)\left(R_{1} \pm R_{2} k_{0}\right)=0,
\end{align*}
$$

The scattering matrix parameters $S_{i 3}$ are given by:

$$
\begin{equation*}
S_{13}=\frac{\hat{f}_{n=1} \tilde{P}_{2}\left(-\beta_{11}\right)\left(R_{2} B_{11}-R_{1}\right)}{k_{11}^{2}} \tag{A24a}
\end{equation*}
$$

$$
\begin{equation*}
S_{23}=-\frac{\left(1-\frac{\beta_{21}}{\beta_{11}}\right)\left(R_{1}+R_{2} \beta_{21}\right)}{k_{21}^{2} \hat{f}_{m=1}} \text { Residue } \tilde{P}_{2} \text { at } B_{21} \tag{A24b}
\end{equation*}
$$

$$
s_{33}=-\frac{\hat{G}_{n=1}}{2 k_{31}^{2}} \tilde{\mathrm{P}}_{2}\left(-\beta_{31}\right)\left(1+\frac{B_{31}}{\beta_{11}}\right)\left(R_{1}-R_{2} \beta_{31}\right)
$$

$$
S_{43}=\frac{r_{21}}{\ell_{21}^{2} k_{0}^{2} a b \hat{a}_{m=1}} K_{1} \text { Residue } \tilde{p}_{1} \text { at } \gamma_{21}
$$

Case IV

From $a_{1}^{+}=b_{1}^{+}=c_{1}^{+}=0$ we get that Q_{2} has zeroes at
$w=B_{11}$ and B_{31} and no pole at $w=-B_{21}$. Thus

$$
Q_{1}=\frac{\tilde{P}_{1}\left(K_{1}+K_{2} w\right)}{w+\gamma_{21}}, \quad Q_{2}=\tilde{P}_{2}\left(1-\frac{w}{\beta_{11}}\right)\left(1-\frac{w}{\beta_{31}}\right) R_{1}
$$

The constants K_{1}, K_{2}, and R_{1} are determined by:

The scattering matrix parameters $s_{i 4}$ are given by:

$$
\begin{aligned}
& \frac{-\gamma_{21}}{l_{21}^{2} k_{0}^{2} a b \hat{\alpha}_{m=1}} \quad \tilde{p}_{2}\left(-\gamma_{21}\right)\left(k_{1}-K_{2} \gamma_{21}\right)=1 \\
& \mp \frac{\tilde{P}_{1}\left(\pm k_{0}\right)\left(K_{1} \pm k_{2} k_{0}\right)}{\left(r_{21} \pm k_{0}\right) k_{0}^{2} a b}+\tilde{P}_{2}\left(+k_{0}\right)\left(1 \mp \frac{k_{0}}{B_{11}}\right)\left(1 \mp \frac{k_{0}}{B_{31}}\right) R_{1}=0 \quad(A, 25 b, c)
\end{aligned}
$$

$$
S_{14}=-\frac{\hat{f}_{n=1} \stackrel{\sim}{P}_{2}\left(-B_{11}\right)\left(1+\frac{B_{11}}{B_{31}}\right) R_{1}}{k_{11}^{2}}
$$

$$
\begin{equation*}
S_{24}=-\frac{R_{1}}{k_{21}^{2} \hat{f}_{m=1}}\left(1-\frac{B_{21}}{B_{11}}\right)\left(1-\frac{B_{21}}{B_{31}}\right) \text { Residue } \tilde{P}_{2} \text { at } B_{21} \tag{A26b}
\end{equation*}
$$

$$
\begin{equation*}
S_{34}=-\frac{\hat{g}_{n=1} \tilde{P}_{2}\left(-\beta_{31}\right)\left(1+\frac{\beta_{31}}{\beta_{11}}\right) R_{1}}{k_{31}^{2}} \tag{A26c}
\end{equation*}
$$

$$
s_{44}=\frac{\gamma_{21}\left(K_{1}+K_{2} \gamma_{21}\right)}{2 \ell_{21}^{2} k_{0}^{2} a b \hat{a}_{m=1} \gamma_{21}} \text { Residue } \tilde{P}_{1} \text { at } \gamma_{21}
$$

The scattering matrix parameters have been evaluated for $\lambda_{0}=2.5 \mathrm{~cm}(12 \mathrm{ghz}$.$) as a function of the inner guide radius " \mathrm{a}$ " and outer guide radius " b " over a range of values corresponding to TE_{11} mode propagation only in regions 1 and 3 and to TE_{11} and $T M_{11}$ mode propagation in the large guide (region 2). The accuracy and correctness of the computational program was verified by checking that the scattering matrix is unitary for a lossless junction (power conservation) i.e.

$$
\sum_{i=1}^{4} s_{i j} s_{j i}^{*}=\delta_{j k}
$$

Since the junction is reciprocal $s_{i j}=s_{j i}$ so only $10 s_{i j}$ parameters need to be evaluated.

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX B GPERTURE SCATTERING PARAMETEPS

This Appendix summarizes the formulas used to compute the aperture scattering coefficients $\Gamma_{i j}$ and the radiated field. The formulas are based on the solution given by Weinstein (Weinstein, 1969). After suitable coordinate transformation, change in notation, and complex conjugation (see Schilling: 1982, for detailed derivations).

The $T E_{11}$ mode reflection coefficient is given by

$$
\begin{equation*}
\Gamma_{11}=\frac{k_{o}}{\beta} \frac{\left(k_{o}+\beta\right)^{2} b^{2}}{k_{c}^{2} b^{2}-1} \quad M^{2}(\beta b)\left[\frac{x^{2}}{1-\chi^{2}}-\frac{\left(k_{o}-\beta\right)^{2}}{4 k_{o} \beta}\right] \tag{B1}
\end{equation*}
$$

where β is the propagation constant and k_{c} is the cutoff wave number. The T_{11} mode reflection coefficient is given by

$$
\begin{equation*}
\Gamma_{22}=\frac{k_{o}}{Y} L_{-}^{2}(\gamma b)\left[\frac{X^{2}}{1-X^{2}}+\frac{\left(k_{0}+\gamma\right)^{2}}{4 k_{0} \gamma}\right] \tag{B2}
\end{equation*}
$$

where γ is the propagation constant. The $T E{ }_{11}$ to $T M_{11}$ mode coupling coefficient is given by

$$
\begin{equation*}
\Gamma_{12}=\frac{k_{0}}{(B \gamma)^{1 / 2}} \frac{\left(k_{o}+\beta^{\prime} b\right.}{\left(k_{c}^{2} b^{2}-1\right)^{1 / 2}} \quad M \quad(B b) L_{-}(\beta b) \frac{X}{1-x^{2}} \tag{B3}
\end{equation*}
$$

The function x is given by

$$
\begin{equation*}
X=\frac{L_{0}\left(k_{0} b\right)}{2 k_{0} b M_{-}\left(k_{0} b\right)} \tag{B4}
\end{equation*}
$$

$$
1
$$

The functions L and M are given in terms of integrals which were evaluated numerically (see Schilling, 1982, fo: details).

$$
\begin{align*}
& L_{-}(\beta b)=\exp \frac{1}{2 \pi j} \int_{-\infty+j n}^{\infty+j n} \frac{\ln \left[-\pi j J_{1}\left(b \sqrt{k_{o}^{2}-\xi^{2}}\right) H_{1}^{2}\left(b \sqrt{k_{o}^{2}-\xi^{2}}\right)\right]}{\xi+\beta} d \xi \\
& M_{-}(\beta b)=\exp \frac{1}{2 \pi j} \int_{-\infty+j n}^{\infty+j n} \frac{\ln \left[-\pi j J_{1}^{\prime}\left(b \sqrt{k_{o}^{2}-\xi^{2}}\right) H_{1}^{2 \prime}\left(b \sqrt{\mathrm{k}_{o}^{2}-\xi^{2}}\right.\right.}{\xi+\beta} \frac{1}{\xi} d \xi
\end{align*}
$$

Let the incident $T E_{11}$ mode transverse field be $d_{1}^{+} \vec{e}_{21} e^{-j B z}$ while the incident $T M{ }_{11}$ mode transverse field is $D_{1}^{+} \vec{E}_{21} e^{-j \gamma z}$ with the modal functions as defined in Appendix A. The radiated electric field is then given by

$$
\left[\begin{array}{c}
E_{\theta} \tag{B7}\\
E_{\phi}
\end{array}\right]=\left[\begin{array}{cc}
\sin \phi & 0 \\
0 & \cos \phi
\end{array}\right]\left[\begin{array}{cc}
E_{\theta, T E} & E_{\theta, T M} \\
E_{\phi, T E} & E_{\phi, T M}
\end{array}\right]\left[\begin{array}{c}
d_{1}^{+} \\
D_{1}^{+}
\end{array}\right] \frac{e^{-j k_{o} r}}{r}
$$

where

$$
\begin{aligned}
& E_{\theta, T E}=j\left(\frac{2 k_{o} Z_{o}}{\pi \beta}\right)^{1 / 2} \frac{k_{c} k_{o} b}{k_{o}^{-\beta}} \frac{k_{c} b}{\left(k_{c} b^{2}-1\right)^{1 / 2}} \frac{\chi}{1-\chi^{2}} \\
& \times \frac{M_{-}(B b)}{L_{-}\left(k_{0} b \cos \theta\right)} \frac{J_{1}\left(k_{0} b \sin \theta\right)}{k_{0} b \sin \theta} \\
& E_{\phi, T E}=j\left(\frac{2 k_{o} Z_{0}}{\pi \beta}\right)^{1 / 2} \frac{k_{c} b}{\left(k_{c}^{2} b^{2}-1\right)^{1 / 2}} \frac{k_{c}}{k_{0}^{-\beta}} \frac{M_{-}(B b)}{M_{-}\left(k_{o} b \cos \theta\right)} \\
& \times\left[\frac{x^{2}}{1-x^{2}}-\frac{\left(k_{0}-\beta\right)(1+\cos \theta)}{2\left(\beta-k_{0} \cos \theta\right)}\right] \frac{J_{1}^{\prime}\left(k_{0} b \sin \theta\right)}{1+\cos \theta}
\end{aligned}
$$

$$
E_{\theta, T M}=j\left(\frac{2 k_{o} z_{0}}{\pi \gamma}\right)^{1 / 2} \frac{L_{-}(\gamma b)}{L_{-}\left(k_{0} b \cos \theta\right)}\left[\frac{x^{2}}{1-x^{2}}+\frac{\left(k_{0}+\gamma\right)(1-\cos \theta)}{2\left(\gamma-k_{o} \cos \theta\right)}\right]
$$

$$
\begin{equation*}
\times k_{0}^{b} \frac{J_{1}\left(k_{0} b \sin \theta\right)}{k_{0}^{b} \sin \theta} \tag{B8c}
\end{equation*}
$$

$$
E_{\phi, T M}=j\left(\frac{2 k_{o} z_{o}}{\pi \gamma}\right)^{1 / 2} \frac{\chi}{1-x^{2}} \frac{L_{-}(\gamma b)}{M_{-}\left(k_{o} b \cos \theta\right)} \frac{J_{1}^{\prime}\left(k_{o} b \sin \theta\right)}{1+\cos \theta}
$$

(B8d)

APPENDIX C

RADIATION FROM A CIRCULAR WAVEGUIDE (APPROXIMATE THEORY)

Radiation from a circular waveguide aperture may be computed from a knowledge of the tangential electric field or tangential magnetic field on the $z=0$ aperture plane. In practice the aperture field is assumed to be that of the incident mode (or modes) in the circular guide opening and zero outside this region. One then finds that the resultant radiation pattern is somewhat dependent on whether only the aperture electric field, or aperture magnetic field, or both are used in the formulation.

Figure Cl - Radiation from a Circular Naveguide

In terms of the aperture tangential electric field the radiated field
is given by

$$
\begin{equation*}
\vec{E}=\frac{j k_{0}}{2 \pi r} e^{-j k_{0} r}\left[\vec{a}_{\theta}\left(f_{x} \cos \phi+f_{y} \sin \phi\right)+\vec{a}_{\phi} \cos \theta\left(f_{y} \cos \phi-f_{x} \sin \phi\right)\right] \tag{cla}
\end{equation*}
$$

where \vec{E}_{t} is the Fourier transform of the aperture electric field. In terms of the aperture tangential magnetic field the radiated field is given by

$$
\begin{equation*}
\vec{E}=\frac{j k_{0}}{2 \pi r} e^{-j k_{0} r} z_{0}\left[\vec{a}_{\theta} \cos \theta\left(g_{y} \cos \phi-g_{x} \sin \phi\right)-\vec{a}_{\phi}\left(g_{y} \sin \phi+g_{x} \cos \phi\right)\right] \tag{Clb}
\end{equation*}
$$

where \vec{g}_{t} is the Fourier transform of the aperture magnetic field. If both the aperture electric and magnetic fields are used the radiated field is the average of that given by (Cla) and (Clb).

Let \vec{e} be the tangential electric field of an incident waveguide mode. Then the corresponding tangential magnetic lield is given by

$$
\vec{h}=x_{w} \vec{a}_{z} \times \vec{b}
$$

where Y_{w} is the mode admittance. If we assume negligible reflection at the guide-free space junction and negligible higher mode excitation and no fringing fields then

$$
\begin{align*}
\vec{f}_{t} & =\int_{S_{a}} \vec{e}(x, y) e^{j k} x^{x+j k_{y} y} d x d y \\
\vec{g}_{t} & =\int_{S_{a}} \vec{h}(x, y) e^{j k} x^{x+j k} y^{y} d x d y \\
& =y_{w} \vec{a}_{z} \times f_{t} \tag{C2}
\end{align*}
$$

Thus $g_{x}=-Y_{w} f_{y}$ and $g_{y}=Y_{w} f_{x}$ and the average of (Cla) and (Clb) biscomes

$$
\begin{align*}
\vec{E}=\frac{j k_{0}}{4 \pi r} e^{-j k_{0} r} & {\left[\vec { a } _ { \theta } (1 + z _ { o } Y _ { w } \operatorname { c o s } \theta) \left(f_{x} \cos \phi+f_{y} \sin \phi ;\right.\right.} \\
& \left.+\vec{a}_{\phi}\left(\cos \theta+z_{o} y_{w}\right)\left(f_{y} \cos \phi-f_{x} \sin \phi\right)\right] \tag{C3}
\end{align*}
$$

In the radiation zone $k_{x}=k_{0} \sin \theta \cos \phi$ and $k_{y}=k_{0} \sin \theta \sin \phi$.
$\underline{\text { Radiation }}$ from TE $_{11}$ Mode

In a guide of radius b the normalized tangential electric field of the $T E_{11}$ mode is

$$
\begin{equation*}
\vec{e}=\left(\frac{k_{0} Z_{0}}{\beta}\right)^{1 / 2} \frac{\vec{a}_{z} \times \nabla_{t} J_{1}\left(k_{c} r\right) \cos \phi}{\left[\frac{\pi}{2}\left(k_{c}^{2} b^{2}-1\right)\right]^{1 / 2} J_{1}\left(k_{c} b\right)} \tag{C4}
\end{equation*}
$$

By using only the electric field in the aperture it is found that the radiated field is given by

$$
\vec{E}=\frac{j k_{o} e^{-j k_{o} r}}{2 \pi r}\left(\frac{k_{o} z_{o}}{B}\right)^{1 / 2}\left[\frac{\pi}{2}\left(k_{c}^{2} b^{2}-1\right)\right]^{-1 / 2}\left(2 \pi k_{c}^{2} b\right)
$$

$$
\begin{equation*}
\times\left[\overrightarrow{\mathbf{a}}_{\theta} \frac{J_{1}\left(k_{0} b \sin \theta\right)}{\left.k_{c}^{2} k_{0} b \sin \theta\right)} \sin \phi+\vec{a}_{\phi} \cos \theta \frac{J_{1}^{\prime}\left(k_{0} b \sin \theta\right)}{k_{c}^{2}-k_{0}^{2} \sin ^{2} \theta} \cos \phi\right] \tag{C5}
\end{equation*}
$$

The relations (Cl), (C2), and (C3) may be used to find the radiated field in terms of the aperture tangential magnetic field or in terms of both \vec{e} and \vec{h}. In this case $z_{0} X_{W}=B / k_{0}$.

Radiation From TM 11 Mode

The normalized electric field of a $T M 11$ mode is

$$
\begin{equation*}
\vec{e}=\left(\frac{2 \gamma}{\pi k_{0}} z_{0}\right)^{1 / 2} \frac{\nabla_{t} J_{1}\left(\ell_{c} r\right) \sin \phi}{\ell_{c} b J_{1}^{\prime}\left(\ell_{c} b\right)} \tag{C6}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (1999:•" }
\end{aligned}
$$

In terms of this field alone the radiated electric field is given by

$$
\begin{equation*}
\vec{E}=\frac{j k_{0} e^{-j k_{0} r}}{2 \pi r}\left(\frac{2 \gamma z_{0}}{\pi k_{0}}\right)^{1 / 2} \vec{a}_{\theta} \frac{2 \pi k_{0} \sin \theta J_{1}\left(k_{0} b \sin \theta\right)}{k_{0}^{2} \sin ^{2} \theta-l_{c}^{2}} \tag{CT}
\end{equation*}
$$

Note that $E_{\phi}=0$ and that $\vec{E}=0$ on the 2 axis. For the $I M_{1 i}$ mode $Z_{0} Y_{w}=0_{0} \gamma$ where Y is the propagation constant.

Co-polarized and Cross-polarized Radiation Patterns

If both the aperture electric and magnetic fields are used to compute the radiation field then from the TE_{11} mode (apart from irrelevant constants) the radiated field is given by

$$
\begin{align*}
& E_{\theta}=q_{1}(\theta) \sin \phi \tag{CAa}\\
& E_{\phi}=q_{2}(\theta) \cos \phi
\end{align*}
$$

where

$$
q_{1}=\left(\frac{k_{0}}{\beta}\right)^{1 / 2} \frac{b}{\left(k_{c}^{2} b^{2}-1\right)^{1 / 2}}\left(1+\frac{\beta}{k_{0}} \cos \theta\right) \frac{J_{1}\left(k_{0} b \sin \theta\right)}{k_{0} b \sin \theta}
$$

$$
q_{2}=\left(\frac{k_{0}}{\beta}\right)^{1 / 2} \frac{b}{\left(k_{c}^{2} b^{2}-1\right)^{1 / 2}}\left(\frac{\beta}{k_{0}}+\cos \theta\right) \frac{J_{1}^{\prime}\left(k_{0} b \sin \theta\right)}{1-\frac{k_{0}^{2}}{k_{c}^{2}} \sin ^{2} \theta}
$$

$$
J_{1}^{\prime}\left(k_{c} b\right)=0, \quad k_{c} b=1.841, \quad B^{2}=k_{0}^{2}-k_{c}^{2}
$$

Let $\vec{n}_{1}=\vec{a}_{\theta} \sin \phi+\vec{a}_{\phi} \cos \phi$ be a unit co-polarized vector and $\vec{n}_{2}=\vec{a}_{\theta} \cos \phi-\vec{a}_{\phi} \sin \phi$ is then unit cross-polarized vector. The copolarized radiation is given by

$$
\begin{equation*}
\vec{E} \cdot \vec{n}_{1}=\frac{q_{1}+q_{2}}{2}-\frac{q_{1}-q_{2}}{2} \cos 2 \phi \tag{C9a}
\end{equation*}
$$

while the cross-polarized field is given by

$$
\begin{equation*}
\vec{E} \cdot \vec{n}_{2}=\frac{q_{1}-q_{2}}{2} \sin 2 \phi \tag{C9b}
\end{equation*}
$$

and is a maximum in the $\phi=\pi / 4$ or $\frac{3 \pi}{4}$ plane. The principal E-plane pattern is given by $q_{1}(\theta)$ and the principal H-plane pattern is given by $q_{2}(\theta)$. The principal plane patterns and cross-polarized patterns are shown in Fig's. $\mathrm{C} 2-\mathrm{C} 7$ for $\lambda_{0}=2.5 \mathrm{~cm} .(12 \mathrm{ghz}$.$) and different$ values of b.

The radiation pattern for the $T M_{11}$ mode, as computed using both the aperture tangential electric and magnetic fields, is given by

$$
\begin{equation*}
E_{\theta}=-q_{3}(\theta) \sin \phi \tag{clo}
\end{equation*}
$$

where

$$
q_{3}=\left(\frac{\gamma}{k_{0}}\right)^{1 / 2}\left(1+\frac{k_{0}}{\gamma} \cos \theta\right) \frac{k_{0} \sin \theta^{J_{1}}\left(k_{0} b \sin \theta\right)}{l_{c}^{2}-k_{0}^{2} \sin ^{2} \theta}
$$

and $J_{1}\left(\ell_{c} b\right)=0, \ell_{c} b=3.832$, and $\gamma^{2}=k_{0}^{2}-\ell_{c}^{2}$. The radiation pattern is shown in Fig. C8.

If the patterns are computed using only the electric field in the aperture then the radiation fields for the TE_{11} mode are:

$$
\begin{align*}
& E_{\theta}=P_{1}(\theta) \sin \phi \tag{clla}\\
& E_{\phi}=P_{2}(\theta) \cos \phi \cos \theta \tag{cllb}
\end{align*}
$$

where

[^4]$\left(1+\frac{\beta}{k_{0}} \cos \theta\right) p_{1}=2 q_{1}$
$\left(\frac{\beta}{k_{0}}+\cos e\right) p_{2}=2 q_{2}$

The E - and H-plane principal patterns are given by p_{1} and $p_{2} \cos \theta$ respectively and the cross-polarized pattern in the $\phi=\pi / 4$ plane is given by $\left(p_{1}-p_{2} \cos \theta\right) / 2$. These patterns are shown in Figs. C2-C7 also. The combined pattern from a $T E_{11}$ mode and a $T M_{11}$ mode of relative amplitude a is given by (both tangential electric and magnetic aperture fields are used in the computation)

Co-polarized pattern

$$
\begin{equation*}
\vec{E} \cdot \vec{n}_{1}=\frac{q_{1}+q_{2}-\alpha q_{3}}{2}-\frac{q_{1}-q_{2}-\alpha q_{3}}{2} \cos 2 \phi \tag{Cl2}
\end{equation*}
$$

Cross-polarized pattern

$$
\begin{equation*}
\vec{E} \cdot \vec{n}_{2}=\frac{q_{1}-q_{2}-\alpha q_{3}}{2} \sin 2 \phi \tag{Cl3}
\end{equation*}
$$

Representative patterns are shown in Figs. C9-Cl4.
If only the aperture electric field is used then the cross-polarized pattern is given by

$$
\begin{equation*}
\vec{E} \cdot \vec{n}_{2}=\frac{p_{1}-p_{2} \cos \theta-a p_{3}}{2} \tag{C14}
\end{equation*}
$$

This pattern is shown in Figs. Cl5-cl7 for various values of a and b.

In (C14) $\left(\gamma+k_{0} \cos \theta\right) p_{3}=2 \gamma q_{3}$.

Discussion of Results

The patterns for single mode radiation shown in Fig's. C2-C7 s'low considerable differences between the two methods of evaluation (using aperture electric field only or using both the aperture electric and magnetic fields) for small values of b. This is due to the strong influence of the $\cos \theta$ factor as θ approaches 90°. For the larger values of b (Fig's. C6 and C7) both methods give nearly the same results. For single mode radiation the cross-polarized radiation is high, typically between -20 dB to -30 dB . An exception is the case for $\mathrm{b}=0.9 \mathrm{~cm}$. where the cross-polarized pattern $\left(q_{1}-q_{2}\right) / 2$ is at or below -40 dB for most values of θ when the fields are computed using both the electric and magnetic fields in the aperture. However, in this case the waveguide is near cutoff and the principal plane patterns are very broad so this is not normally a useful feed for paraboloids with angular apertures of half-angular openings of 75° or less.

The TM_{11} mode radiation pattern in Fig. C 8 shows little variation with the guide radius for b in the range 1.6 cm . to 2 cm . The on-axis field is zero.

The co-polarized and cross-polarized radiation patterns for combined $T E_{11}$ and $T M_{11}$ mode radiation are shown in Figs. C9-Cl4. These patterns are computed using both the electric and magnetic aperture fields. The $T M_{11}$ mode amplitude is a while that of the $T E_{11}$ mode is unity. A value of a around -0.4 gives very low cross-polarized radiation (-40dB for $b=1.6 \mathrm{~cm}$. and below $-50 d B$ for $b=2 \mathrm{~cm}$.).

Figures c15-17 show the cross-polarized patterns computed by using only the aperture electric field. Based on this theory the crosspolarized radiation level is generally higher and $\alpha=-.4$ is not the best α value to use for all values of the guide radius b.

When the results of this approximate evaluation of the radiation patterns and the cross-polarization is compared with the exact results given in Chapter 2 it is seen that there is considerable error in the cross-polarization patterns. The reflection of the TE_{11} and TM_{11} modes at the aperture could be taken into account and the formulas to use in this case are given by Silver (Silver, 1949). However, the reflection coefficients are known only after solving the problem exactly, in which case the exact radiation patterns are then also known.

ORIGINAL PAGE IS OF POCR QUALITY

On PRES
CF POOR QUALTY

[^0]: 'In Appendix B of this report Eq. ($B-18$) should have a minus sign and the denominator of Eq. ($B-26$) should have an additional factor $j_{n m}$.

[^1]: The optimization of the feed was based on the criterion of minimum crosspolarization over range $0<0 \leq 78^{\circ}$. If the range of θ is up to 90° the minimum achievable cross-polarization is approximately 2 dB. higher.

[^2]: In these fiqures A and B are the wavequide radii. A, B, S, and T are in cm .

[^3]: The lack of time did not permit these measurements to be repeated using the optimum feed.

[^4]: ${ }^{\dagger}$ The patterns shown in this Appendix were computed by Georg Karawas.

