6,027 research outputs found

    Improvement of the Rotation Arch of the Posterior Interosseous Pedicle Flap Preserving Both Reverse Posterior and Anterior Interosseous Vascular Sources.

    Get PDF
    Abstract PURPOSE: The reverse posterior interosseous artery flap has several advantages, not sacrificing any major blood vessel, but its relatively short pedicle limits the use to cover defects up to the metacarpophalangeal joint. Our purpose is to demonstrate that the ligature of the anterior interosseous artery (AIA), proximal to the communicating branch with the posterior interosseous artery, leads to an improved flap rotation arch, preserving both vascular sources. METHODS: Sixteen fresh cadavers with latex perfusion were analyzed before and after our technique of elongation, and the so-obtained measures were standardized in "percentage of elongation of the pedicle." Eight patient with the loss of substance at the dorsal aspect of the hand have been treated with this technique, and results were evaluated in terms of flap survival and complication rates. RESULTS: The medium length of the pedicle in the normal flap was 10.8\u2009cm, and after the section of the AIA, the medium length of the pedicle was 13.6\u2009cm with a medium increase of 2.8\u2009cm. It means a medium increase of 24% of the length of the pedicle. In all patients treated, full coverage of the defect was obtained, and we did not experience major complications. CONCLUSIONS: This anatomical study supported by our clinical experience demonstrates that the use of the variant described above permits to reach more distal part of the hand without being afraid to stretch the pedicle because of the connection with the anastomotic arcades of the AIA at the wrist reducing the risk of ischemia of the flap

    Combined first-principles and model Hamiltonian study of the perovskite series RMnO3 (R = La, Pr, Nd, Sm, Eu and Gd)

    Get PDF
    We merge advanced ab initio schemes (standard density functional theory, hybrid functionals and the GW approximation) with model Hamiltonian approaches (tight-binding and Heisenberg Hamiltonian) to study the evolution of the electronic, magnetic and dielectric properties of the manganite family RMnO3 (R = La, Pr, Nd, Sm, Eu and Gd). The link between first principles and tight-binding is established by downfolding the physically relevant subset of 3d bands with e_g character by means of maximally localized Wannier functions (MLWFs) using the VASP2WANNIER90 interface. The MLWFs are then used to construct a tight-binding Hamiltonian. The dispersion of the TB e_g bands at all levels are found to match closely the MLWFs. We provide a complete set of TB parameters which can serve as guidance for the interpretation of future studies based on many-body Hamiltonian approaches. In particular, we find that the Hund's rule coupling strength, the Jahn-Teller coupling strength, and the Hubbard interaction parameter U remain nearly constant for all the members of the RMnO3 series, whereas the nearest neighbor hopping amplitudes show a monotonic attenuation as expected from the trend of the tolerance factor. Magnetic exchange interactions, computed by mapping a large set of hybrid functional total energies onto an Heisenberg Hamiltonian, clarify the origin of the A-type magnetic ordering observed in the early rare-earth manganite series as arising from a net negative out-of-plane interaction energy. The obtained exchange parameters are used to estimate the Neel temperature by means of Monte Carlo simulations. The resulting data capture well the monotonic decrease of the ordering temperature down the R series, in agreement with experiments.Comment: 13 pages, 9 figures, 3 table

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    An all-glass microfluidic network with integrated amorphous silicon photosensors for on-chip monitoring of enzymatic biochemical assay

    Get PDF
    A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microfluidic network is then made accessible by opening inlets and outlets just prior to the use, ensuring the sterility of the device. The entire fabrication process relies on conventional photolithographic microfabrication techniques and is suitable for low-cost mass production of the device. The lab-on-chip system has been tested by implementing a chemiluminescent biochemical reaction. The inner channel walls of the microfluidic network are chemically functionalized with a layer of polymer brushes and horseradish peroxidase is immobilized into the coated channel. The results demonstrate the successful on-chip detection of hydrogen peroxide down to 18 mu M by using luminol and 4-iodophenol as enhancer agent

    c-Maf Transcription Factor Regulates ADAMTS-12 Expression in Human Chondrogenic Cells.

    Get PDF
    ObjectiveADAMTS (a disintegrin and metalloproteinase with thrombospondin type-1 motif) zinc metalloproteinases are important during the synthesis and breakdown of cartilage extracellular matrix. ADAMTS-12 is up-regulated during in vitro chondrogenesis and embryonic limb development; however, the regulation of ADAMTS-12 expression in cartilage remains unknown. The transcription factor c-Maf is a member of Maf family of basic ZIP (bZIP) transcription factors. Expression of c-Maf is highest in hypertrophic chondrocytes during embryonic development and postnatal growth. We hypothesize that c-Maf and ADAMTS-12 are co-expressed during chondrocyte differentiation and that c-Maf regulates ADAMTS-12 expression during chondrogenesis.DesignPromoter analysis and species alignments identified potential c-Maf binding sites in the ADAMTS-12 promoter. c-Maf and ADAMTS-12 co-expression was monitored during chondrogenesis of stem cell pellet cultures. Luciferase expression driven by ADAMTS-12 promoter segments was measured in the presence and absence of c-Maf, and synthetic oligonucleotides were used to confirm specific binding of c-Maf to ADAMTS-12 promoter sequences.ResultsIn vitro chondrogenesis from human mesenchymal stem cells revealed co-expression of ADAMTS-12 and c-Maf during differentiation. Truncation and point mutations of the ADAMTS-12 promoter evaluated in reporter assays localized the response to the proximal 315 bp of the ADAMTS-12 promoter, which contained a predicted c-Maf recognition element (MARE) at position -61. Electorphoretic mobility shift assay confirmed that c-Maf directly interacted with the MARE at position -61.ConclusionsThese data suggest that c-Maf is involved in chondrocyte differentiation and hypertrophy, at least in part, through the regulation of ADAMTS-12 expression at a newly identified MARE in its proximal promoter

    Singular solutions of a modified two-component Camassa-Holm equation

    Full text link
    The Camassa-Holm equation (CH) is a well known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although possessing peakon solutions in the velocity, the CH2 equation does not admit singular solutions in the density profile. We modify the CH2 system to allow dependence on average density as well as pointwise density. The modified CH2 system (MCH2) does admit peakon solutions in velocity and average density. We analytically identify the steepening mechanism that allows the singular solutions to emerge from smooth spatially-confined initial data. Numerical results for MCH2 are given and compared with the pure CH2 case. These numerics show that the modification in MCH2 to introduce average density has little short-time effect on the emergent dynamical properties. However, an analytical and numerical study of pairwise peakon interactions for MCH2 shows a new asymptotic feature. Namely, besides the expected soliton scattering behavior seen in overtaking and head-on peakon collisions, MCH2 also allows the phase shift of the peakon collision to diverge in certain parameter regimes.Comment: 25 pages, 11 figure

    Total thyroidectomy associated to chemotherapy in primary squamous cell carcinoma of the thyroid

    Get PDF
    Primary squamous cell carcinoma of the thyroid (PSCCT) is a rare malignant disease with rapid fatal prognosis. The onset is generally characterized by sudden bilateral latero-cervical lymphadenopathy. The Authors report patient of 58-year-old who referred for evaluation of rapidly aggravating bilateral latero-cervical lymphadenopathy. The US highlighted the presence of a hypoechoic nodular lesion characterized by peri and intra-nodular vascularization. Multilayer CT showed diffused involvement of mediastinal and bilateral latero-cervical lymph nodes, with no evidence of primary pulmonary neoplasia or elsewhere. The patient underwent total thyroidectomy. The peri-isthmic tissue was removed due to the presence of a small roundish formation, that was due to lymph node metastasis at histological examination. Histological diagnosis: PSCCT. The immunohistochemical panel of the thyroid lesion was indispensable for the differential diagnosis between PSCCT, medullary carcinoma, anaplastic carcinoma, and thyroid metastasis of neoplasia with unknown primitiveness. The patient underwent chemotherapeutic treatment with Carboplatin and Paclitaxel with modest improvement of dysphagia symptoms and reduction of 10-15% of the target lesions. The clinical course was characterized by loco-regional progression of the disease with exitus in 10 months after diagnosis. Survival and quality of life after surgical therapy and chemotherapy were like that of patients undergoing only chemotherapy. Due to the extreme rarity of the neoplasia, 60 cases described in Literature, no exclusive guidelines are reported for PSCCT. More extensive case studies are needed to evaluate the effects of total thyroidectomy with intent R0/R1 on improving survival and quality of life of patients with PSCCT
    • …
    corecore