2,229 research outputs found

    Hydrological connectivity inferred from diatom transport through the riparian-stream system

    Get PDF
    Funding for this research was provided by the Luxembourg National Research Fund (FNR) in the framework of the BIGSTREAM (C09/SR/14), ECSTREAM (C12/SR/40/8854) and CAOS (INTER/DFG/11/01) projects. We are most grateful to the Administration des Services Techniques de l’Agriculture (ASTA) for providing meteorological data. We also acknowledge Delphine Collard for technical assistance in diatom sample treatment and preparation, François Barnich for the water chemistry analyses, and Jean-François Iffly, Christophe Hissler, JĂ©rĂŽme Juilleret, Laurent Gourdol and Julian Klaus for their constructive comments on the project and technical assistance in the field.Peer reviewedPublisher PD

    Cascading blackout overall structure and some implications for sampling and mitigation

    Get PDF
    Cascading blackouts can be thought of as initiating events followed by propagating events that progressively weaken the power system. We briefly discuss the implications for assessing cascading risk by proper sampling from the various sources of uncertainty and for mitigating cascading risk by reducing both the initiating events and their propagation

    Non-diffusive transport in plasma turbulence: a fractional diffusion approach

    Full text link
    Numerical evidence of non-diffusive transport in three-dimensional, resistive pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of test particles' radial displacements is strongly non-Gaussian and exhibits algebraic decaying tails. To model these results we propose a macroscopic transport model for the pdf based on the use of fractional derivatives in space and time, that incorporate in a unified way space-time non-locality (non-Fickian transport), non-Gaussianity, and non-diffusive scaling. The fractional diffusion model reproduces the shape, and space-time scaling of the non-Gaussian pdf of turbulent transport calculations. The model also reproduces the observed super-diffusive scaling

    Dues tombes romanes a Llafranc

    Get PDF

    Does size matter?

    Get PDF
    Failures of the complex infrastructures society depends on having enormous human and economic cost that poses the question: Are there ways to optimize these systems to reduce the risks of failure? A dynamic model of one such system, the power transmission grid, is used to investigate the risk from failure as a function of the system size. It is found that there appears to be optimal sizes for such networks where the risk of failure is balanced by the benefit given by the size

    A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain

    Get PDF
    Published: 23 March 2018The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fninf.2018.00013/full#supplementary-material Supplementary Figure 1. 3D renderings of the 14 regions used for quantitative evaluation of atlas performances in segmentation and registration tasks. The 14 regions shown here were extracted from the atlas of Ito et al. (2014) that has been registered onto the group-wise inter-sex atlas (available from http://fruitfly.tefor.net). Supplementary Figure 2. Selected lines from the Janelia Farm collection showing an overlap value with the search pattern ranking among the first 50 for at least three of the five PDF profiles. (Left) GAL4-driven GFP profile registered on the standard brain. (Right) overlap between the first PDF profile and the GAL4-driven GFP profile. Numbers refer to Janelia Farm lines with associated gene names. Scale bar: 20 ÎŒm. Supplementary Table 1. Results of the 3D space query for each of the five PDF profiles. Overlap values are indicated for each Janelia Farm line and the corresponding gene name (FlyBase nomenclature) is indicated for the overlap values ranking among the first 50 for at least three of the five PDF profiles (blue). Bold names correspond to the three lines shown in Figure 10. Supplementary Movie 1. Animated rendering of the group-wise inter-sex atlas. Successively: nc82 template image (2D sections then 3D volume rendering, opaque then transparent); label image (3D surface rendering of anatomical regions, defined following Ito et al. 2014); six registered patterns of GAL4-GFP expression (3D surface rendering of intensity-thresholded pattern images); same patterns (left half of the brain) with the anatomical regions (right half of the brain).Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.IA-C, TM, NM, FS, and AJ were funded by the Tefor Infrastructure under the Investments for the Future program of the French National Research Agency (Grant #ANR-11-INBS-0014). FR was supported by INSERM. Work at Institut des Neurosciences Paris-Saclay was supported by ANR Infrastructure Tefor and by ANR ClockEye(#ANR-14-CE13-0034-01). JI was supported by the Spanish Ministry of Economy and Competitiveness (TEC2014-51882-P), the European Union's Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 654911, project THALAMODEL), and the European Research Council (ERC Starting Grant no. 677697 BUNGEE-TOOLS). VRVis (KB, FS) is funded by BMVIT, BMWFW, Styria, SFG and Vienna Business Agency in the scope of COMET - Competence Centers for Excellent Technologies (854174) which is managed by FFG. The Institut Jean-Pierre Bourgin benefits from the support of the LabEx Saclay Plant Sciences-SPS (#ANR-10-LABX-0040-SPS)

    Fractional generalization of Fick's law: a microscopic approach

    Get PDF
    In the study of transport in inhomogeneous systems it is common to construct transport equations invoking the inhomogeneous Fick law. The validity of this approach requires that at least two ingredients be present in the system. First, finite characteristic length and time scales associated to the dominant transport process must exist. Secondly, the transport mechanism must satisfy a microscopic symmetry: global reversibility. Global reversibility is often satisfied in nature. However, many complex systems exhibit a lack of finite characteristic scales. In this Letter we show how to construct a generalization of the inhomogeneous Fick law that does not require the existence of characteristic scales while still satisfying global reversibility.Comment: 4 pages. Published versio
    • 

    corecore