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In the study of transport in inhomogeneous systems it is common to construct transport equations
invoking the inhomogeneous Fick law. The validity of this approach requires that at least two ingredients
be present in the system. First, finite characteristic length and time scales associated with the dominant
transport process must exist. Second, the transport mechanism must satisfy a microscopic symmetry:
global reversibility. Global reversibility is often satisfied in nature. However, many complex systems
exhibit a lack of finite characteristic scales. In this Letter we show how to construct a generalization of the
inhomogeneous Fick law that does not require the existence of characteristic scales while still satisfying
global reversibility.
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Over a hundred years ago, Fick proposed the famous
formula that bears his name while studying transport pro-
cesses in saline aqueous solutions [1]. He observed that a
salt flux was driven by the presence of a salt density
gradient (in the absence of other forces) and hypothesized
that they were linearly related to each other. In one dimen-
sion, Fick’s relation would read

 �F � �A
@n
@x
; (1)

where n is the salt density and the minus sign makes sure
that the flux tends to reduce the gradient. Since then, Fick’s
law has found application in countless systems, and ex-
pressions like Eq. (1) are applied to the transport of many
quantities: electrons and ions, neutral particles, energy or
momentum, risk, chemical reactants, or currency, just to
name a few.

Using Fick’s expression in the standard continuity equa-
tion yields the familiar classical diffusive equation,

 

@n
@t
� A

@2n

@x2 ; (2)

where n represents now the density of the quantity of
interest. The constant A is the diffusive coefficient, which
is related to some well-defined characteristic length (l) and
time (�) scales of the underlying dominant transport pro-
cess (in the case of salt transport, the mean-free-path
between collisions with the background water molecules
and the intercollision time): A� l2=�. By well-defined, we
mean that l and � are both finite and much smaller than the
system size and lifespan, respectively.

Many physical systems are, however, inhomogeneous.
The usual inhomogeneous extension of Fick’s law is

 �F � �A�x�
@n
@x
)
@n
@t
�

@
@x

�
A�x�

@n
@x

�
: (3)

In spite of its familiarity, this expression is not the only

possible extension that reduces to Eq. (2) when A�x� �
A � const. In fact, Fick’s law is a particular case of the
more general Fokker-Planck diffusive law [2], that defines
the flux by,

 �FP � B�x�n�
@
@x
�A�x�n�: (4)

Equation (3) requires that B�x� � dA�x�=dx. Traditionally,
the validity of this constraint [and thus Eq. (3)] has been
justified by invoking the presence of a particular symmetry
of the underlying microscopic transport mechanism: local
reversibility (LR) [2]. The symmetry applies when the
probability (per unit time) of a particle being transported
from any location x to any other location x0 equals that of
being transported from x0 to x [for instance, consider
reactants moving in a reactive medium. LR holds whenever
the probability rate of moving between any x and x0

without reacting depends on the total number of reactive
centers found along the reactant path. Similar situations are
very common in nature]. The condition for the validity of
Fick’s law is, however, less stringent than LR: global
reversibility (GR) is sufficient. Namely, that the probability
(per unit time) of a particle leaving x be the same as the
probability (per unit time) of arriving at x. Clearly, LR
implies GR but the converse is not true [2].

The purpose of this Letter is to revisit this discussion in a
different but related context, which has emerged as an
important paradigm in the last decade: that of scale-free
(or fractional) diffusion [3,4]. Scale-free transport appears
in systems in which some of the transport characteristic
scales, on which Fick’s law is fundamentally based, are
absent. The question we will try to answer in this Letter is:
which is the expression that correctly represents fluxes in
an inhomogeneous system satisfying GR but lacking such
characteristic scales? The relevance and timeliness of the
answer is justified by the recent surge of interest in physi-
cal, economical, biological and social systems in which
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scale-free transport is observed [3,4]. An example is pro-
vided by those systems in which (particle or energy) trans-
port takes place via correlated avalanches. This seems to be
the case of some magnetically confined fusion plasmas [5–
7], the propagation of forest fires [8], earthquakes [9] or
solar flares [10]. Transport events in these cases have a
maximum size that is only limited by the system size L,
and therefore a characteristic size that diverges with (some
power of) L. In some of these systems, LR is satisfied at
least in certain limits. For instance, in the propagation of
forest fires, the transition rate at which fire propagates from
tree A to tree B would heavily depend on how many active
trees exist between them, thus satisfying LR.

The discussion will proceed in parallel to the previous
one on classical diffusion. We start by reviewing the scale-
free version of the homogeneous Fick law [3,4]. The
relevant transport equation is then expressed in terms of
fractional differential operators (FDOs) [11]. To under-
stand why, we consider the simplest one, known as the
Markovian, symmetric fractional diffusion equation
(MsFDE):

 

@n
@t
� A�

@�n
@jxj�

; � 2 �0; 2�; (5)

where A� is a constant. The Riesz FDO is defined as

 

@�

@jxj�
�

�1

2 cos���=2�
��1D

�
x 	

1 D�
x �; (6)

where the Riemann-Liouville FDOs of order � are [11]

 aD�
x f �

1

��m� ��
dm

dxm
Z x

a

f�x0�

�x� x0���m	1 dx
0;

aD�
x f �

��1�m

��m� ��
dm

dxm
Z a

x

f�x0�

�x0 � x���m	1 dx
0;

(7)

being m the integer number verifying that m� 1 
 �<
m. In spite of their complicated appearance, the theory of
fractional differential operators is very well-established
[11]. The feature of FDOs which makes them relevant to
the context of scale-free transport is their action in Fourier
space

 F ��1D
�
x f� � ��ik�

�f̂; F �1D�
x f� � �ik�

�f̂; (8)

where f̂�k� � F �f��k�. Using property (8) it follows that
the Riesz FDO satisfies

 F

�
@�f
@jxj�

�
�k� � �jkj�f̂�k�: (9)

This result justifies the name ‘‘fractional differential op-
erators’’, since they naturally extend the notion of deriva-
tive to noninteger order. What is most relevant to us is that
they also provide a suitable generalization of classical
diffusion. Taking the Fourier transform of Eq. (5), we
obtain

 

@n̂�k�
@t

� �A�jkj
�n̂�k�; (10)

which reduces to the classical diffusive equation [Eq. (2)]
for � � 2 (note that for � � 2 the Riesz FDO yields the
second derivative operator). This fractional extension is
relevant for systems in which transport characteristic scales
diverge. To illustrate this point, let us examine the propa-
gator [i.e., the temporal evolution of an initial condition
n�x; 0� � ��x� x0�] of Eq. (5). The time derivative of the
second moment of the propagator is easily related to the
transport characteristic length scale l. In the case of the
diffusive equation (� � 2) the propagator is a Gaussian
function,

 G�x; tjx0; 0� � �4�At�
�1=2 expf��x� x0�

2=�4At�g;

which has a finite second moment that increases linearly
with time and thus yields a finite l. However, for �< 2, the
propagator is given by a symmetric Lévy distribution of
order � and behaves like (jx� x0j � 1):

 G�x; tjx0; 0� � C�t
�1=�

�
jx� x0j

t1=�

�
��1	��

; (11)

where C� is a constant [12]. Because of its fat power-law
tail, the second moment of this propagator is infinite. Thus,
the transport described by this equation lacks a finite
characteristic length. This result, together with the fact
that Lévy distributions are stable with respect to the central
limit theorem (as the Gaussian law) [12], endows FDOs
with the physical basis needed to justify their use to model
scale-free transport. Let us define, for convenience, the
operator

 aF�x �
�1

2 cos����	 1�=2�
��aD

�
x �a D�

x �: (12)

Then, the fractional particle flux associated to Eq. (5) can
be written as

 �F;� � �A��1F
��1
x n�: (13)

Evidently, the operator aF�x satisfies that

 

@
@x
�1F��1

x � �
@�

@jxj�
: (14)

Equation (13) is the fractional generalization of the homo-
geneous Fick law, Eq. (1), which is recovered for � � 2
due to the fact that 1F1

x � d=dx.
We now come to derive the central result of this Letter:

the inhomogeneous extension of (5) that preserves GR or,
in other words, the scale-free (fractional) generalization of
the inhomogeneous Fick law, Eq. (3). We start by giving
precise expressions for the GR/LR symmetries and then we
present a new way to derive the inhomogeneous Fick law
(Eq. (3)). The need for a new approach is caused by the
failure of the standard methods to derive the inhomoge-
neous Fick law when characteristic length scales are lack-
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ing. Finally, we show that the new procedure works in the
fractional case, yielding the fractional generalization of the
inhomogeneous Fick law. For the sake of simplicity, we
restrict ourselves to the discussion of the Markovian case,
but the extension to include non-Markovianity is rather
straightforward.

The continuous-time random walk (CTRW) [13] pro-
vides a suitable framework to derive macroscopic transport
equations from the microscoscopic dynamics. CTRWs are
models describing a large number of particles whose mo-
tion is defined probabilistically using a probability density
function (PDF). For our purposes, it is enough to consider
one-dimensional separable models defined by two PDFs: a
step-size PDF, p��x; x�, and a waiting-time PDF,  ��t; x�,
�t � 0. The joint PDF ���x;�t; x� � p��x; x� ��t; x�
gives the probability that a particle located at x at time t
jumps to x	�x at time t	 �t. As mentioned above, we
restrict the discussion to Markovian problems by selecting
a Poisson law for the waiting-time PDF:  ��t; x� �
��x��1 exp���t=��x��, where ��x� is the mean waiting
time at x. Imposing conservation of the number of particles
leads [14,15] to the generalized master equation (GME)
governing the time evolution of the density of particles
n�x; t�:

 

@n�x; t�
@t

�
Z 1
�1

n�x0; t�
��x0�

p�x� x0; x0�dx0 �
n�x; t�
��x�

: (15)

The GME is the starting point in the derivation of (macro-
scopic) fluid transport equations, by going to the fluid limit
in which only long-time, large-distance information is
retained. This can be easily done in Fourier space by taking
the limit of small k. The Fourier transform of the GME (15)
with respect to x yields [16]:

 

@n̂�k; t�
@t

�
Z 1
�1

n�x0; t�
��x0�

�p̂�k; x0� � 1�eikx
0
dx0; (16)

where p̂�k; x0� �
R
1
�1 p��; x0�eik�d� is the characteristic

function of p��; x0�. We introduce now the characteristic
exponent, ��k; x0�, through p̂�k; x0� � exp��k; x0�. The
fluid limit of the GME is obtained then by performing
the small k approximation p̂�k; x0�  1	��k; x0�, which
turns Eq. (16) into

 

@n̂�k; t�
@t

�
Z 1
�1

n�x0; t�
��x0�

��k; x0�eikx
0
dx0: (17)

First, let us show how to obtain the homogeneous clas-
sical [Eq. (2)] and fractional [Eq. (5)] diffusive equations
from Eq. (17). We assume that both ��x0� and ��k; x0� are
independent of x0. � becomes then the characteristic trans-
port time scale. The characteristic length scale is related (if
it exists) to the variance �2 of the step-size PDF, p���. In
the absence of external forces, the central limit theorem
guides us to choose either a Gaussian or a symmetric Lévy
distribution for p��� [12]. The characteristic exponent of
the Gaussian is ��k� � ��2k2, which inserted into

Eq. (17) yields the (Fourier transform of the) classical
diffusive Eq. (2) with A � �2=�. The finite variance of
the Gaussian is related to a finite characteristic length scale
l�

������
�2
p

. In the case of a symmetric Lévy PDF, the char-
acteristic exponent is [12] ��k� � ���jkj

�, with 0<�<
2. The fluid limit of Eq. (17) then reduces to (the Fourier
transform of) Eq. (5). The infinite variance of the Lévy
PDFs implies that l diverges.

We will now formalize the microscopic symmetries
underlying the inhomogeneous Fick law [Eq. (3)] that we
discussed briefly at the beginning of this Letter. First, we
introduce the 1-particle transition rate, T��; x� �
p��; x�=��x�. The LR condition is then expressed as [2]
T���; x	 �� � T��; x�, 8 x. As mentioned, Fick’s law
only requires the less stringent GR condition,

 

Z 1
�1

T���; x	 ��d� �
Z 1
�1

T��; x�d�; 8 x; (18)

as will be shown in the following.
To derive the inhomogeneous Fick law in the classical

(Gaussian) case, one would typically enforce the symmetry
[Eq. (18)] after Taylor expanding the right-hand side of
Eq. (15) around x and keeping only the terms involving up
to the second moment of T. However, a Lévy PDF of order
�< 2 does not have finite moments of order equal to or
greater than �. Hence, we need to develop a procedure to
find the fluid limit equations while imposing GR which
does not require an expansion in moments. The key point is
that, after some straightforward manipulations, the sym-
metry (18) can be recast into the following, equivalent
form:

 

Z 1
�1

�
p̂�k; x0� � 1

��x0�

�
eikx

0
dx0 � 0; 8 k: (19)

The fluid limit of the symmetry can be expressed in terms
of the characteristic exponent:

 

Z 1
�1

��k; x0�
��x0�

eikx
0
dx0 � 0; (20)

which is the small k approximation of Eq. (19).
It is instructive to rederive the ordinary, inhomogeneous

Fick law, Eq. (3), using this formalism. Consider the most
general form of the characteristic exponent of the Gaussian
law allowed by the central limit theorem [12]:

 ��k; x0� � ia�x0�k� �2�x0�k2: (21)

Inserting this expression into (20) we immediately find that
the following relation between �a�x0� � a�x0�=��x0� and
��2�x0� � �2�x0�=��x0� must hold

 �̂a�k� � �ik �̂�2�k�; (22)

or, in real space

 �a�x0� �
d ��2�x0�
dx0

: (23)
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This relation will be recognized as the one invoked earlier
to reduce the full Fokker-Planck law to the inhomogeneous
Fick law. Using Eqs. (21) and (23) and Fourier inverting
Eq. (17), the classical inhomogeneous Fick law is recov-
ered:

 

@n
@t
� �

@�F
@x

; �F � � ��2�x�
@n
@x
: (24)

We can use this very same scheme to derive the frac-
tional version of the inhomogeneous Fick law in the setup
of Lévy PDFs with algebraic tails that are stable according
to the central limit theorem [12]. The relevant fractional
generalization of Eq. (21) is now

 ��k; x0� � ia�x0�k� ���x
0�jkj�; � 2 �0; 2�; (25)

with ���x0�> 0. Imposing that Eq. (25) satisfy again GR
(Eq. (20)) yields ik �̂a�k� � jkj� �̂���k� � 0, where �a�x0� �
a�x0�=��x0�, ����x0� � ���x0�=��x0�. The fractional version
of Eq. (22) thus becomes

 �̂a�k� �
jkj�

ik
�̂���k�: (26)

Using the identity 2 cos���=2�jkj� � �ik�� 	 ��ik�� we
can rewrite Eq. (26) as

 �̂a�k� �
�ik���1 � ��ik���1

2 cos���=2�
�̂���k�; (27)

and making use of the properties of FDOs under Fourier
transforms discussed previously:

 �a�x0� �
1
F��1
x0 ���; (28)

where the operator 1F��1
x was defined in Eq. (12).

Equation (28) is the fractional generalization of the clas-
sical relation (23). Using this result and Eq. (25) in
Eq. (17), and Fourier inverting, we obtain the sought-for
fractional generalization of the inhomogeneous Fick law,
@tn � �@x�F;�, where the fractional Fick flux is now
given by

 �F;� � ��1F��1
x � ���n� � �1F��1

x ����n�: (29)

Equation (29) is the central result of this Letter. It
provides the keystone on which any description of trans-
port in systems lacking characteristic length scales but still
satisfying GR (or LR) should be built. As we mentioned, an
example could be provided by the propagation of forest
fires across an inhomogeneous distribution of trees.
Another possible application might be the modeling of
some aspects of radial particle transport in turbulent fusion
plasmas, such as those confined in certain tokamak regimes
[17,18]. Additional terms might be needed in this case to
account for additional effects associated to radially varying
temperatures and external forcing. Note also that Eq. (29)

is very different from the extension that one would expect
from Eq. (13) in the spirit of Eq. (3). Namely,

 �F;� � � ����x��1F��1
x n�: (30)

The reason is that fractional derivatives do not satisfy the
Leibniz rule for the derivative of the product of two func-
tions [11]. Hence, Eq. (30) is an equality only in the special
case � � 2. Needless to say, other fractional generaliza-
tions [including the one where the flux is defined by the
right-hand side of Eq. (30)] might also be valid under
different assumptions.

Finally, we would like to point out that the scheme laid
out in this Letter also provides the basis for addressing the
derivation of the fractional Fick law in three-dimensional
inhomogeneous systems. The CTRW construction can be
trivially extended to any dimension. However, the formu-
lation in terms of fractional derivative operators, even in
cases in which rotational invariance reduces the problem to
one effective dimension, requires tackling a number of
nontrivial technical details, which we plan to study in a
future work.
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