4,315 research outputs found

    Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry

    Full text link
    We consider experimentally the instability and mass transport of a porous-medium flow in a Hele-Shaw geometry. In an initially stable configuration, a lighter fluid (water) is located over a heavier fluid (propylene glycol). The fluids mix via diffusion with some regions of the resulting mixture being heavier than either pure fluid. Density-driven convection occurs with downward penetrating dense fingers that transport mass much more effectively than diffusion alone. We investigate the initial instability and the quasi steady state. The convective time and velocity scales, finger width, wave number selection, and normalized mass transport are determined for 6,000<Ra<90,000. The results have important implications for determining the time scales and rates of dissolution trapping of carbon dioxide in brine aquifers proposed as possible geologic repositories for sequestering carbon dioxide.Comment: 4 page, 3 figure

    Quantum whistling in superfluid 4He

    Full text link
    Fundamental considerations predict that macroscopic quantum systems such as superfluids and the electrons in superconductors will exhibit oscillatory motion when pushed through a small constriction. Here we report the observation of these oscillations between two reservoirs of superfluid 4He partitioned by an array of nanometer-sized apertures. They obey the Josephson frequency equation and are coherent amongst all the apertures. This discovery at the relatively high temperature of 2K (2000 times higher than related phenomena in 3He) may pave the way for a new class of practical rotation sensors of unprecedented precision.Comment: 6 pages, 3 figures, to be published in Natur

    Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus

    Get PDF
    The population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combincation of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600m in the Faroe Shetland Channel, where concentrations of up to 620m -3 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of north-westerly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales

    The Wheat GENIE3 Network Provides Biologically-Relevant Information in Polyploid Wheat

    Get PDF
    Gene regulatory networks are powerful tools which facilitate hypothesis generation and candidate gene discovery. However, the extent to which the network predictions are biologically relevant is often unclear. Recently a GENIE3 network which predicted targets of wheat transcription factors was produced. Here we used an independent RNA-Seq dataset to test the predictions of the wheat GENIE3 network for the senescence-regulating transcription factor NAM-A1 (TraesCS6A02G108300). We re-analyzed the RNA-Seq data against the RefSeqv1.0 genome and identified a set of differentially expressed genes (DEGs) between the wild-type and nam-a1 mutant which recapitulated the known role of NAM-A1 in senescence and nutrient remobilisation. We found that the GENIE3-predicted target genes of NAM-A1 overlap significantly with the DEGs, more than would be expected by chance. Based on high levels of overlap between GENIE3-predicted target genes and the DEGs, we identified candidate senescence regulators. We then explored genome-wide trends in the network related to polyploidy and found that only homeologous transcription factors are likely to share predicted targets in common. However, homeologs which vary in expression levels across tissues are less likely to share predicted targets than those that do not, suggesting that they may be more likely to act in distinct pathways. This work demonstrates that the wheat GENIE3 network can provide biologically-relevant predictions of transcription factor targets, which can be used for candidate gene prediction and for global analyses of transcription factor function. The GENIE3 network has now been integrated into the KnetMiner web application, facilitating its use in future studies

    Photoassociation of cold atoms with chirped laser pulses: time-dependent calculations and analysis of the adiabatic transfer within a two-state model

    Full text link
    This theoretical paper presents numerical calculations for photoassociation of ultracold cesium atoms with a chirped laser pulse and detailed analysis of the results. In contrast with earlier work, the initial state is represented by a stationary continuum wavefunction. In the chosen example, it is shown that an important population transfer is achieved to ≈15\approx 15 vibrational levels in the vicinity of the v=98 bound level in the external well of the 0g−(6s+6p3/2)0_g^-(6s+6p_{3/2}) potential. Such levels lie in the energy range swept by the instantaneous frequency of the pulse, thus defining a ``photoassociation window''. Levels outside this window may be significantly excited during the pulse, but no population remains there after the pulse. Finally, the population transfer to the last vibrational levels of the ground a3Σu+a^3\Sigma_u^+(6s + 6s) is significant, making stable molecules. The results are interpreted in the framework of a two state model as an adiabatic inversion mechanism, efficient only within the photoassociation window. The large value found for the photoassociation rate suggests promising applications. The present chirp has been designed in view of creating a vibrational wavepacket in the excited state which is focussing at the barrier of the double well potential.Comment: 49 pages, 9 figures, submitted to Phys. Rev.

    Josephson effects in dilute Bose-Einstein condensates

    Get PDF
    We propose an experiment that would demonstrate the ``dc'' and ``ac'' Josephson effects in two weakly linked Bose-Einstein condensates. We consider a time-dependent barrier, moving adiabatically across the trapping potential. The phase dynamics are governed by a ``driven-pendulum'' equation, as in current-driven superconducting Josephson junctions. At a critical velocity of the barrier (proportional to the critical tunneling current), there is a sharp transition between the ``dc'' and ``ac'' regimes. The signature is a sudden jump of a large fraction of the relative condensate population. Analytical predictions are compared with a full numerical solution of the time dependent Gross-Pitaevskii equation, in an experimentally realistic situation.Comment: 4 pages, 1 figur

    Delayed development of basal spikelets in wheat explains their increased floret abortion and rudimentary nature

    Get PDF
    Large differences exist in the number of grains per spikelet across an individual wheat (Triticum aestivum L.) spike. The central spikelets produce the highest number of grains, while apical and basal spikelets are less productive, and the most basal spikelets are commonly only developed in rudimentary form. Basal spikelets are delayed in initiation, yet they continue to develop and produce florets. The precise timing or the cause of their abortion remains largely unknown. Here, we investigated the underlying causes of basal spikelet abortion using shading applications in the field. We found that basal spikelet abortion is likely to be the consequence of complete floret abortion, as both occur concurrently and have the same response to shading treatments. We detected no differences in assimilate availability across the spike. Instead, we show that the reduced developmental age of basal florets pre-anthesis is strongly associated with their increased abortion. Using the developmental age pre-abortion, we were able to predict final grain set per spikelet across the spike, alongside the characteristic gradient in the number of grains from basal to central spikelets. Future efforts to improve spikelet homogeneity across the spike could thus focus on improving basal spikelet establishment and increasing floret development rates pre-abortion

    Pinhole calculations of the Josephson effect in 3He-B

    Full text link
    We study theoretically the dc Josephson effect between two volumes of superfluid 3He-B. We first discuss how the calculation of the current-phase relationships is divided into a mesoscopic and a macroscopic problem. We then analyze mass and spin currents and the symmetry of weak links. In quantitative calculations the weak link is assumed to be a pinhole, whose size is small in comparison to the coherence length. We derive a quasiclassical expression for the coupling energy of a pinhole, allowing also for scattering in the hole. Using a selfconsistent order parameter near a wall, we calculate the current-phase relationships in several cases. In the isotextural case, the current-phase relations are plotted assuming a constant spin-orbit texture. In the opposite anisotextural case the texture changes as a function of the phase difference. For that we have to consider the stiffness of the macroscopic texture, and we also calculate some surface interaction parameters. We analyze the experiments by Marchenkov et al. We find that the observed pi states and bistability hardly can be explained with the isotextural pinhole model, but a good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex

    Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches

    Get PDF
    PMCID: PMC3668194SEP was directly funded by the National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts. SN acknowledges support from the Oxford NIHR Biomedical Research Centre and from the Oxford British Heart Foundation Centre of Research Excellence. SP and PL are funded by a BHF Senior Clinical Research fellowship. RC is supported by a BHF Research Chair and acknowledges the support of the Oxford BHF Centre for Research Excellence and the MRC and Wellcome Trust. PMM gratefully acknowledges training fellowships supporting his laboratory from the Wellcome Trust, GlaxoSmithKline and the Medical Research Council
    • …
    corecore