323 research outputs found

    Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network

    Get PDF
    The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.This work was supported by a BBSRC PhD studentship to Erik Clark

    Germ cells of the centipede Strigamia maritima are specified early in embryonic development.

    Get PDF
    We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.This is the final published version. It was originally published by Elsevier in Development Biology here: http://www.sciencedirect.com/science/article/pii/S0012160614002991. DOI: 10.1016/j.ydbio.2014.06.003

    XX/XY System of Sex Determination in the Geophilomorph Centipede Strigamia maritima.

    Get PDF
    We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.This work was in part funded by Wellcome Trust (wellcome.ac.uk) Ph.D. studentship WT089615MA to JEG. Cytological experiments by MD and FM were funded by Grant IAA600960925 of the Grant Agency of The Czech Academy of Sciences (until 2013; gaav.cz) and by Grant 14- 22765S of the Czech Science Foundation (since 2014; gacr.cz). KS was supported by JSPS Excellent Young Researchers Overseas Visit Program (21– 7147; jsps.go.jp).This is the final version of the article. It first appeared from the Public Library of Science (PLOS) via https://doi.org/10.1371/journal.pone.015029

    Analogue closed-loop optogenetic modulation of hippocampal pyramidal cells dissociates gamma frequency and amplitude

    Get PDF
    Gamma-band oscillations are implicated in modulation of attention, integration of sensory information and flexible communication among anatomically connected brain areas. How networks become entrained is incompletely understood. Specifically, it is unclear how the spectral and temporal characteristics of network oscillations can be altered on rapid timescales needed for efficient communication. We use closed-loop optogenetic modulation of principal cell excitability in mouse hippocampal slices to interrogate the dynamical properties of hippocampal oscillations. Gamma frequency and amplitude can be modulated bi-directionally, and dissociated, by phase-advancing or delaying optogenetic feedback to pyramidal cells. Closed-loop modulation alters the synchrony rather than average frequency of action potentials, in principle avoiding disruption of population rate-coding of information. Modulation of phasic excitatory currents in principal neurons is sufficient to manipulate oscillations, suggesting that feed-forward excitation of pyramidal cells has an important role in determining oscillatory dynamics and the ability of networks to couple with one another

    FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution

    Get PDF
    The datasets on gene expression are the valuable source of information about the functional state of an organism. Recently, we have acquired the large dataset on expression of segmentation genes in the Drosophila blastoderm. To provide efficient access to the data, we have developed the FlyEx database (http://urchin.spbcas.ru/flyex). FlyEx contains 4716 images of 14 segmentation gene expression patterns obtained from 1579 embryos and 9 500 000 quantitative data records. Reference data are available for all segmentation genes in cycles 11–13 and all temporal classes of cycle 14A. FlyEx supports operations on images of gene expression patterns. The database can be used to examine the quality of data, analyze the dynamics of formation of segmentation gene expression domains, as well as to estimate the variability of gene expression patterns. Currently, a user is able to monitor and analyze the dynamics of formation of segmentation gene expression domains over the whole period of segment determination, that amounts to 1.5 h of development. FlyEx supports the data downloads and construction of personal reference datasets, that makes it possible to more effectively use and analyze data

    Open-source, Python-based, hardware and software for controlling behavioural neuroscience experiments

    Get PDF
    Laboratory behavioural tasks are an essential research tool. As questions asked of behaviour and brain activity become more sophisticated, the ability to specify and run richly structured tasks becomes more important. An increasing focus on reproducibility also necessitates accurate communication of task logic to other researchers. To these ends, we developed pyControl, a system of open-source hardware and software for controlling behavioural experiments comprising a simple yet flexible Python-based syntax for specifying tasks as extended state machines, hardware modules for building behavioural setups, and a graphical user interface designed for efficiently running high-throughput experiments on many setups in parallel, all with extensive online documentation. These tools make it quicker, easier, and cheaper to implement rich behavioural tasks at scale. As important, pyControl facilitates communication and reproducibility of behavioural experiments through a highly readable task definition syntax and self-documenting features. Here, we outline the system’s design and rationale, present validation experiments characterising system performance, and demonstrate example applications in freely moving and head-fixed mouse behaviour
    corecore