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SUMMARY

Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was pri-

marily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This

generated new insights into brain functions including movement, memory, and motivation at the level of

defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded

with the development of an extensive range of fluorescent sensors for biomolecules including neuromodu-

lators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new

availability of affordable ‘‘plug-and-play’’ recording systems, has made monitoring molecules with high

spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues

for research, the rapid expansion in fiber photometry applications has occurred without coordination or

consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze,

and suitably interpret fiber photometry studies.

A BACKGROUND TO FIBER PHOTOMETRY AND

OVERVIEW OF THIS PRIMER

Our understanding of how the brain works continues to be pro-

pelled by the development of methods that enable researchers

to examine neural mechanisms during behavior. One such tech-

nique is fiber photometry. Initially, it was primarily used to report

calcium dynamics as a proxy for neural activity via genetically

encoded indicators in behaving animals.1–3 However, with the

development of fluorescent sensors for numerous biomolecules

including extracellular ligands (neurotransmitters and modula-

tors) and intracellular signaling molecules that were previously

inaccessible in vivo, interest in the technique has exploded.

Increasingly, fiber photometry is seen as the technique of choice

to measure neurotransmitter dynamics in vivo in rodents.

Fiber photometry is an optical technique in which light is

used to trigger and measure fluctuations in fluorescence that

arise from conformational change to an expressed biosensor

(Figure 1). Briefly, excitation light of a specific wavelength is

delivered through an implanted optical fiber, and emitted fluo-

rescence is returned via the same fiber to a photodetector. A dig-

ital optical intensity signal is then generated that is presumed to

reflect the relative amount of the target bound sensor at the tip of

the fiber. As the detected signal comes from the tissue around

the fiber tip, which may range from 50 to 400 mm, it reflects a

regional, or ‘‘bulk,’’ readout. However, because biosensors are

genetically encoded, their expression can be directed to defined

circuits and/or cell types where they can be stable for several

weeks to months. No other in vivo technique permits repetitive

recordings over such long periods of time. This technique has

already enabled unprecedented insights into how population ac-

tivity in particular cell groups relates to components of complex

behavior including movement, memory, motivation, appetitive

and aversive learning, and more.3–6

The rapid increase in popularity of fiber photometry is a testa-

ment to its many practical advantages over other approaches for

in vivo monitoring of neural signals in behaving animals (see Ta-

ble 1). Unlike electrophysiology, fiber photometry can straight-

forwardly provide signals with molecular and cellular specific-

ities. It can have higher spatial resolution and much higher

temporal resolution than typical microdialysis experiments,

which usually have sample rates on the order of�10s of minutes

(although see Zhang et al.,7 Wang et al.,8 and Ngernsutivorakul

et al.9 for recent specialized advances that have brought micro-

dialysis resolution down to the sub-minute range). Concurrent

within-subject recordings of dopamine using photometry and
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standard microdialysis highlight differences in observable tem-

poral dynamics.10 Compared with cyclic voltammetry, photom-

etry can offer greater sensitivity for some analytes/environments.

For example, measuring dopamine in vivo with chronically im-

planted carbon-fiber microelectrodes using fast scan cyclic vol-

tammetry (FSCV) is more challenging in the dorsal compared

with the ventral striatum, but this is not the case when using

dopamine sensors.11 Photometry also provides access to mole-

cules for which there are no electrochemical methods available.

For example, in vivo fluctuations in acetylcholine were previously

inferred from amperometric measures of choline,12 and it is now

known that such signals can be confounded by phasic oxygen

dynamics.13 Fluorescent biosensors now provide a more direct

(and faster) measure of acetylcholine, e.g., Chantranupong

et al.14 In terms of its practical application, photometry also

has several other benefits as follows: the surgical procedures

are much less invasive than for microscopy-based approaches,

and the use of flexible, lightweight optical fibers to record signals

are less restrictive to natural behavior than many other prepara-

tions. An increasing number of ‘‘plug-and-play’’ systems are

becoming available, many at relatively low cost, thus creating

opportunities for diverse communities of researchers to conduct

experiments to characterize brain-behavior relationships at

scale. Another advantage of fiber photometry over other in vivo

techniques is the relatively low size and complexity of the raw

data compared with electrophysiology, two-photon, or mini-mi-

croscope imaging. The processing of photometry data requires a

solid understanding of the technique and careful consideration

of possible confounding factors, as outlined in this primer, but

there is no computationally demanding spike-sorting or single-

cell extraction required. Such low dimensionality means there

are no barriers or limitations to data sharing among groups,

which, if broadly adopted, will foster replication and reproducibi-

lity.Arguably, the greatest excitement around fiber photometry is

generated by its potential for novel applications. Dozens of

different biosensors have already been developed and, theoret-

ically, sensors for any native molecule can be created. Using

multi-channel systems, multiple probes, sensors of different

wavelengths, and combinations of transgenic lines and viral

vectors, there are countless opportunities for multiplexed and

multi-layered experiments. Linking neurotransmitter release to

real-time effects on downstream circuits and examining the co-

ordination of transmitter release or activity across projections

sites, are just some of the possible opportunities. Fiber photom-

etry also offers an unparalleled opportunity to monitor fluctua-

tions in biomolecules or physiological events for multiple hours

and analyze the fluctuations across different time scales, ranging

from sub-second to tens of minutes. This feature may be of

critical value in systems neuroscience when the fundamental

mechanisms of information encoding, or computation are not

yet known.

Balanced with this promise are potential methodological pit-

falls, which render interpreting the data challenging. In theory,

or in a test tube or flow cell, dose-response curves make the

relationship between ligand concentration and fluorescence in-

tensity appear straightforward. However, measuring ligand-

modulated fluorescence in vivo, where photometric signals

are neither linear nor absolute measures, is more complicated.

Signals are influenced by native factors, including local fluctu-

ations in pH and hemodynamics,15–17 and technical factors

including the expression level and localization of the sensors,

excitation wavelengths, potential photobleaching, and the sta-

bility of the optical path, each of which will be discussed.

This is complicated by the fact that methods of data collection

and analysis are legion, and all too often are minimally

described, making it problematic to compare or integrate find-

ings across different labs.

Therefore, here, we provide a comprehensive guide to the

choices end-users will need to make when collecting, analyzing,

and interpreting information using fiber photometry. The goal of

Figure 1. Schematic of the setup of a generic rodent in vivo fiber photometry experiment
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this primer was to help the scientific community leverage the

transformative potential that fiber photometry offers.

SENSOR SELECTION FOR IN VIVO PHOTOMETRY

A wide range of genetically encoded fluorescent sensors have

been developed and validated using in vivo fiber photometry.

These includemultiple classes of sensors with distinct molecular

designs and spectral properties.18,19 Each of these indicators

can be used to parse out dynamic changes in a specific biomol-

ecule or physiological event, ideally with little to no cross-talk or

influence from other aspects of neural activity. Examples of bio-

molecules or physiological events that can be monitored using

in vivo photometry range from intracellular calcium,2,20,21 to

intracellular signaling molecules like cyclic-AMP (cAMP)22,23

and protein kinase A (PKA),24,25 to membrane voltage,26,27 and

to extracellular ligands, such as endogenous neurotransmit-

ters,28–31 neuromodulators,32–40 or exogenously administered

drugs41 (Table 2). Some of these events are cell intrinsic (e.g.,

calcium, voltage, cAMP, and PKA) and are sometimes utilized

as a proxy to gauge neural activity. Others represent molecules

that are released into extracellular space and can sometimes

diffuse across micrometer-scale distances (e.g., neurotransmit-

ters and neuromodulators). These two distinct classes of events

encode information differently. In the first case, the integration of

multiple events occurs within the confines of each cell of interest;

in the second case, endogenous receptors on the surface of

target cells receive and interpret spatiotemporal patterns of mul-

tiple neurotransmitters.

All these sensors share the following two underlying features:

they are fully genetically encoded and are composed of a

sensing domain and a fluorescent reporter domain. In general,

the sensing domain generates a conformational change in

response to ligand binding or changes in membrane voltage

that is then converted into a photometry-detectable fluorescent

readout by the fluorescent reporter domain. As a result, sensing

domains determine the kinetics, affinity, and, where applicable,

ligand specificity of the sensor. Sensing domains can be made

of calmodulin and a Ca2+/calmodulin-binding peptide (e.g.,

M13,66–68 ckkp,46,48 and ENOSP42), as in the case of the widely

used GCaMP-type calcium sensors.20 Alternatively they can be

made of cAMP-binding domains,23,63 kinase-specific phosphor-

ylation motifs fused to their recognition domains,24,25 rhodopsin

voltage-sensing domains (VSDs),65 periplasmic-binding proteins

(PBPs),28 or G-protein-coupled receptors.32,52 In specific cases,

such as for catecholamines, the ligand selectivity of the sensor

may not be sufficient to unambiguously assign the nature of

the detected signal, particularly in brain areas where relative

abundance of the twomolecules is largely skewed. For example,

detecting norepinephrine in subregions of the basal ganglia is

difficult because both neuromodulators are present but dopa-

mine by far dominates. In such cases, specific experiments

with dual-color recordings involving pairs of dopamine and

norepinephrine probes may be needed to address this issue.

The fluorescent reporter domains determine the nature of the

output signal (i.e., wavelength, intensity, or lifetime) and the dy-

namic range of the sensor. Typically, these are made of a circu-

larly permuted fluorescent protein (e.g., circularly permuted

green fluorescent protein [cpGFP]), which provides a rapid and

direct intensiometric readout, chiefly due to the modulation of

its chromophore’s microenvironment and protonation state.69

Other reporter systems generate a change in fluorescence inten-

sity or lifetime during Forster resonance energy transfer between

a fluorescent protein donor and an acceptor (electrochromic-

fluorescence resonance energy transfer [FRET] sensors65 or

FRET-fluorescence lifetime imaging microscopy [FLIM] sen-

sors24,25,64). In particular, ‘‘FLIM’’-based sensors hold great po-

tential for fiber photometry recordings. Although intensity-based

Table 1. Comparison of typical features of in vivo detection methods

Fiber

photometry E-Phys FSCV Microdialysis Mini-scope Two-photon scope

Cell specificity yes limiteda no no yes yes

Molecular specificity yes no yesb yes yes yes

Spatial resolution (cell or subcellular) multiple cells/processes cellular regional

(�100 mm)

regional

(�1 mm)

cellular subcellular

Temporal resolution 10–100 msc <1 ms 100 ms 10 min 10 ms 10 ms

Setup cost

(thousands of US$)d
$5–$25 $5–$100 $10–$30 $8–$65e $5–$250 $125–$300

The values provided are in the typical practical range used and do not represent theoretical limits of the techniques.
aCell specificity is limited by the efficacy of cell-sorting based either on waveform, which ismore reliable for some cell types than others, or by targeting

a light-sensitive opsin to a particular cell type. The latter requires a more complex surgery, an integrated optical and electrophysiology system and is

prone to variability in yields across animals and cell types.
bMolecular specificity depends on the uniqueness of the electrochemical profile of the molecule of interest within the sampling environment. Relatively

few molecules have been validated.
cTemporal resolution is limited by the temporal dynamic performance of the sensor, which varies.
dApproximate costs are based on a single setup and range from custom built equipment using open-source designs, materials and software to pre-

assembled commercially available complete packages. Costs included are specifically for the technique listed, they do not include common core

equipment such as a stereotaxic device for surgery etc.
eThe low end is for sample collection and preprocessing only, assuming outsourcing sample analysis. The upper end includes equipment for analytical

chemistry which can range depending on the number of different analytes and the sensitivity required.
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Table 2. List of genetically encoded sensors used for in vivo fiber photometry recordings of neural activity

Sensor name Ligand

Sensing

domain

Reporter

domain

Isosbestic

wavelength

Control

sensor

In vivo

pharmacology

Photometry

validation

Photometry

application

GCaMP6s,m,f

JGCaMP7s,f,b

JGCaMP8

Ca2+ CaM/M13 cpGFP 420–430 nm N/A N/A Chen et al.,2

Dana et al.,20

Zhang et al.42

and Meng et al.43

Patriarchi et al.,33

Meng et al.,43

Pisansky et al.44,

and Formozov et al.45

JGCaMP7c Ca2+ CaM/M13 cpGFP 350 nm N/A N/A Dana et al.20 –

JRGECO1a, 1b Ca2+ CaM/M13 cpmApple 400–420 nm N/A N/A Dana et al.21 Patriarchi et al.32

and Meng et al.43

R-CaMP2 Ca2+ CaM/cckp cpmApple 420–440 nm N/A N/A Inoue et al.46 Kim et al.47

XCaMP-B Ca2+ CaM/cckp cpBFP N/A N/A N/A Inoue et al.48 –

XCaMP-G Ca2+ CaM/cckp cpEGFP 350–380 nm N/A N/A Inoue et al.48 –

XCaMP-Y Ca2+ CaM/cckp cpVenus 400 nm N/A N/A Inoue et al.48 –

XCaMP-R Ca2+ CaM/cckp cpmApple 440 nm N/A N/A Inoue et al.48 –

NIR-GECO2 Ca2+ CaM-RS20 mIFP 400–440 nma N/A N/A – Formozov et al.45

and Qian et al.49

dLight1.1

dLight1.2

dLight1.3b

DA human DRD1 cpGFP N/A dLight-ctr SCH-23390

(antagonist)

Patriarchi et al.32 Ejdrup et al.,10

Ma et al.,17

Lee et al.,25

Mohebi et al.,50

and Jong et al.51

GRABDA2h,2m,

GRABDA1h,1m

DA human DRD2 cpGFP 440 nm GRABDA-mut eticlopride

(antagonist)

Sun et al.34,52 –

RdLight1 DA human DRD1 cpmApple N/A N/Ab SCH-23390

(antagonist)

Patriarchi et al.33 –

rGRABDA1h,1m DA human DRD2 cpmApple 400–420 nm rGRABDA-mut eticlopride

(antagonist)

Sun et al.34 –

GRABNE1h,1m NE human

Alpha2AR

cpGFP N/A GRABNE-mut yohimbine

(antagonist)

Feng et al.35 –

nLightG NE sperm whale Alpha1AR cpGFP 428 nm N/Ab trazodone

(antagonist)

Kagiampaki et al.40 –

nLightR NE sperm whale Alpha1AR cpmApple 450 nm N/Ab trazodone

(antagonist)

Kagiampaki et al.40 –

GRABeCB2 eCBs human CB1R cpGFP 415 nm GRABeCB-mut N/A Dong et al.53 –

GRABATP1.0 ATP human P2Y1R cpGFP 435 nm GRABATP-mut N/A Wu et al.54 –

GRABHA1h,1m HA human H4R;

waterbear H1R

cpGFP 420 nm GRABHA-mut JNJ-7777120

(GRABHA1h

antagonist)

Dong et al.55 –

GACh1.0
GACh2.0
GRABAch3.0

Ach human M3R cpGFP 384 nm +

434 nm

GRABAch3.0-mut scopolamine

(antagonist)

Jing et al.36,56 –

(Continued on next page)
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Table 2. Continued

Sensor name Ligand

Sensing

domain

Reporter

domain

Isosbestic

wavelength

Control

sensor

In vivo

pharmacology

Photometry

validation

Photometry

application

iAchSnFR Ach PBP cpGFP 400–425 nm iAchSnFRNULL N/A Borden et al.31 –

GRAB5HT1.0 5HT human

5HT2CR

cpGFP N/A GRAB5HT1.0-mut metergoline

(antagonist)

Wan et al.57 –

PyschLight2 5HT human

5HT2AR

cpGFP N/A PsychLight0 ketanserin

(antagonist)

Dong et al.41 –

iSeroSnFR 5HT PBP cpGFP N/A N/A N/A Unger et al.58 –

GRABAdo1.0 Ado human A2AR cpGFP N/A GRABAdo-mut N/A Peng et al.59

and Wu et al.60
Peng et al.59

OxLight1 OXA/OXB human OX2R cpGFP 432 nm OxLight-ctr suvorexant Duffet et al.38 –

NOPLight1 N/OFQ human NOPR cpGFP 435 nm NOPLight-ctr J-113397 Zhou et al.61 –

Mtriaot oxytocin medaka OTR cpGFP N/A MTRIAOT-mut N/A Ino et al.39 –

Grabot oxytocin bovine OTR cpGFP 425 nm GRABOT-mut atosiban Qian et al.62 –

iGluSnFR Glu PBP cpGFP 425 nm iGluSNFR(mut) N/A Marvin et al.28,29 Patriarchi et al.33

iGABASnFR GABA PBP cpGFP 425 nm N/A N/A Marvin et al.30 –

cADDis cAMP EPAC cAMP binding

domain

cpGFP N/A N/A N/A Tewson et al.63 Lutas et al.22

G-Flamp1 cAMP CNBD

(bacterial

MlotiK1

channel)

cpGFP 350 nm G-Flamp1-mutc N/A Wang et al.23 –

FLIM-AKAR PKA activity PKA substrate

peptide +

FHA domain

FRET-FLIM between

mEGFPD and

cpsREACH

N/A AKAR-T391A:

(phospho-dead

mutant)

N/A Lodder et al.24 Lee et al.25,64

MacQ-

mCitrine

voltage Ace rhodopsin VSD electrochromic FRET

(mCitrine-

opsin)

N/A N/A N/A Gong et al.65 Marshall et al.26

Ace2N-4AA-mNeon voltage Ace rhodopsin VSD electrochromic FRET

(mNeonGreen-opsin)

N/A N/A N/A Gong et al.65 Marshall et al.26

VARNAM voltage Ace rhodopsin VSD electrochromic FRET

(mRuby3-

opsin)

N/A N/A N/A Kannan et al.27 –

CaM, calmodulin; cpGFP, circularly-permuted green fluorescent protein, DA, dopamine; DRD1, dopamine D1 receptor; DRD2, dopamine D2 receptor; GRAB, G-protein-coupled receptor acti-

vation-based; NE, norepinephrine; Alpha2AR, Alpha-2 adrenergic receptor; CB1R, cannabinoid receptor type-1; eCBs, endocannabinoids; P2Y1R, purinergic P2Y1 receptor; Ado, adenosine;

OXA/OXB, orexin-A/orexin-b; N/OFQ, nociceptin/orphanin-FQ peptide; H1R, human histamine type-1 receptor; H4R, waterbear histamine type-4 receptor; HA, histamine; M3R, muscarinic M3

receptor; Ach, acetylcholine; 5HT2CR, 2C-type serotonin receptor; A2AR, adenosine 2A receptor; OX2R, orexin type-2 receptor; NOPR, nociceptin/orphanin-FQ receptor; OTR, oxytocin recep-

tor; Glu, glutamate; EPAC, exchange protein activated by cAMP; CNDB, cyclic nucleotide-binding domain; FHA, Forkhead-associated phosphopeptide-binding domain.
aBased on spectral characterization of NIR-GECO1.
bAlthough not described in the respective original publications, control sensors for RdLight1, nLightG, and nLightR are available upon request from the Patriarchi laboratory.
cThis control sensor has been described, but not validated using in vivo fiber photometry.
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photometry measures the amounts of photons received from a

sample, its lifetime-based counterpart focuses on how the pho-

tons are distributed in time after excitation with a pulsed laser.

Fluorescence lifetime measures are thus independent from the

total number of collected photons, making it insensitive to varia-

tion in sensor expression levels, laser power, scattering and re-

absorption of the tissue, and optical losses in the detection

apparatus.69–72 Therefore, FLIM-based sensors could provide

more robust and reliable signals for comparison across animals

and time and to better protect the readout from potential un-

wanted sources of variability.73 This technique has not yet widely

taken off, partly because ready-to-use FLIM-adapted photom-

etry hardware is not yet commercially available (see section on

advanced hardware features).

A comparison of many of these tools in terms of peak spectral

excitation and emission properties, ligand affinity, sensor dy-

namic range (i.e., maximal response to ligand), kinetic parame-

ters, the animal models in which these tools have been deployed,

and considerations related to ligand-buffering has been exten-

sively reviewed elsewhere.18,19,37,74,75 Here, we focus on other

important considerations for selecting the most appropriate

sensor for in vivo fiber photometry experiments. In particular,

we discuss the use of control wavelengths that have been spec-

trally defined to be insensitive to changes in analyte levels,

sensor-specific control experiments, and challenges and oppor-

tunities for multiplexing sensors.

Choice of sensor-specific controls

Interpretation of in vivo fiber photometry signals can be chal-

lenging, especially in cases where the observed signals are

similar in amplitude to background noise. The inclusion of appro-

priate controls will mitigate the risk of data misinterpretation. A

common approach is to generate a negative control signal—

i.e., a signal acquired under the same conditions as the experi-

mental signal of interest, but which is not expected to vary with

the physiological process being measured. This can be used

to support the conclusion that the observed signals faithfully

represent ‘‘real’’ fluctuations in the process under investigation

and/or to attempt to correct for confounding variation in the

signal, such as movement artifacts or photobleaching (see sec-

tion pre-processing).

Depending on the type of sensor used, different types of

negative controls have been implemented. A simple method

to obtain a negative control signal is to use a ‘‘stable’’ fluores-

cent protein, such as GFP,43 YFP,3 mcherry,53 or tdTomato,43

either expressed independently or in combination with the

sensor if the two can be spectrally resolved.43 This is an effec-

tive way of generating a control signal for movement artifact

correction but limits the possibility of multiplexing the sensor

with other probes or optogenetic tools (see below). Another

approach is to illuminate the sensor at its isosbestic wave-

length, i.e., the wavelength at which sensor fluorescence

does not vary with changes in ligand concentration. Exciting

the sensor at this wavelength therefore results in emitted fluo-

rescence that provides a stable reference signal. A list of known

isosbestic points of in vivo photometry-compatible sensors is

shown in Table 2. Isosbestic wavelengths vary substantially

across different sensors, over a wavelength range of 350–

440 nm. Appropriate excitation light sources and filter sets

are required for the specific sensor(s) isosbestic wavelength

(see section hardware for fiber photometry).

For sensor responses that rely on a ligand-binding event, con-

trol signals can be obtained from sensors in which mutations

have been introduced within the sensing domain to abolish

ligand binding (Table 2). Mutant non-ligand-binding control sen-

sors are particularly important for understanding photometry

readout when a ligand-binding sensor detects ligands that vary

on the same slower time courses or low amplitudes as physio-

logical artifacts (such as pH or hemodynamic changes). This

approach has been extensively utilized for several sensors

engineered fromGPCRs, facilitated by the large amount of struc-

tural and mutagenesis data available from previous pharmaco-

logical studies. Sensing domain mutations have also been uti-

lized to generate control PBP-based sensors,33 a cAMP-based

sensor,23 and a FRET-FLIM sensor,25 demonstrating the general

viability of such an approach (for details see Table 2). Unlike co-

expression of a spectrally resolvable fluorescent protein or iso-

sbestic controls, these methods must be performed in separate

animals or brain regions and thus may not fully recapitulate the

same conditions of the experimental recordings.

There are two important potential factors to be aware of when

using a negative control signal (Figure 2). First, the relative contri-

bution of sensor/fluorophore fluorescence and autofluorescence

(from optical component and brain tissue) will in general be

different for control and sensor signals, due to differences in

excitation/emission wavelengths and/or fluorophore brightness.

Typically, shorter wavelength excitation light results in a larger

autofluorescence contribution, and as a large area, diffuse light

source, autofluorescence is usually less affected by movement

artifacts than sensor fluorescence. Autofluorescence will also

not necessarily photobleach at the same rate as sensor fluores-

cence. Additionally, as light absorption by brain tissue is greater

at shorter wavelengths, the volume of tissue from which signal is

acquired will vary as a function of excitation and emission wave-

length.76,77 Fluctuations in the control channel therefore will not

necessarily have the same amplitude (in dF/F) as those in the

sensor channel caused by the same mechanism.

Second, physiological signal variation in the sensor channel

can bleed-through into the control channel. When a control fluo-

rophore is used, bleed-through can occur due to the overlap of

emission spectra with the sensor. Significant bleed-through

from green indicators (e.g., GCaMP) to red control channels

can occur if continuous illumination is used, but this can largely

be eliminated by using modulated excitation light (see section

hardware for fiber photometry; Figure 2). With an isosbestic con-

trol, bleed-through of physiological signals will occur if the exci-

tationwavelength used does not accuratelymatch the isosbestic

point of the indicator. This may result in either positive or nega-

tive contamination of the control channel by the physiological

signal. As movement artifacts or other confounding signals are

typically small relative to sensor fluorescence changes, even a

small amount of bleed-through from sensor to control channels

can end up dominating variation in the control channel at behav-

iorally relevant frequencies (Figure 2), preventing accurate esti-

mation of motion artifacts or other confounds (see pre-process-

ing section).
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Figure 2. Control signals and their caveats
Comparison of different movement control signal methods, acquired in the same subject and experimental setting. GCaMP6f and tdTomato were expressed in
VTA dopamine neurons, and signals were recorded during exploration of novel objects. In all recordings theGCaMP signal wasmeasured using 470 nm excitation
and 525 nm emission filters. Three different methods were used to generate the movement control signal: left panels, using ‘‘isosbestic’’ illumination of the
GCaMP (405 nm excitation and 525 nm emission), using time-division illumination (alternatively pulsing the 405 and 470 nm LEDs) to separately acquire the
control and GCaMP signal; middle panels, by measuring the tdTomato fluorescence (560 nm excitation and 640 nm emission) with the LEDs for both the GCaMP
and tdTomato channels on continuously; right panels, by measuring the tdTomato fluorescence, but using time-division illumination (alternately pulsing the 470
and 560 nm LEDs). Top row. Example GCaMP signal (blue) and control signal (magenta) over a 5-min recording. Middle row. Average GCaMP and control signals
aligned on the peaks in the GCaMP signal indicated by the red dots in top row. Bottom row. Scatterplot of the GCaMP signal against the control signal, with linear
fit whose slope is indicated on the figure. Note that the isosbestic control signal has significant negative bleed-through of the GCaMP signal, due to 405 nm
excitation not exactly matching the isosbestic point for GCaMP6f. This is evident as a negative peak in the event-aligned average and results in a strong negative
correlation between the control and GCaMP channel. The tdTomato-continuous signal shows positive bleed-through of the GCaMP signal, due to overlap of the
GCaMP emission spectra with the emission filter on the tdTomato channel, resulting in strong positive correlation between the signals. As variation in both these
control signals is dominated by signal bleed-through, they could not be used to estimatemovement artifacts in the signal channel. Using time-division illumination
for the tdTomato channel greatly reduces cross-talk, as the GCaMP is not excited when the tdTomato signal is acquired, resulting in no evidence of signal bleed-
through in the event-aligned traces, and aweak positive correlation between the channels consistent with a contribution only from small movement artifacts. Note
also that the slope of the linear fit is <1, indicating that the movement artifacts in the GCaMP signal are smaller in dF/F terms than those in the tdTomato channel,
consistent with a larger movement-insensitive autofluorescence contribution to the GCaMP channel due to the shorter wavelength illumination.
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Depending on the specific experimental design, additional

control experiments may be required. A unique and useful

feature of GPCR-based sensors is their intrinsic sensitivity to

drugs targeting the receptor subtype they are based upon.

Systemic administration of sensor-specific antagonists can

drastically lower evoked sensor response during in vivo

recordings.32,35,36,38,52,57 With careful planning, this approach

can be used to obtain within-animal control recordings that

can help qualify the nature of the observed signals. An important

caveat of this approach is that drugs often have pleiotropic ef-

fects on an animal’s physiological functions, both central and pe-

ripheral. Thus, knowledge of the effects of the chosen drug on

the animal’s physiology will aid interpretation. Factors to

consider include direct and indirect effects on the neuromodula-

tory pathway under investigation (e.g., in the case of drugs

affecting neuromodulator reuptake or autoreceptor mecha-

nisms40) and alterations to other parameters, which may affect

photometry readouts. For example, receptor antagonists that

alter intracellular pH or produce hemodynamic changes could

result in artifactual signals.

Multiplexing

Some of the most exciting and useful in vivo applications of fi-

ber photometry involve spectral multiplexing. Spectrally resolv-

able sensors may be expressed in the same brain area and

excited via the same optic fiber to determine the relationship

between multiple dynamic factors, e.g., calcium activity and

neuromodulator release from the same or different genetically

identified populations. Sensors may also be combined with

fluorescence-based actuators to interrogate input-output rela-

tionships. The availability of a large color palette of optogenetic

actuators78,79 and a growing color palette of optogenetic

sensors21,27,33,34,46,48 enables an ever-increasing number of

mix-and-match applications. For successful examples, see

section current opportunities.

Multiplexing options are currently somewhat restricted at pre-

sent by the limited availability of spectrally resolvable sensors for

distinct aspects of neural activity since most sensors are based

on GFP (see control sensors available in Table 2). In the near

future, further expansion of the color palette of sensors based

on fluorescent proteins with excitation shifted to red, far-red,

or near-infrared wavelengths, along with the development of

new photometry systems equipped for recording at these wave-

lengths, will make it possible to achieve spectral multiplexing of 3

or more fluorescence-based tools simultaneously.

Biosensor delivery

In addition to selecting biosensor(s) with desired intrinsic prop-

erties, the method of biosensor delivery will impact the ob-

tained signal, qualitatively and quantitatively. A biosensor may

be constitutively or conditionally expressed in transgenic

mouse strains. Transgenic expression of calcium sensors in

some reporter mice can alter physiology75; hence, care must

be taken to test for such undesired effects. More typically, bio-

sensors are expressed episomally from viral vectors which pro-

vide a multiplicity of options. First, the choice of viral serotype

may affect the spatiotemporal dynamics of the reported signal

because serotypes differ in their tropism,80–83 the cell types

they preferentially infect and therefore the density, cell type,

neuronal class, and subsequently the subcellular localization

of biosensor presentation governing distances between ligand

and sensor.11,84 Next, within the viral construct, the choice of

promoter that drives expression of the sensor can further

restrict the cell-type specificity of expression. Due to vector

size constraints, only a limited number of promoter-targeted

constructs have been successfully developed. A more tractable

way to direct expression is by injecting a conditional (e.g., Cre-

dependent) construct into a transgenic mouse line expressing

Cre recombinase under a cell-type-specific promoter. Using a

viral vector that undergoes anterograde or retrograde transport

allows for monitoring biosensor activity in the soma or axons

of a specific projection. Combining these methods allows pro-

jection and cell-type specificity, for example, monitoring cal-

cium dynamics in mesoaccumbal11 or striatonigral84 dopamine

axons.

Whichever delivery approach is taken, the sensor expression

level must be considered. If the viral titer is very high, a GPCR-

based receptor may theoretically saturate the membrane or

large quantities of fluorescent proteins may be detrimental to

some sensitive cells.85–87 The intensity of expression within cells

and the density of expressing cells or axons will impact the

signal-to-noise ratio and therefore the effective dynamic range

of the sensor. Comparisons of the tropism and efficacy of

different adeno-associated virus (AAV)-based vectors have

been reviewed elsewhere.81,88 One tool available to help identify

an appropriate serotype, promoter, and titer for AAV vectors for a

specific experiment is the AAV Data Hub hosted by Addgene (a

popular source for viral vectors). Despite the influence that virus

serotypes, promoters, and titers have on photometry data, these

details are not consistently reported in publications. It would be

helpful if they were.

HARDWARE FOR FIBER PHOTOMETRY

A user’s choice of photometry system design depends on the

technical capabilities required for their particular experiments.

Within the given requirements, the time, effort, expertise, and

money required to get a system working are important consider-

ations. Currently, there are several companies selling photode-

tector-based or camera-based fiber photometry systems that

are virtually plug-and-play. Alternatively, labs may design and

build their own custom systems, making significant cost sav-

ings.89,90 A popular in-between approach that requires less

time and expertise, but still affords flexibility, is to build a system

by integrating a few different modular components. An advan-

tage to buying or building a CCD, CMOS, or sCMOS camera-

based system is that they can be used to collect data from fiber

bundles, allowing simultaneousmeasurements frommany sepa-

rate sites and/or animals without amplifying the expense of

costly photodetectors. However, cameras may be slower, less

sensitive, or noisier than some photodetectors, which may be

an important consideration, depending on the application.

Here, we first note hardware factors that must be considered

to ensure compatibility with common types of experimental

design. We then introduce hardware options for advanced and

emerging fiber photometry applications.
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Experiment-specific hardware considerations

Spectral channels

Most photometry systems record fluorescence signals from one

or more discrete spectral channels defined by an excitation

wavelength and emission wavelength (in practice both will be a

range not single wavelength). Many systems incorporate a chan-

nel with excitation at �470 nm and emission at �520 nm for use

with green fluorescent sensors. Additional channels allow for

simultaneous measurement of multiple sensors with different

excitation and emission spectra, and/or inclusion of a control

channel to correct for movement artifacts (see section pre-

processing). A typical dual-color photometry system uses

470 nm and 565 nm filters for the excitation light source for green

and red fluorophores, respectively. Emission filters at �520 and

�590 nm are then used to direct the fluorescence signal from

each fluorophore to separate photodetectors. The optical hard-

ware required for dual systems is more complicated and expen-

sive. For experiments involving only a single sensor, a common

way of obtaining a control signal is a channel that uses the

same emission wavelength as the main channel (simplifying

the hardware), but a different excitation wavelength chosen to

be at the isosbestic point of the chosen sensor (see also section

choice of sensor-specific controls).

To differentiate fluorescence excited at different wave-

lengths but emitted at the same wavelength, e.g., for an iso-

sbestic control, excitation light is modulated to separate the

emission evoked by each light source in either time (by alter-

nately turning on each light source in turn) or frequency (by

sinusoidally modulating each light source at a different fre-

quency). These two solutions are typically referred to as

time-division or frequency-division illumination, respectively.

The recorded signal is then processed to demodulate (i.e.,

separate) the emission evoked by each excitation wavelength.

These methods can also be useful even when spectral chan-

nels have different emission wavelengths because fluorescent

sensors typically have broad emission spectra that can cause

bleed-through between channels. Time- or frequency-division

illumination can greatly reduce this issue by enabling both

excitation and emission spectra to contribute to channel sep-

aration (Figure 2).

Signal bandwidth

The signal bandwidth is the frequency range of signals the sys-

tem can record, typically from DC (0 Hz) to a maximum fre-

quency. The signal bandwidth is determined both by the light de-

tector hardware, and, if modulated excitation light is used, the

filtering needed to demodulate the signals. For many applica-

tions, signal bandwidth is unlikely to be a limiting factor because

fluorescence signals from most sensors are relatively slow

(>>1 ms rise time), and signals will typically be low-pass filtered

well below the system’s signal bandwidth during pre-processing

to reduce noise. However, some specialist applications like

membrane voltage sensors or fluorescent lifetime imaging

involve much faster signals, making the system bandwidth an

important consideration.

Sensitivity/noise level

Noise is inherent in any acquisition system and determines the

smallest signals that can be accurately recorded. System sensi-

tivity is most critical for experiments where the details of the

biology result in very weak fluorescent signals, but sensitivity is

desirable for all experiments as reduced noise allows lower exci-

tation light power, and hence less photobleaching, for a given

signal-to-noise (S/R) ratio.

Manufacturers of photodetectors typically report the noise

equivalent power (NEP) of the device, given in watts per square

root of hertz (W/OHz). NEP is defined as the input signal power

that gives a S/R of 1 after filtering the output to reduce its band-

width to 1 Hz, which allows a meaningful comparison of noise

levels between systems with different bandwidths. In contrast,

camera manufacturers report noise using different measures

that have not been standardized, making it difficult to compare

across devices. Ideally, vendors of plug-and-play photometry

systems with photodetectors or cameras would report the NEP

for the complete signal path, from optical input to digitized

output, but in practice, different vendors report different and

not always very informativemeasures of system sensitivity, mak-

ing meaningful comparisons difficult.

Rotary joints

A rotary joint (fiber-optic commutator) between the photometry

system and the animal allows for freely moving experiments to

be undertaken without the optic fiber getting twisted. Unfortu-

nately, it currently appears to be very difficult to manufacture

robust and reliable fiber-optic rotary joints that have the very

low signal variation required for photometry at low cost.

Some designs work better than others. For example, motor-as-

sisted multi-channel pigtailed rotary joints offer superior stabil-

ity, although this can add a substantial expense to the setups.

One option is to simply not use a rotary joint but instead use a

long patch cord to minimize constriction and twisting. An alter-

native approach offered in some commercial systems (that

could also be custom built) is to mount all optical components

including light sources and photodetectors, below an electrical

rotary joint, such that the entire optical system rotates with the

animal and optical signals do not need to pass through a ro-

tary joint.

For experiments involving behavioral measures that are

incompatible with tethering, some commercial wireless fiber

photometry systems have been developed. However, some of

these system designs are too large for mice, are limited to a sin-

gle fiber, and comprise a single LED source and detector for

GFP-like sensors only, lacking a control channel (see choice of

sensor-specific controls section). To alleviate this problem, a

dual-wavelength wireless platform was recently described.91

Multimodal experiments

For experiments that combine photometry with optogenetics, in

addition to the spectral channels for acquiring signals, the sys-

temmust be configured to allow light for optogenetic stimulation

to be delivered through the same fiber. A suitable systemmay be

purchased pre-configured or custom-built using published

methods papers (e.g., Sych et al.,92 Qi et al.,93 and Formozov

et al.94). Photometry systems compatible with simultaneous

electrophysiology recordings are also commercially available

or can be custom built (e.g., Patel et al.95).

Advanced hardware features

Recently, some exciting applications of fiber photometry have

emerged to address limitations, resolve confounding factors,
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or expand sampling dimensions associated with typical fiber

photometry. These applications require specialist hardware

with concomitant increases in cost and technical complexity.

We anticipate that with further hardware development, these ap-

plications will become more popular so we briefly describe

them here.

Spectrally resolved photometry

Spectrally resolvable sensors can be multiplexed, but if one

sensor is markedly brighter than the other, there may be

significant cross-talk between the two sensors. To overcome

this limitation, Meng et al.43 developed spectrally resolved fi-

ber photometry. Rather than recording signals at discrete

wavelengths using a photodetector or camera, a spectrom-

eter is used to record the full emission spectrum. By using

known concentrations of fluorophores with different emission

wavelengths, the contributions of each fluorophore to the

collected spectrograms can be determined and used to

generate a spectral linear unmixing algorithm. Although this

technique requires more complex pre-processing of the

data, it potentially allows better separation of sensors with

different fluorophores and other sources of signal variability.

For example, Zhang et al.15 used spectral fiber photometry

to estimate the effects of changes in hemoglobin concentra-

tion on photometry signals. Oxy- and deoxy-hemoglobin

have different absorption coefficients at the wavelengths typi-

cally used in fiber photometry, affecting the accuracy of

photometry data. Using spectral fiber photometry, Zhang

et al.15 accounted for, and corrected, changes in GCaMP6f

responses in the somatosensory cortex that were driven by

changes in blood oxygen level.

Depth-resolved photometry

Fiber photometry is typically done using flat-cut fibers. A flat-cut

fiber allows fluorescence collection from the tissue immediately

below the fiber face, estimated to be �200 mm for a 200 mm fi-

ber.77,96 By contrast, depth-resolved fiber photometry97 uses

tapered fibers to collect light from a larger range (up to 2 mm)

along the fiber axis. Furthermore, this method can be used to re-

cord frommultiple sites using a single tapered fiber. The applica-

tion uses galvanometric mirrors to systematically project laser

beams into the tapered fibers at different angles resulting in laser

beams exiting at distinct fiber locations. Recording depth is then

resolved using a time-division multiplexing scheme. Another

advantage of tapered fibers is that they minimize tissue damage

compared with flat-cut fibers. However, depth-resolved fiber

photometry requires more sophisticated hardware, which in-

creases the system’s price and makes it more complicated to

assemble in individual labs. At the time of writing this article,

only one commercial solution is available for depth-resolved fi-

ber photometry.

FLiP

Sensors that report changes in fluorescence lifetime provide an

absolute measurement of ligand binding, which simplifies mak-

ing comparisons across sessions and subjects compared with

signals obtained with intensiometric sensors but require special-

ized hardware. An example setup for single fiber fluorescence

lifetime photometry (FLiP) consists of a laser that provides

�50-Mhz-pulsed illumination, filters that separate emission

from excitation light before focusing the fiber face on a high-

speed photomultiplier tube that is connected to a time-corre-

lated single photon counting board, which detects the time delay

between the pulsed excitation and the photon detection by the

photomultiplier tube. Such systems have been used to perform

FLiP measures of multiple sensors to report real-time biochem-

ical changes in vivo.24,64

DATA PRE-PROCESSING AND ANALYSIS

Fiber photometry data are typically first pre-processed to re-

move noise and artifacts from the signals and convert them

intomeaningful units for comparison across recordings and sub-

jects. The processed signals are then analyzed to understand

how they covary with other experimental variables such as

behavior. Next, we unpack each step in order.

There are many software options for implementing these

steps. Commercial software is typically limited, and whether us-

ing pre-assembled hardware or a custom-built system, many

users require more flexibility. Those with programming experi-

ence may write their own custom software in their language of

choice. Alternatively, there are open-source packages that

require little programming experience. Some versions are

streamlined for handling data generated by specific commercial

setups.98Of the twomost popular open-source photometry soft-

ware packages, pMAT99 is more user-friendly, and GuPPY100

has the most flexibility (see Marquardt101 for detailed compari-

son). An advantage of all open-source software packages is

that users benefit frompre-written code and can efficiently adapt

it as needed. For others to understand and evaluate results

generated using custom or modified code, the code must be

publicly available in a well-documented form.

Pre-processing

Pre-processing involves multiple steps. It is very helpful to

observe raw data and intermediate stages of processing, both

at the timescale of the entire session and zoomed into short

time windows. This helps identify artifacts or problems with the

data and generates an understanding of how each processing

step modifies the signals. Small changes to the pre-processing

should not result in qualitative changes to the results; examining

the data after each processing step will help diagnose problems

should they occur.

Before describing processing steps in detail, it is useful to

consider the components that make up the photometry signal

and drive its variation. Light that reaches the detector comes

from multiple sources: fluorescence from the indicator(s), auto-

fluorescence from the patch cord and other optical components,

autofluorescence from brain tissue, and potentially bleed-

through of excitation light and/or background illumination. De-

pending on the biological preparation and hardware, fluores-

cence from the indicator may be only a small fraction of the total

light detected. Likewise, multiple sources contribute variation to

the signal: change in fluorescence of the indicator due to the

physiological process(es) of interest (e.g., fluctuation in calcium

or neuromodulator concentration), photobleaching of the indica-

tor, photobleaching of the patch cord and optical components,

physical movement, local changes in blood flow, and noise

from the detector hardware. Preprocessing aims to correct
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confounding sources of variability to yield an accurate assess-

ment of the physiological signal of interest.

There is substantial variability across studies in preprocessing

methods used, and there has been little systematic comparison

of different approaches. Our aim here was to outline widely used

approaches, comment on their benefits and limitations, and

highlight areas where a systematic comparison of different

methods would be useful.

Preprocessing typically involves applying some or all of the

following sequence of steps: filtering, bleaching correction,

movement correction, and normalization. The effects of each

step on sample data are presented in Figure 3. The code and

example data for the pre-processing steps shown in Figure 3

are available as an IPython notebook; see the data and code

availability statement.

Filtering

In most experiments, the kinetics of the indicator are slow rela-

tive to the sampling rate the recording system is capable of.

Meaningful physiological signals are therefore only present in

the low-frequency components of the recorded signal, whereas

noise is present at all frequencies. The S/R ratio can then be

improved by low-pass filtering. The optimum low-pass cutoff fre-

quencywill depend on the indicator; for example, 2–10Hz is typi-

cally used for GCaMP6f and dLight1. Zero-phase filters, which

change the amplitude but not the phase of frequency compo-

nents, avoid distorting the signal. This can be implemented by

functions like the Matlab/Scipy function filtfilt, which filters the

signal first in the forward, then the reverse direction, canceling

out phase shifts.

The high-gain amplifiers in photodetectors can pick up electri-

cal noise, and some noise sources such as mobile phones can

result in large amplitude, short-duration noise spikes. If present,

these artifacts can often be largely removed by median filtering

using a window�53 longer than the duration of the noise spikes

prior to any other filtering.

Bleaching correction

Photobleaching—a reduction in fluorescence over prolonged

exposure to light—occurs both to the fluorescent indicator being

measured and to autofluorescence from optical hardware and

brain tissue. Bleaching of the indicator reduces the baseline level

of the signal and the amplitude of physiological signal variation,

whereas bleaching of the autofluorescence reduces only the

baseline signal.

One approach to bleaching correction exploits the fact that

bleaching occurs on a slow timescale relative to most physiolog-

ical processes of interest. Therefore, the time course of bleach-

ing can be estimated from the slowest components of the signal,

either by filtering or curve fitting. The challenge is to provide

enough flexibility in the estimate to capture the dynamics of

the bleaching, but no more than necessary to avoid overfitting

to physiological signal. Fitting a double exponential decay is a

good compromise, as a single exponential can be too restrictive,

given that different sources of fluorescence may bleach with

different timescales, although filtering or fitting more complex

curves could easily overfit.

Once the time course of bleaching has been estimated, it can

be corrected for either by subtraction or division from the raw

signal. These two options reflect different assumptions. If the

bleaching is dominated by autofluorescence, then it will affect

the baseline but not the amplitude of physiological variation, so

should be corrected by subtraction. If bleaching is dominated

by the indicator, then it will affect both baseline and signal ampli-

tude and should be corrected by division. We are not aware of

any systematic characterization of this and different studies

use subtraction102 or division50,103 for photobleaching correc-

tion. Note that if division is used, this converts the signal into

units of dF/F (see normalization below).

Another approach to estimating the time course of bleaching is

to use an isosbestic control channel, which should not be

affected by physiological signal variation (see section choice of

sensor-specific controls). One caveat to this approach is that

the relative contributions of autofluorescence and indicator fluo-

rescence to the isosbestic and signal channels are likely to be

different, as shorter wavelength isosbestic illumination typically

excites more autofluorescence, and is less efficient at exciting

the indicator than light at the peak of the excitation spectrum.

This could potentially cause the time course of bleaching to differ

between control and signal channels.

In behaviors that have a discrete trial structure, a third

approach is to estimate the baseline separately for each trial

(for example, from the signal in the preceding inter-trial interval)

and subtract this from the signal on that trial. This approach

should be used with caution during behavioral experiments

because the level of physiological signal during the inter-trial in-

terval may vary meaningfully across trials, meaning that trial-by-

trial baselining may give a misleading picture.

Movement correction

Physical movement of the animal can generate signal variation

through movements of the brain relative to the optic fiber or

changes in light transmission due to the movement of connec-

tors, rotary joints, or patch cords. Movement artifacts are mini-

mal (although not necessarily eliminated) in head-fixed prepara-

tions, but in freely moving experiments, care must be taken to

either verify movement artifacts are negligible or correct for their

effect on photometry signals. As movement artifacts occur on a

similar timescale to physiological signals, they cannot be sepa-

rated using filtering; instead, they must be estimated using a

separate control channel. The two options commonly used are

as follows: (1) co-expression of a control fluorophore (e.g., red

fluorescent protein) with different excitation and emission

spectra from the indicator or (2) exciting the indicator at its iso-

sbestic wavelength where fluorescence is independent of the

physiological signal.

The size of movement artifacts relative to baseline fluores-

cence will in general be different between the signal and the con-

trol channel (see section choice of sensor-specific controls). It is

therefore necessary to scale the movement signal from the con-

trol channel to match movement artifacts in the signal channel.

This is typically achieved using linear regression to predict the

signal channel from the control channel, with the rationale being

that the component of the signal that can be predicted is move-

ment artifact. This assumption will not be perfect as movement

artifacts may be partially correlated with physiological signals

but is a reasonable approximation. However, it will not hold if

variation in the movement channel is dominated by signal

bleed-through or if the common variation in both channels is
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dominated by photobleaching. For this reason, photobleaching

correction should be done prior to, and independently from,

movement correction, and it is important to verify that any signal

bleed-through in the movement control channel is small relative

to movement artifacts. This can be done by plotting the average

movement channel response to behavioral events that generate

large signal transients (see, e.g., Figure 2).

Normalization

Inmost experiments, it is necessary to combine data acrossmul-

tiple sessions and/or subjects. This is complicated by the fact

that indicator expression may vary both between subjects and

over the course of a multi-day experiment. Additionally, different

intensities of excitation light may be used for different sessions,

different hardware setups may vary in how efficiently they

convert emitted light to signal and level of autofluorescence,

and these hardware properties may change over time, particu-

larly if components are replaced. Normalizing the data to remove

variation across subjects and time points that are not of experi-

mental interest is therefore desirable, and there are various

methods available.

One approach is to convert signals into units of dF/F, i.e., the

change in fluorescence signal divided by the baseline signal

level. This is widely used in two-photon calcium imaging where

the baseline fluorescence is closely related to the amount of in-

dicator present104 but may be less effective in photometry due to

autofluorescence. The relative contribution of indicator fluores-

cence and autofluorescence will be different between the signal

(dF) and baseline (F), with the signal hopefully dominated by

changes in indicator fluorescence, but the baseline potentially

includes a large contribution from autofluorescence. Computing

dF/F will therefore not necessarily correct accurately for different

levels of indicator expression or differences in autofluorescence

across setups, although it will correct for different levels of exci-

tation light or efficiency in converting emitted light to signal.

Another approach is to Z score the signal for each session, i.e.,

subtract the mean and divide by the standard deviation. This will

remove the influence of any factors that either scale the signal

size (e.g., differences in indicator expression or excitation light

intensity) or affect the baseline (e.g., the level of autofluores-

cence) between sessions. The limitation is that this may remove

variation of experimental interest, such as changes in signal

across learning over multiple sessions or fixed trait differences

between subjects that might reflect the genetic manipulation of

a mechanism under test or a transgenic model of disease versus

a control group. Such differencesmay, however, be resolvable in

Z-scored signals if they manifest in the response to specific

behavioral events/temporal epochs of interest.

An alternate approach to account for differences in expression

levels of sensors across time, brain regions, or animals could

come from the development of new sensors that employ a

cpGFP-based indicator directly fused with a spectrally orthog-

onal fluorescent protein (e.g., a red fluorescent protein) to

generate a ratiometric sensor. This approach has been proven

to work in the case of a voltage sensor, where the red and green

FPs were located on opposite sides of the cell membrane. In the

case of GPCR-based sensors, achieving this would require care-

ful re-design of the probe to ensure that the two FPs do not give

rise to FRET upon sensor activation and that the properties of the

sensor (e.g., surface expression, affinity, and dynamic range) are

unaffected. A detailed characterization of the effect of this fusion

on the properties of the indicator would be required. Sensors

created in this way would be excitable at two separate wave-

lengths leading to two distinguishable emissions, only one of

which (the green one) would be ligand-modulated, allowing for

a ratiometric readout that would in theory be independent of in-

ter-subject and inter-session variation. This approach also

comes with the following caveats: (1) the two FPs may exhibit

different bleaching kinetics; (2) if the red channel had a substan-

tial contribution from autofluorescence or other background

sources, its efficacy in normalizing the signal from the green

channel would be impaired; and (3) multiplexing with a second

red-shifted indicator would not be possible. Currently, the exist-

ing sensors for obtaining absolute measures include FRET- and

FRET-FLIM-based sensors (see section sensor selection for

in vivo photometry), although they require specialized equipment

(see section advanced hardware features).

Combining processing steps

A preprocessing approach widely used with isosbestic control

channels (e.g., Mohebi et al.50 and Saunders et al.103) combines

bleaching correction, movement correction, and normalization

into a single operation. The control channel is first fit to the signal

using a least-squares linear fit, and then, the processed signal is

calculated by subtracting the fitted control from the signal, then

dividing by the fitted control. The rationale is that the subtraction

corrects for movement artifacts and changes in baseline due to

photobleaching, and then the division corrects for changes in

signal amplitude due to photobleaching and converts to dF/F.

Combining movement and photobleaching correction in this

way implicitly assumes that the relative size of movement arti-

facts between signal and control channels is the same as the

Figure 3. Data preprocessing stages
Schematic diagramwith example data describing the principal data preprocessing workflow used to remove noise and artifacts from raw photometry signals and
convert them into appropriate units for comparison across sessions and subjects. Each box describes the function and methods for implementation of a discrete
preprocessing stage. Example data are from photometry recordings targeting the nucleus accumbens core of wild-type C57BL/6 mice co-expressing dLight1.1
(pAAV5-CAG-dLight1.1) and a tdTomato control (pssAAV-2/5-hSyn1-chI-tdTomato-WPRE-SV40p(A)), during performance of a flexible, reward-guided decision-
making task. Example input and output signals from each preprocessing stage (direction indicated by arrows) illustrate how the signals are modified at each step
in the process.Whenmultiple implementation options exist for a given stage, themethod applied to the example data is indicated in the description. Where useful
for illustrating the impact of a given preprocessing stage on both long and short timescales, both session data (approx. 90min session, left plots) and a zoomed-in
view of a 60-s window (right plots, with gray background) are plotted side-by-side. The onset of reward cues is indicated by blue ticks and triangles in session and
60-s window plots, respectively. dLight signals are plotted in green with units indicated on the left y axis, and tdTomato (control) signals plotted in red with units
indicated on the right y axis. The double exponential fits of the denoised signals used to estimate photobleaching are overlaid in black. The correlation between
tdTomato (control) and dLight signals at each time point in the session was used to estimate motion artifacts (right of movement correction box). The estimated
signal due to motion artifacts (blue trace, offset by�0.04 for ease of viewing) is plotted alongwith the final motion-corrected signal. The normalized units (Z score)
of the final, motion-corrected signals are indicated on the left y axis, and raw units (volts) on right y axis.
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relative size of photobleaching artifacts between the two chan-

nels. This assumption will in general not hold exactly, as the rela-

tive contributions of autofluorescence and sensor fluorescence

will be different for isosbestic and sample channels, and these

two sources of fluorescence will be differentially affected by

movement and bleaching (see above). In practice, variation in

isosbestic control channels is typically dominated by photo-

bleaching; hence, this will determine the linear fit to the signal,

prioritizing the accuracy of photobleaching correction above

that of movement correction.

We are not aware of any systematic quantification (e.g., using

a non-ligand-binding control sensor) of how effectively different

control channels and preprocessing methods correct for arti-

facts in photometry signals, but this would be a valuable contri-

bution to the literature.

Analysis and statistical testing

There are many ways to analyze photometry signals. The most

appropriate analytic approach will be determined by the struc-

ture of the experiment and the experimental questions being

tested, which will determine the relevant signal comparisons to

be made. Here, we describe approaches that have been used

successfully and indicate the conditions under which they may,

or may not, be suitable.

As with any experimental method, appropriate experimental

design is necessary to ensure that the effect of different variables

of interest can be differentiated from each other and possible

confounds. A photometry-specific consideration is that changes

in signal on a very slow timescale may be hard to conclusively

differentiate from imperfect photobleaching correction. It is

therefore good practice to ensure that different experimental

conditions of interest are distributed evenly across the session.

Event-aligned analysis

Aligning photometry signals to an event of interest, such as

reward presentation or omission, and averaging the data by

trial type are widely used approaches to visualize how the

signal is modulated around events. This can be followed by

summary statistics, such as comparing peak signal amplitude

or measuring the area under the curve (AUC) for a defined inter-

val. It is important to note that the latter is sensitive to the

selected time window, and therefore, this kind of analysis re-

quires principled prior assumptions based on the nature of

the photometry signals.

Many behavioral tasks include multiple events of interest. If

events happen at fixed times (e.g., auditory cue followed by a

fixed delay followed by a reward), time locking to one event

will inherently time lock to the other events. However, this is

not the case when trials are self-paced by the subject or variable

intervals are imposed. In such cases, different approaches have

been used as follows: (1) separately align the signal to each event

of interest or (2) align to all the events in a trial by time-warping

the signal between events. Time-warping is a useful method to

visualize the response to all events across a trial (e.g., trial initia-

tion, choice, and outcome) in decision tasks102,105 and can also

be used to account for the variable duration of spontaneous be-

haviors.106However, it is necessary to confirm that time-warping

the signal does not introduce artifacts in the data, by separately

aligning to the self-paced events.

Linear regression

In situations where multiple behavioral variables are expected to

influence the signal, particularly where these may be correlated

(e.g., reward prediction and trial outcome, see Figure 4), a multi-

ple linear regression provides a simple but powerful approach

to quantifying which behavioral variables account for signal vari-

ation at different time points. This method has been extensively

used to analyze neural data, including fMRI,107,108 electrophysi-

ology,109–112 one- and two-photon113–117 excitation microscopy,

and, more recently, photometry data.14,25,102,118 In Python,

for example, linear regression can be implemented using the

sklearn.linear_model module from the scikit-learn library.119

The general approach is to model variation in the signal as a

linear combination of a set of predictors generated from behav-

ioral variables of interest. An important choice in implementing a

regression analysis of photometry data is how the varying influ-

ence of variables over time is modeled. For data with a discrete

trial structure, one approach is to run a separate regression anal-

ysis at each time point across the trial (Figure 4B), using predic-

tors that take the same value for all time points on a given trial but

vary from trial to trial. Such predictors are usually categorical or

binary and indicate what happened on each trial. For example,

the trial outcome could be coded as a binary reward predictor,

set to ‘‘1’’ if a reward was obtained or ‘‘0’’ if no reward was ob-

tained (Figure 4B). This approach yields a b coefficient for each

predictor at each time point across the trial, such that plotting

the bs for a given predictor gives a time series showing when,

in which direction, and how strongly that predictor explains vari-

ance in the signal.

A second approach is to model all time points in a single

regression analysis. As discrete behavioral events typically pro-

duce a temporally extended and delayed response in the

photometry signal, the time course of the predictors associated

with these events needs to capture this. This can be achieved by

convolving the sequence of event times with one ormore tempo-

ral basis functions designed to capture the expected time course

of signal variation due to a single event, for example, a B-spline

basis, as implemented by the bs and patsy packages in R and

Python, respectively (see, e.g., Engelhard et al.114). Using a sin-

gle basis function represents a fixed assumption about the time

course of signal variation associated with each event, whereas

using a set of basis functions (each with its own b) can model

any time course that is a linear combination of those bases.

Sometimes, the influence of a continuously changing variable,

such as the subject’s speed of movement, may be of interest.

If a linear relationship is expected between the variable value

and the photometry signal, the variable may be used directly

as a predictor, potentially with a lag to capture the delay between

changes in the variable and the signal.

A potential caveat to be aware of in any regression analysis is

that variance can be incorrectly modeled in situations where

there are correlations between variables and not all of the vari-

ables are included in the model. For example, Figure 4C shows

an analysis of dopamine activity in a probabilistic reward-guided

decision-making task, using the approach of running separate

regressions at each time point to obtain a time -series of b coef-

ficients, in which the only predictor included was the trial

outcome (rewarded or not). This appears to show highly
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significant positive bs at time points before the outcome was re-

vealed, when the outcome of that trial was not known and so

should not be able to influence the recorded signal. This occurs

because dopamine activity at these time points is influenced by

the subject’s prediction of the outcome, which is correlated with

the actual outcome; the spurious loading disappears when
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Figure 4. Analysis of photometry data using linear regression

Analysis of photometry signals using linear regression, illustrated using calcium activity (GCaMP6f) in ventral tegmental area dopamine neurons during a multi-
step decision making task from Blanco-Pozo et al.102

(A) Diagram showing the sequence of events on each trial. Signals were aligned across trials by time-warping the activity to align the times of the trial events to
match the median timing across trials.
(B) Mean Z scored dopamine activity across the trial, split by outcome (reward or omission); shaded area indicates cross-subject standard error of themean. Note
that the average dopamine signal on reward and omission trials separates before the outcome cue (green bar), i.e. before information about the outcome was
available, due to the influence of subject’s reward expectation.
(C) Schematic of the regression model. A separate linear regression was run for each timepoint in the trial aligned activity. Each regression models the activity at
that timepoint as weighed sum of predictors, where each predictor has a b coefficient that indicates how strongly and with what sign the predictor explains
variance in the activity. The predictors take different values from trial-to-trial but the same value for all timepoints in a given trial.
(D and E) Plotting the time-course of b coefficients for a given predictor indicates when in the trial the predictor explains variance. Separate regression analyses
were run for each subject; traces show cross-subject mean, shaded areas cross-subject standard error. Dots above the traces show time-points where the b

coefficient was significantly different from 0, assessed using a t test on the cross-subject distribution with Benjamini-Hochberg correction for comparison of
multiple timepoints. In (D), the regression analysis included only a single predictor coding for the trial outcome. This regression has significant positive coefficients
for the outcome predictor before information about the outcome is available (red shaded area). This is because the subjects’ expectation of reward drives
variation in the signal which is correlated with the trial outcome (as seen in B). (E) By including additional predictors in the regression, which in this example relate
to the value of the actions taken, state reached on the trial, and the recent rate of rewards over the past 8 trials (see Blanco-Pozo et al.102 for details), we can both
resolve the influence of these different behavioural variables at different timepoints and remove the spurious loading on the outcome predictor before the
outcome cue, as variance in the signal due to reward expectation is now captured by the other predictors.
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additional predictors capturing the subject’s outcome prediction

is included (Figure 4D).

Another potential issue in regression analyses, termed collin-

earity, occurs where one predictor is highly correlated with

another predictor or a linear combination of other predictors.

This makes the fit very sensitive to small changes in the data,

as different bs yield very similar predictions for the signal. Regu-

larization—i.e., adding an additional term to the cost function

that penalizes large bs—can break this degeneracy but should

be used with caution as the fitted bs can then reflect the effect

of regularization rather than structure in the data itself. L1 regu-

larization (also called Lasso) promotes sparseness in the coeffi-

cients, whereas L2 regularization spreads the influence of each

coefficient more evenly. If regularization is used, it is important

that regressors are standardized or centered at 0; hence, the

penalty used is the same across all the regressors. This also al-

lows comparison of the magnitude of the influence on the signal

across regressors.

Statistical testing

Different methods can be used for statistical testing of any

photometric measures. Typically, ANOVA or t tests with correc-

tion for multiple comparisons to control for false discovery rates

are used. Alternatively, confidence intervals and bootstrapping

may be used (see Jean-Richard-dit-Bressel et al.120).

For between-subject comparisons, it should not be assumed

that data points are independent and identically distributed;

incorrectly assuming so can result in inflated false positives.

Mixed-effect models overcome these limitations by capturing

dependencies in the data through their random effect struc-

ture.121 In R, mixed-effect models can be implemented using

lmer or afex packages. Some drawbacks of mixed-effect models

are that they are computationally costly and can have problems

with convergence. Moreover, it has not yet been resolved what

the best approach to define the random effects structure should

be.122–124 Although future research should help clarify this, a

simple workaround that has been shown to produce comparable

results is to perform two-stage summary statistics125,126: first, a

regression model is run for each subject separately, followed by

a second stage in which all individual means (or the individual

means combined with within-subject variances) are used to pro-

duce estimates of between-subject variance and enable group

inferences. This approach is widely used with fMRI data (see

Mumford and Poldrack127).

LOOKING FORWARD

Over the past decade, fiber photometry has become an estab-

lished, core technique that, coupled with developments in

behavioral profiling, has the potential to revolutionize our under-

standing of how dynamic changes in neurotransmission relate to

rich repertoires of animal behavior. Here, we summarize the op-

portunities that fiber photometry currently offers, describe the

new tools for fiber photometry that are in development, and

consider what may be achieved in the future.

Current opportunities

A truly groundbreaking opportunity to understand the neurobi-

ological mechanisms of neural communication and causal

mechanisms of behavior comes from combining photometry

with other techniques. Manipulating neural activity with opto-

genetics while simultaneously recording the consequences

via photometry provides information that was completely unat-

tainable with previous methods.32–34,38,39,52,128 Successful ex-

amples include activation or inhibition (at the level of soma or

terminals) of one cell type (e.g., dopamine, orexin, or oxytocin

neurons), and simultaneous measurement of modulator release

from those same neurons.129 Alternatively, the influence of ac-

tivity in one type of neuron on the release of a different neuro-

modulator can be determined, e.g., the effect of GABAergic ac-

tivity on serotonin release117 or the effect of cholinergic activity

on dopamine release.130 In addition, by combining two spec-

trally resolvable sensors researchers can determine temporal

correlations in the dynamic activity of up to two distinct aspects

of neural activity, for example, dopamine release in the nucleus

accumbens and the activity of accumbens D1-expressing spiny

projection neurons or intracellular PKA activity in D1 or D2-ex-

pressing spiny projection neurons.25

Combining photometry with other methods can also be

used to improve experimental approaches. Photometric read-

outs of manipulations like optogenetics or focused ultrasound

can facilitate calibration of stimulation parameters to under-

stand the effects on different cell types131 or more accurately

match endogenous release patterns.132 The recapitulation of

behaviors using neuromodulation that is optimized using

photometry provides validation that photometrically recorded

biosensor signals are physiologically relevant. For example,

optogenetic stimulation calibrated to photometrically reward

responses is sufficient to produce conditioned place pref-

erence.133

The relative simplicity of photometry and the small size of

optic fibers make it ideally suited to use in combination with

other (non-fluorescence-based) recording techniques. This

already has been used to better understand the effect of

signaling in defined cell types and neurotransmitter release

on blood-oxygen-level-dependent (BOLD) fMRI signals134–136

and, conversely, in combination with electrophysiology, to

identify the potential source of calcium fluctuations recorded

in striatal neurons using photometry.137

Emerging directions

A newly emerging topic of research dependent on fiber photom-

etry is the identification of the different timescales over which

neurotransmitters and neuromodulators act and how these fluc-

tuations on different timescales relate to the temporal dynamics

of different behavioral actions or behavioral states. In contrast to

microdialysis, which lacks sufficient temporal resolution to pick

up sub-minute fluctuations, or cyclic voltammetry, which typi-

cally is better suited to detecting rapid but not sustained

changes in neurotransmitter levels, fiber photometry can quan-

tify events occurring both on sub-second timescales tied to spe-

cific task events and sustained changes that are modulated over

many minutes.10,102,138,139

While opening up this fascinating new dimension, it is

imperative to interrogate slower changes carefully, given

the potential for these to be influenced by artifacts such as

photobleaching or, in reward-guided tasks, confounded by

ll
OPEN ACCESS

16 Neuron 112, March 6, 2024

Primer

Please cite this article in press as: Simpson et al., Lights, fiber, action! A primer on in vivo fiber photometry, Neuron (2023), https://doi.org/10.1016/

j.neuron.2023.11.016



endogenous changes such as satiety. Moreover, signals of in-

terest may be contaminated by changes in pH140–143 and he-

modynamics,15–17 which will usually fluctuate on slower time-

scales. It will therefore be important to implement appropriate

experimental designs to obviate some confounds (e.g., by de-

correlating anticipated slower changes from drift over the ses-

sion), and where necessary, test sensors with ligand-binding

site mutations. Further work characterizing the relationship

between slower fluctuations resolved with fiber photometry

and gold-standard measurements such as microdialysis will

also be informative.10

On even longer timescales, fiber photometry provides an un-

precedented opportunity to conduct longitudinal studies. Both

the expression of biosensors and the functioning of implanted

optical fibers can be relatively stable across months. Therefore,

changes in signals can be tracked over extended time periods as

animals learn complex tasks and adapt to different environ-

mental contingencies, and as the brain circuits mature, cellular

aging occurs, and disease models develop. Again, analytic

methods must prevent the contamination of long-term changes

by artifactual drifts. Developments of fluorescence lifetime-

based measurements and sensors hold promise for improving

longitudinal studies as their readouts are independent of sensor

expression levels,4,64,144 although currently setups are often

bespoke and therefore come at a cost of increased technical

complexity.

Another potential avenue for development is to harness mo-

lecular specificity to restrict the location or functional activity of

biosensors to select subcellular compartments. Currently,

commonly used membrane-bound biosensors are not spatially

confined to the synapse; hence, differentiating between synaptic

and extrasynaptic signals requires high-resolution imaging in

combination with synaptic markers. However, if the location or

function of membrane-bound biosensors could be restricted or

excluded from synapses generally or synapses of certain cell

types, then fiber photometry could be used to gather more

detailed information about neurotransmitter signaling.

Across different scales of time and space, the versatility of

photometry offers unprecedented opportunities to broaden

research into the link between neural dynamics, interacting neu-

rotransmitters, and complex, naturalistic behavior. Photometry

has already successfully been used to track cell-type-specific

effects of ethologically relevant behaviors such as social interac-

tion, maternal behavior, mating, and feeding3,62,145–151 and help

dissect transitions between different action motifs during behav-

ioral sequences.6,106As technology advances to allowwireless60

and even implantable photometry systems,152 alongside innova-

tions in behavioral monitoring of groups of animals in semi-natu-

ral contexts,153 the capability to tackle deep questions about

the relationships between the environment, neural activity, and

complex behavior in health and disease will become ever more

tractable.

Progress in understanding universal brain-behavior relation-

ships will be accelerated by the ability to use photometry across

a range of model species, including birds154 and non-human pri-

mates,155 and rodents. However, although photometry should

be equally suited to any mammalian or avian species when se-

lecting sensors and promoters, testing must be performed to

ensure that expression is robust and stable. It cannot be a priori

assumed that what works in a mouse will necessarily translate

directly even to other rodent species.

Conclusions

The ability to run photometry experiments at scale and increas-

ingly low cost as more open-source hardware becomes avail-

able has the potential to be transformative for neuroscience.

First, it can help democratize research into brain-behavior rela-

tionships, facilitating a wide range of groups to ask creative

questions, and not just those in the most highly resourced insti-

tutions.156 Second, it will support increased reproducibility,

which in turn will facilitate further technical and theoretical inno-

vations. However, continued progress depends crucially on the

community being cognizant of the potential limitations of the

method, understanding how best to design experiments within

these constraints, and collect and interpret the data appropri-

ately. We hope this guide will provide the signposts to facili-

tate this.

Fiber photometry continues to evolve rapidly. The catalog of

sensor domains is expanding, including hard-to-study mole-

cules such as neuropeptides. New fluorescent reporter domains

and detection modalities are also being developed to provide

better quantification of ligand concentration or with longer wave-

lengths for better spectral resolution in multiplex experiments.

Also, at longer wavelengths, excitation light is less scattered

and absorbed in tissue, potentially increasing the depth of signal

collection. Recent innovations in hardware will make capabilities

like multi-site andmulti-sensor recordings ever more accessible.

Combined, these developments will allow investigators to ask

new questions, such as how does the release of one transmitter

alter the activity or the release of another molecule locally, or

simultaneously across a whole brain structure, or at multiple no-

des within a circuit? What roles do molecules play in coordi-

nating activity within and between brain regions, and how does

that coordination relate to behavior? Because of all the

described features, fiber photometry will continue to grow in

popularity as a go-to tool to monitor the rich dynamics of biomol-

ecules and physiological events over different temporal scales

during complex behavior.

DATA AND CODE AVAILABILITY STATEMENT

Sample data, code, and additional information for Figure 3 are

openly available in the GitHub repository: https://github.com/

ThomasAkam/photometry_preprocessing.

https://doi.org/10.5281/zenodo.10103973.
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