2,676 research outputs found

    Electric charge is a magnetic dipole when placed in a background magnetic field

    Get PDF
    It is demonstrated, owing to the nonlinearity of QED, that a static charge placed in a strong magnetic field\ BB\ is a magnetic dipole (besides remaining an electric monopole, as well). Its magnetic moment grows linearly with BB as long as the latter remains smaller than the characteristic value of 1.2\cdot 10^{13}\unit{G} but tends to a constant as BB exceeds that value. The force acting on a densely charged object by the dipole magnetic field of a neutron star is estimated

    Magnetic response to applied electrostatic field in external magnetic field

    Get PDF
    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics

    Magnetic response from constant backgrounds to Coulomb sources

    Get PDF
    Magnetically uncharged, magnetic linear response of the vacuum filled with arbitrarily combined constant electric and magnetic fields to an imposed static electric charge is found within general nonlinear electrodynamics. When the electric charge is point-like and external fields are parallel, the response found may be interpreted as a field of two point-like magnetic charges of opposite polarity in one point. Coefficients characterizing the magnetic response and induced currents are specialized to Quantum Electrodynamics, where the nonlinearity is taken as that determined by the Heisenberg-Euler effective Lagrangian.Comment: The part dealing with magnetically charged responses is removed to be a subject of another paper after revisio

    Noncommutative magnetic moment, fundamental length and lepton size

    Get PDF
    Upper bounds on fundamental length are discussed that follow from the fact that a magnetic moment is inherent in a charged particle in noncommutative (NC) electrodynamics. The strongest result thus obtained for the fundamental lenth is still larger than the estimate of electron or muon size achieved following the Brodsky-Drell and Dehlmet approach to lepton compositeness. This means that NC electrodynamics cannot alone explain the whole existing descrepancy between the theoretical and experimental values of the muon magnetic moment. On the contrary, as measurements and calculations are further improved, the fundamental length estimate based on electron data may go down to match its compositeness radius

    When electric charge becomes also magnetic

    Get PDF
    In nonlinear electrodynamics, QED included, we find a static solution to the field equations with an electric charge as its source, which is comprised of homogeneous parallel magnetic and electric fields, and a radial spherically-nonsymmetric long-range magnetic field, whose magnetic charge is proportional to the electric charge and also depends on the homogeneous component of the solution.Comment: Four pages, no figure

    The utopian function of film music

    Get PDF
    In this article I apply Ernst Bloch's utopian philosophy to film music

    Noncommutative magnetic moment of charged particles

    Full text link
    It has been argued, that in noncommutative field theories sizes of physical objects cannot be taken smaller than an elementary length related to noncommutativity parameters. By gauge-covariantly extending field equations of noncommutative U(1)_*-theory to the presence of external sources, we find electric and magnetic fields produces by an extended charge. We find that such a charge, apart from being an ordinary electric monopole, is also a magnetic dipole. By writing off the existing experimental clearance in the value of the lepton magnetic moments for the present effect, we get the bound on noncommutativity at the level of 10^4 TeV.Comment: 9 pages, revtex; v2: replaced to match the published versio
    corecore