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In nonlinear electrodynamics, QED included, we find a static solution to the field equations with an
electric charge as its source, which is comprised of homogeneous parallel magnetic and electric fields, and
a radial spherically nonsymmetric long-range magnetic field, whose magnetic charge is proportional to the
electric charge and also depends on the homogeneous component of the solution.
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I. INTRODUCTION

Magnetoelectric effect in materials is well known theo-
retically and experimentally [1]. It has a variety of
manifestations, where different schemes of interaction
within the material lead either to linear or nonlinear
dependence of magnetization of an applied electric field,
or reciprocally, dependence of electrization on an applied
magnetic field (see reviews in [2]). Calculation of the
corresponding coefficients from the first principles is
available [3] in the linear case.
In the vacuum the (nonlinear) magnetoelectric effect was

reported within quantum electrodynamics (QED) in [4,5],
and within noncommutative classical electrodynamics in
[6] (There is an earlier indication of the magnetoelectric
effect in noncommutative electrodynamics in Ref. [7]. The
magnetic solution proposed there is, however, inadmissibly
singular, see [6] for comments.) In these references the
nonuniform magnetic field, associated with a static electric
charge is that of a magnetic dipole, whose magnetic
moment is quadratic in the charge. Here we find a magnetic
field with its source being an equivalent magnetic charge
linearly related to an applied static electric charge.
To be more precise, in a parity-conserving nonlinear

electrodynamics of the vacuum, especially in QED, we
demonstrate the existence of a static field configuration that
possesses a magnetic charge. The magnetic field carrying
the magnetic charge is long-range in the sense that it
decreases with the distance r ¼ jxj from the electric charge,
which produces it, as r−2, in contrast to the magnetic dipole
field decreasing as r−3 from its center. The magnetic lines
of force are directed along the radius-vector x. The
magnetic nonuniform part of the solution is necessarily
accompanied by uniform constant electric and magnetic
fields Ē and B̄ (taken as parallel to each other in our
consideration), being axial-symmetric (i.e., azimuth-
depending) relative to the axis specified by the common

direction of the uniform part of the solution. The magnetic
charge defined as the surface integral of the magnetic flux
around the electric charge depends on these constant field
components, which are arbitrary, and it is proportional to
the electric charge and to the pseudoscalar Ē · B̄. When the
electric charge is pointlike, the magnetic charge carried
by it is pointlike, too. In other words, an electric monopole
is also a magnetic monopole. The axial-symmetric solution
depends also on a choice of the angular boundary. Its
vector-potential is found to be singular, depending on a
gauge, on either of the two half-axes (Dirac string) drawn
through the charge parallel or antiparallel to the accom-
panying constant fields. For a very special choice of the
boundary, generally depending on the accompanying fields,
the Dirac string disappears leaving the axial-symmetric
radial solution magnetically neutral.
In this paper we are paving the most straightforward way

to a magnetically-charged solution of nonlinear Maxwell
equations by omitting all the terms that may be under
certain circumstances considered as inessential for the
existence of the solution proposed. We take the nonlinearity
into account in its simplest manifestation by keeping only
the lowest nontrivial, third power of the fields in these
equations, while the corresponding nonlinear self-coupling
constant is considered to be small. When referring to a
nonlinear electrodynamics we mostly keep in mind the
nonlinearity of the Maxwell equations of QED stemming
from the quantum phenomenon of self-interaction between
electromagnetic fields. The approach, however, remains the
same for any nonlinear electrodynamics with a local
Lagrangian and also can be readily extended to include
a parity-nonconserving contribution that may originate
from weak interactions.

II. NONLINEAR MAXWELL EQUATIONS

Let the Lagrangian of a nonlinear theory be a function of
the field invariants F ¼ ðB2 − E2Þ=2, G ¼ −E ·B, and let
it depend on the space-time coordinate xμ only through the
fields and not contain their space-time derivatives
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L ¼ −FðxÞ þ LðFðxÞ;GðxÞÞ;

which implies that the action S ¼ R
Lðx0Þd4x0 is a local

functional. The first term here is the Lagrangian of the
standard linear classical electrodynamics. The principle of
correspondence with the classical theory requires that the
nonlinear addition L should not contain any correction to it
in the weak-field limit B → 0, E → 0. Therefore it will be
accepted that the first derivative ofL disappears when taken
at zero values of the field invariants: LF ¼ ∂L

∂F jF¼G¼0
¼ 0.

In a theory with parity conservation, such as QED,
the Lagrangian may depend only on even powers of
the pseudoscalar G. Hence, we shall accept that
LG ¼ ∂L

∂G jF¼G¼0
¼ 0, LFG ¼ ∂2L

∂F∂G j
F¼G¼0

¼ 0. These

quantities may be kept when needed. Under L we shall
mostly mean the effective Lagrangian of QED in the local
(infrared) limit, given in the one-loop approximation by the
so-called Euler-Heisenberg Lagrangian [8]. Our approach
covers, however, other nonlinear local Lagrangians irre-
spective of their origin. The nonlinear static Maxwell
equations generated via the minimum action principle
δS

δAμðxÞ ¼ jμðxÞ, where AμðxÞ is the vector-potential, with

the Lagrangian L truncated at the second power of its
Taylor expansion in the field invariants—after the time-
dependence has been dropped from their form derived
in [9]—read

∇ · EðxÞ ¼ j0 þ jnl0 ; ½∇ ×BðxÞ� ¼ jþ jnl: ð1Þ

Here jμ are external current components, while the non-
linear current jnlμ , cubic in the fields, is the one induced by
the electric E and magnetic B fields:

jnl0 ¼ ∇ · ðLFFFEþ LGGGBÞ; ð2Þ

jnl ¼ ½∇ × ðLFFFB − LGGGEÞ�: ð3Þ

(It is understood that E;B;F, and G depend on x. The ∇’s
act on everything to the right of them). Here LFF and LGG

are time- and space-independent:

LFF ¼ ∂2L
∂F2

����
F¼G¼0

; LGG ¼ ∂2L
∂G2

����
F¼G¼0

; ð4Þ

taken at zero values of the fields, in other words the
background, against which the expansion of the Lagrangian
has been developed, is empty. Then, as far as QED is
concerned, LFF and LGG are quadratic with respect to the
fine-structure constant [8] α ¼ e2=4π ≃ ð137Þ−1,

LFF ¼ 4α

45π

�
e
m2

�
2

; LGG ¼ 7α

45π

�
e
m2

�
2

; ð5Þ

where m and e are electron mass and charge, respectively.

Equations (1) should be completed with the other pair of
static Maxwell equations

½∇ ×EðxÞ� ¼ 0; ∇ ·BðxÞ ¼ 0; ð6Þ

which are intact to the nonlinearity as long as the fields are
given by a 4-vector-potential.

III. MAGNETIC SOLUTION FOR THE FIELD
OF ELECTRIC CHARGE

In the present approach the electric field will be that
produced by a spherically-symmetric external charge
j0 ≠ 0. The Maxwell equations (1) will be treated pertur-
batively with respect to the small self-coupling contained in
the coefficients LFF and LGG. For this reason, the non-
linearly induced charge density jnl0 (2) is neglected, jnl0 ¼ 0,
as giving rise only to higher-order contribution. The
magnetic field will not be supported by any external source
j: the latter will be kept equal to zero throughout, j ¼ 0.
The only source of the magnetic field will be the current jnl,
Eq. (3), formed by the electric and magnetic fields
themselves.
An additional approximation adopted in solving the

nonlinear Maxwell equations (1) is stemming from the
fact that constant fields E ¼ Ē ¼ const, B ¼ B̄ ¼ const
identically satisfy the Maxwell equations (1) with no
external currents, j0 ¼ j ¼ 0, needed to support them, as
it is immediately seen from Eqs. (1), (2), (3), (6). This is an
approximation-independent manifestation of the gauge
invariance, since the effective Lagrangian depends only
on the field strength, what makes any constant field a
solution. We shall be solving the second equation in (1)
together with the second equation in (6) for the magnetic
deviation δBðxÞ ¼ B̄ −BðxÞ considered to be small as
compared to its constant part δB≪B̄. As for the electric
field, its deviation from the constant field δEðxÞ ¼
Ē −EðxÞ will be taken, in correspondence with the
above-said, as the field produced by a charge via the
standard linear equations ∇ ·EðxÞ ¼ j0, ½∇ ×EðxÞ� ¼ 0

without nonlinearity. We also assume that δE≪Ē. We
configure our solution with the fields B̄ and Ē parallel or
antiparallel to each other (in the Lorentz frame, where the
electric charge is at rest). Their arbitrary common direction
is presented by a unit (pseudo)vector μ ¼ B̄

B, jμj ¼ 1.
We shall now handle the second equation in (1) with

j ¼ 0, which may be equivalently written as

ð1−FLFFÞ½∇×B� þLFF½B×∇�F−LGG½E×∇�G¼ 0;

because ½∇ ×E� ¼ 0 due to (6). Omitting the deviations
squared and neglecting F̄LFF ≪ 1 in the first term, this
becomes the linearized equation for δB
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½∇ × δB� ¼ LFF½B̄ × ∇�ðĒ · δE − B̄ · δBÞ
− LGG½Ē × ∇�ðB̄ · δEþ Ē · δBÞ: ð7Þ

We shall seek for solutions to Eq. (7) in the class of
axial-symmetric magnetic fields directed in the same way
as the radius-vector, δB ¼ xbðr; zÞ, where r ¼ jxj, and
z ¼ ðμ · xÞ ¼ r cos θ is the coordinate component along the
vector μ. Within this class, the second equation in (6) can be
satisfied only if the representation

δB ¼ x
1

r3
f

�
z
r

�
; ð8Þ

is true (everywhere except for the singularity in x ¼ 0).
Out of all central-symmetric electric fields of the form

δE ¼ xEðrÞ, Eq. (7) is only compatible with (8) provided
that the field is Coulombic, δE ¼ cx

r3 , with c being an
arbitrary constant. But this is just the solution to the first
equation (1) with jnl0 set equal to zero, as argued above, and
with c chosen as c ¼ q

4π, where q is the charge,
q ¼ R

j0ðxÞd3x. Here the integration runs over the volume
occupied by the charge centered in the origin. (When the
charge is distributed in a spherically symmetric way over a
sphere r ¼ R or it is pointlike, R ¼ 0, it should be under-
stood that we are working outside the charge, r > R. If the
charge is not spherically symmetric, our equations are valid
far from the region occupied by it.) Then the ansatz (8)
turns Eq. (7) to the first-order linear inhomogeneous
differential equation for the function fðζÞ, ζ ¼ z

r ¼ cos θ
(after cancellation of the overall vector factor ½μ × x�=r4)

ð1þ bζ2Þf0 þ 3bfζ þ gζ ¼ 0; ð9Þ

g¼ 3q
4π

ḠðLGG−LFFÞ; b¼−LGGĒ2−LFFB̄2; ð10Þ

where Ḡ ¼ −B̄ · Ē. The general solution of (9) is

fðζÞ ¼
�
1þ bζ20
1þ bζ2

�3
2

�
fðζ0Þ þ

g
3b

�
−

g
3b

: ð11Þ

Here ζ0 is the asimuth point, where a boundary fðζ0Þ value
for the solution is to be set. The singularity at ζ2 ¼ −1=b
may lie within the physical interval ζ2 ≤ 1 only for
sufficiently large fields Ē; B̄, which are beyond the scope
of the present truncated approximation.
One can see that fðζÞ ¼ − g

3b is the ζ-independent
solution in immediate agreement with (9) with f0 ¼ 0.
When substituted to (8), it would give rise to a magnetic
monopole field in its standard center-symmetric form. This
solution, however, should rather be disregarded, since it
falls beyond the accuracy of the adopted approximation, as
not being small in proportion to the smallness of non-
linearity. It disappears by going away to infinity in the limit

b → 0. We shall concentrate on angle-dependent solutions,
free of this disadvantage. We are interested only in such
solutions of the inhomogeneous equation (7), which are
due to the electric charge q and vanish when g ¼ q ¼ 0. To
separate them we impose the zero boundary condition
fðζ0Þ ¼ 0 (that also excludes the above angle-independent
solution). With this condition satisfied, the solution still
depends on the point ζ0, where it is imposed, i.e., on the
couple of the asimuth directions θ0 ¼ arccos ζ0 and π −
arccos ζ0, along which the magnetic lines of force are not
emitted from the charge. To fix the boundary, note that ζ0 is
a constant pseudoscalar, and there may be no other choice
for it except zero, since there is no field-independent,
intrinsic pseudoscalar at our disposal, and we should not
introduce it once we are interested in the magnetic field
produced only by the electric charge and by no other
magnetically charged sources. The point ζ0 ¼ 0, θ0 ¼ π

2
is

the only point invariant under the space reflection, because
it is mapped to itself, since θ0 ¼ π − θ0, when θ0 ¼ π

2
. With

the choice ζ0 ¼ 0 advocated above the magnetic field (8) is

δB ¼ x
1

r3
g
3b

½ð1þ bcos2θÞ−3
2 − 1�: ð12Þ

Note that this expression, as well as all other expressions
in the rest of the paper, survives the interesting limit
b ¼ 0, which originates from dropping the homogeneous
terms LFF½B̄ × ∇�ðB̄ · δBÞ and −LGG½Ē × ∇�ðĒ · δBÞ
from Eq. (7) and corresponds to the neglect of linear
magnetization.
The magnetic charge qM is determined by integrating δB

over the surface of a sphere with its radius large enough to
embrace the whole charge and not to violate the conditions
δB≪ B̄ and δE≪ Ē. The result is

qM ¼ 4πg
3b

½ð1þ bÞ−1
2 − 1�: ð13Þ

Hence, for the pointlike electric charge, its magnetic charge
density is ∇ · δB ¼ qMδ3ðxÞ. The magnetic charge (13) is
proportional to the electric charge q via Eq. (10).

IV. DIRAC STRING

The vector potential generating the field (12) via the
relation δB ¼ ½∇ ×A� can be taken in the form

A¼ ½μ× x�
r2

ωðζÞ;

ωðζÞ ¼ g
3b

1

ζ2 − 1

"
ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bζ2
p −

~ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b~ζ2

q þ ~ζ − ζ

#
: ð14Þ

The latter function is subject to the condition ωð~ζÞ ¼ 0.
Arbitrariness in choosing the constant ~ζ is the gauge
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arbitrariness. The potential (14) is singular along the axis
ζ2 − 1 ¼ 0. Two special gauges, ~ζ ¼ �1, however, exist,
with which the axial singularity is restricted only to the
positive half-axis (the lower sign) or to the negative half-
axis (the upper sign). With these two choices ωðζÞ becomes

ω�ðζÞ ¼ g
3b

1

ζ2 − 1

�
ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bζ2
p ∓ 1ffiffiffiffiffiffiffiffiffiffiffi

1þ b
p − ðζ ∓ 1Þ

�
:

It is seen by expanding the first term in the brackets in
powers of ζ2 near the point ζ2 ¼ 1 that ðζ ∓ 1Þ cancels
the same factor in the denominator if the latter is repre-
sented as ζ2 − 1 ¼ ðζ ∓ 1Þðζ � 1Þ. The resulting singu-
larity ðζ � 1Þ−1 stretches along the axis passing through the
charge either parallel or antiparallel to the common
direction of the constant part of the solution, the fields
B̄ and Ē. When the modulus of the vector-potential is
calculated following (14), the factor jμ × xj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
appears, but we are still left with the singularity �

ffiffiffiffiffiffiffi
1∓ζ
1�ζ

q
on

either of the two half-axes. This is the Dirac string [10],
whose direction depends on a gauge, but cannot be
eliminated by any choice of it.
It is worth noting that a special choice of the boundary

point ζ20 ¼
ffiffiffiffiffiffiffi
1þb3

p
−1

b exists that eliminates the Dirac string
and simultaneously nullifies the magnetic charge. This
value depends on the fields B̄ and Ē, but in the limit b → 0

it is just ζ0 ¼ �1ffiffi
3

p . One may think that introducing the

boundary ζ0 other than zero leads to an additional magnetic
charge that neutralizes the magnetic charge of the electric
charge and results in the radial, but spherically nonsym-
metric magnetic field with the incoming and outgoing
magnetic fluxes compensating each other.

V. CONCLUDING REMARKS

With the QED values (5) and the choice of the boundary
θ0 ¼ π

2
, and also neglecting b as compared to unity the

magnetic charge is

qM ¼ q
α

30π

Ē
E0

B̄
B0

;

where E0 and B0 are the characteristic QED values
B0 ¼ m2

e ¼ 4.4 × 1013 G, E0 ¼ m2

e ¼ 1.3 × 1016 V=cm

(in CGSE units). Therefore, not too close to the electric
charge, all conditions assumed in the course of derivation
of the present result, including the requirement that F̄ and
Ḡ be smaller than ðm2=eÞ2, needed to justify the truncation
of the effective action, are met. (The latter restriction seems
to be only technical and may be overcome by expanding the
action against the constant field background to be kept in
(4). In that instance also the field-depending derivative
LFG will contribute). So, for the astrophysical-scale values

B̄ ∼ Ē≲ m2

e the magnetic charge makes up the 8 × 10−5th
part of its electric charge value.
It is important that the coefficient between the electric

and magnetic charges is a pseudoscalar, Ḡ, whose presence
in the solution is necessary for the magnetoelectric effect
described. Any possible field configurations carrying
magnetoelectric effects different from ours must contain
this unique pseudoscalar, too.
Note that in the limit Ē ¼ 0, solution (12) disappears not

to turn into the magnetic solution of Refs. [4,5] (which is of
a dipole shape [5]) produced by an electric charge in a
constant magnetic background, because that solution does
not belong to the class considered here.
It is well understood that equations of electromagnetism

readily accept a magnetic charge, with the “only” reser-
vation that the latter has been never found in Nature [11],
except as a quasiparticle in spin ice [12] or a physical
imitation [13]. Here we have demonstrated that an electric
charge is also a magnetic one if accompanied by (placed
into) a combination of constant and homogeneous parallel
electric and magnetic fields. Evidently, the restriction on
the fields to be parallel is crucial only for the method of
derivation, but the condition that they are not mutually
perpendicular, Ē·B̄ ≠ 0, cannot be circumvented. This
means that the charge may move in the Lorentz frame,
where the fields Ē and B̄ are parallel, without stopping
being a magnetic monopole.
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