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Abstract Within general nonlinear electrodynamics given
by a local action, very special magnetic field configuration
carrying no magnetic charge is found as a linear response
of the vacuum, filled with constant electric and magnetic
fields, to an embedded static electric charge. When the elec-
tric charge is point-like and external fields are parallel, the
response found may be interpreted as a field of two point-like
magnetic charges of opposite polarities in one point. Coef-
ficients characterizing the magnetic response and induced
current are specialized to quantum electrodynamics (QED),
where the nonlinearity is taken as that determined by the
local Heisenberg–Euler effective action. It is demonstrated
how the same response is reproduced in the (nonisotropic)
region remote from the charge by considering the polariza-
tion operator of QED.

1 Introduction

It is well understood that the vacuum filled with strong back-
ground field is, in quantum electrodynamics (QED), equiva-
lent to a linear or nonlinear medium [1–3]. Its properties are
described by polarization 4-tensors of n-th rank defined as
n-th variational derivatives over fields of the effective action
– their generating functional [4].

The second-rank polarization tensor �μν(x, y) contains
in itself linear polarization properties of the equivalent
medium, usually referred to as dielectric permeability and
magnetic permittivity. It is responsible for the screening of
charges and currents and transformations of their shapes due
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to the strong background, and for small-amplitude electro-
magnetic wave propagation in the background, especially
for polarization of the eigen-modes and (different) modifica-
tions of the mass shell in each mode, governing the birefrin-
gence that makes an important goal for observation [5–8].
The recent evidence for it is obtained from the neutron star
RX J1856.5-3764 [9]).

The third-rank polarization tensor �μνρ(x, y, z), takes
into account the quadratic response of the background. When
taken on the photon mass shell, it is responsible for the pho-
ton splitting and merging in an external field [10–14]. Beyond
the mass shell, it also describes the response of the medium
to small perturbations with the quadratic accuracy relative to
these perturbations. Analogously, the fourth-rank polariza-
tion tensor includes the cubic response, photon-by-photon
scattering (the first experimental detection of this fundamen-
tal process, which is the source of nonlinearity of QED, was
recently reported in Ref. [15]), photon splitting into three
[14], and so on.

Usually, polarization tensors of any rank are meant to be
calculated as Feynman diagrams in the Furry picture with
solutions of the Dirac equation in external-field background
taken for electron propagators. An essential simplification of
calculations is achieved if one confines oneself to the local
(infrared) approximation of the effective action, wherein the
dependence of the latter on the space-time derivatives of the
fields is disregarded. This approximation is good as long as
the fields slowly varying in time and space are dealt with.
Quite often, the Heisenberg-Euler expression calculated in
one-loop [16] approximation in QED is used for the local
effective action (also two-loop [17–22] and even three-loop
[23] results are being considered). Within this approxima-
tion the field equations are differential (not integral) ones,
and they do not include higher derivatives, while (the Fourier
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transform of) the polarization tensor of n-th rank behaves as
the n-th power of the momentum; in the language of optics
this corresponds to disregard of the spatial and frequency dis-
persion.1 The next step towards a better coverage of faster-
varying fields is made by Gusynin and Shovkovy [26,27],
who obtained an action functional that includes two deriva-
tives of the field strength.

We thoroughly traced the derivation of the Maxwell equa-
tions within the local approximation in Refs. [28–32] in appli-
cation to processes requiring the use of polarization tensors
up to fourth rank. Interaction between long electromagnetic
waves was considered taking into account, effectively, the
polarization tensors up to 6-th rank in Refs. [33,34]. In Refs.
[30,35] we showed that the quadratic response of the vac-
uum with the background of a constant magnetic field to
an applied electric field of a point-like or extended central-
symmetric charge, governed by the 3-rd rank polarization
tensor is purely magnetic, i.e. we face here the magneto-
electric effect, where magnetic field is created by static elec-
tric charge. Moreover, the magnetic response far from the
charge is the field of a magnetic dipole with its dipole moment
quadratically dependent upon the electric charge. The pho-
ton splitting on the basis of the same diagram was studied
in Ref. [14]. In Ref. [36] and now we take an arbitrary com-
bination of constant electric Ē and magnetic B̄ fields as a
background (see [37,38] beyond the local approximation),
and we consider linear response to an applied electric charge
following the information contained in the 2-nd rank polar-
ization tensor. This response may be both electric and mag-
netic. The electric response was studied in Ref. [36], resulting
in description of the induced charge density and modification
of the Coulomb field far from the charge.2

In the present paper we study the linear magnetic response
of the constant background to an applied Coulomb source,
complementary to our previous study [36], where only the
linear electric response was found. Linearly induced currents
and vector potentials are discussed in detail. Contrary to Ref.
[39] and to our forthcoming work, only magnetic response
with vanishing total magnetic charge is considered here. Cor-
respondingly, if the Coulomb source is point-like, the finally
found magnetic field looks like a combination of two oppo-
site point-like magnetic charges coexisting in one point.

Applying the general results derived for any nonlinear the-
ory to the special case where the nonlinearity is provided by
QED at one-loop, we refer to relevant coefficients character-
izing the results in terms of the Heisenberg–Euler effective

1 Various local Lagrangians that, like the Heisenberg–Euler approxi-
mation, do not contain space- and time-derivatives of fields, but are not
associated with QED, are widely used together with the Einstein’s grav-
ity, especially when studying magnetized black holes. See e.g. [24,25]
and pertinent references therein.
2 A brief review of our previous works may be found in Refs. [31,32].

action [16], whose proper-time representation and asymp-
totes in various parameter regimes are well known. Handier
formulae are written under the simplifying assumption that
the magnetic part of the background field is much larger that
its electric part – the assumption of “magnetic dominance”.

The magnetic response obtained is reliable only as long as
the responded field is steady, since our approach is based on
considering the local action functional. We demonstrate, in
this connection, that starting from the “genuine” polarization
tensor calculated in Refs. [37,38] as a loop of Dirac electron
and positron propagators in external field and thereby free of
the said limitation of applicability, we are able to reproduce
the same magnetic response as a limit valid far from the point
charge. The measure of remoteness, necessary for achieving
this limit depends upon the direction. (This demonstration is
performed for magnetic dominance case.)

The paper is organized as follows. In Sect. 2, after pre-
senting the necessary Maxwell equations linearized near the
background field and indicating the structure of the applied
electric field, we obtain expressions for the current density
induced in the “medium” inside and outside of the applied
extended charge. In Sects. 2.1 and 2.2 we find the magnetic
fields produced by this current and the vector potential cor-
responding to the magnetic response produced by a pointlike
Coulomb source. All the results reported above are written
in terms of the derivatives of the local effective Lagrangian
over the field invariants taken at the background. Hence these
may be used with every model Lagrangian, irrespective of
its origin and of its connection to QED. On the contrary,
in Sect. 3, we specialize the results to the one-loop Euler–
Heisenberg Lagrangian of QED. The proceeding beyond the
local approximation is dealt with in Sect. 3.1. Section 4 is
devoted to concluding remarks.

2 Linearly induced currents and magnetic responses in
constant backgrounds

Let there be a background electromagnetic field, with its field
tensor equal to Fνμ (x), produced by the background current
Jμ via the (second set of) Maxwell equations3

∂νFνμ (x) − ∂ν

[
δL (F,G)

δF (x)

∣∣∣∣
F=F

Fνμ (x)

+ δL (F,G)

δG (x)

∣∣∣∣
F=F

F̃νμ (x)

]
= Jμ (x) , (1)

3 Greek indices span the 4-dimensional Minkowski space-time, e.g.,
μ = (0, i), i = 1, 2, 3, ημν = diag(+1,−1,−1,−1), and bold-
face letters denote three-dimensional Euclidean vectors (e.g., A(x) =(
Ai (x) , i = 1, 2, 3

)
. The four-rank and three-rank Levi-Civita tensors

are normalized as ε0123 = +1 and ε123 = 1, respectively.
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within a nonlinear local electrodynamics with the Lagrangian

L(x) = −F (x) + L(x) , (2)

where its nonlinear part L(x) is taken as a function L(x) =
L (F,G) of two field invariants F = (1/4) FμνFμν =
(1/2)

(
B2 − E2

)
, G = (1/4) F̃μνFμν = − (E · B), F̃μν (x)

= (1/2) εμναβFαβ (x), and may be thought of, for instance,
as the effective Lagrangian of Quantum Electrodynamics in
the local (infrared) approximation, i. e. the one where the
dependence on the space- and time-derivatives of the fields
is neglected.4 Moreover, we shall be considering the constant
background Fνμ (x) = Fνμ = const. here. This field does
not require any current to be supported: it is seen that Eq. (1)
is satisfied by Jμ (x) = 0 in this case.

Let the constant background be disturbed by a small cur-
rent jμ (x). It causes the deviation fνμ (x) = Fνμ (x)− Fνμ

of the field from the background. Expanding the Maxwell
equations (1) in powers of fνμ (x), we obtain in the first
order the linear equation (see Refs. [28–32], [35,36,39] for
equations for higher orders, which are nonlinear as contain-
ing the second and higher powers of fνμ (x)):

∂ν fνμ (x) = j lin
μ (x) + jμ (x) ,

j lin
μ (x) = ∂τ

[
LF fτμ (x) + 1

2

(
LFFFαβ

+LFG F̃αβ

)
Fτμ f αβ (x)

]

+∂τ

[
LG f̃τμ (x) + 1

2

(
LFGFαβ

+LGG F̃αβ

)
F̃τμ f αβ (x)

]
, (3)

where the subscripts by L designate derivatives with respect
to the indicated field invariants taken at their background

value, for instance ∂2L
∂F∂G

∣∣∣
F=F

= LFG. We have intro-

duced here the notation for the linearly induced current
j lin
μ (x) (nonlinearly induced currents were dealt with in Refs.

[28–32,35,36,39]). To avoid possible misunderstanding, we
stress that nonlinearly induced currents are responsible for
self-induction of the deviation fields fνμ (x), whereas the
nonlinearity of the theory, given by the Lagrangian (2), shows
itself in the present framework as the interaction between the
electromagnetic field fνμ (x) and the electromagnetic back-
ground Fαβ .

In what follows we solve Eq. (3) perturbatively with
respect to the above coefficients, whose connection with
QED will be exploited in Sect. 3. To this end we represent

4 The special case with the Euler–Heisenberg Lagrangian, accepted as
the one-loop approximation of such local effective action, will be treated
in Sect. 3.

the electromagnetic field-strength tensor as

fνμ (x) = f (0)
νμ (x) + f (1)

νμ (x) + · · · , (4)

where f (0)
νμ (x) is a solution of the classical field equation

∂ν f (0)
νμ (x) = jμ (x) ,

For the perturbation of the background we take the current
jμ (x) corresponding to a static charge q homogeneously dis-
tributed over a ball with the radius R. Hence the null approx-
imation f (0)

νμ (x) includes5

E(0) (r) = E(0)
in (r) θ (R − r) + E(0)

out (r) θ (r − R) ,

E(0)
in (r) = qr

4πR3 ,

E(0)
out (r) = qr

4πr3 , B(0) (r) = 0. (5)

Throughout the text, the indexes “in” and “out” classify elec-
tromagnetic quantities at points inside (r < R) and outside
(r ≥ R) of the spherical charge distribution, respectively.
In our previous work [36], we studied the electric response
E (1)k(r) �= 0,
B(1)k(r) = − (1/2) εi jk f (1) jk (r) = 0 giving a correction
to the Coulomb law (5); now we shall consider the purely
magnetic solution B(1)k(r) = − (1/2) εi jk f (1) jk (r) �= 0,

E (1)k(r) = 0. In Ref. [36] it was found that the first-order
linear magnetic response B(1)(r) to the purely electric per-
turbation jμ (x) is the solution to the differential equation

∇ ×
[
B(1) (r) − H(0) (r)

]
= 0 , (6)

where H(0) (r) is the expression within the brackets in (3),
taken in the zeroth order, i.e. on solutions (5):

H(0) (r) = H
(0)
in (r) θ(R − r) + H

(0)
out (r) θ(r − R) , (7)

where

H
(0)
in (r) = q

4πR3

{−LGr − [
LFF

(
E · r) + LFG

(
B · r)]B

+ [
LFG

(
E · r) + LGG

(
B · r)]E}

, r < R , (8)

H
(0)
out (r) = q

4πr3

{−LGr − [
LFF

(
E · r) + LFG

(
B · r)]B

+ [
LFG

(
E · r) + LGG

(
B · r)]E}

, r ≥ R . (9)

Here and in what follows, the space- and time-independent
electric and magnetic components of the background field

are barred: E
i = F0i , B

i = − (1/2) εi jk F
jk

.

5 Hereafter θ (z) denotes the Heaviside step function defined as θ (z) =
1 if z ≥ 0 and zero otherwise.
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Consider the linearly induced current density (3) to the
same first-order approximation. According to Eq. (6), it is

j(1) (r) = ∇ × H(0) (r) = θ(R − r)[∇ × H
(0)
in (r)]

+θ(r − R)[∇ × H
(0)
out (r)] . (10)

Note that the quantity (7) is continuous at the border of the
charge r = R, because E(0) (r) (5 ) is. For this reason the
differentiation of the step functions has not contributed to
the sum (10). Hence, there does not appear any current at
the surface of the charge.6 As a result, we may define the
inner B(1)

in (r) and the outer B(1)
out (r) magnetic responses as

solutions to the equations

∇ × B(1)
in (r) = j(1)

in (r) , ∇ × B(1)
out (r) = j(1)

out (r) , (11)

where the inner and outer parts of the first-order linearly
induced current densities are

j(1)
in (r) = ∇ × H

(0)
in (r) = q

4πR3

(
LFF

+LGG)
[
B × E

]
, r < R , (12)

and

j(1)
out (r)

= ∇ × H
(0)
out (r)

= q

4πr3

{
LFF

([
B × E

] + 3

r2

(
E · r) [

r × B
])

+LGG

([
B × E

] − 3

r2

(
B · r) [

r × E
])

+ 3

r2 LFG

((
B · r) [

r×B
] − (

E · r) [
r×E

])}
, r≥R .

(13)

respectively. The induced current (10) is discontinuous at the
edge of the ball, the same as the charge density is.

For the special case of parallel external backgrounds B ‖
E, the induced current density inside the charge disappears,
j(1)
in = 0, while the current j(1)

out (r) circles the coordinate axis
parallel to their common direction. Letting ẑ be the unit vector
(
∣∣ẑ∣∣ = 1) along the common direction of the external fields,

ẑ ‖ B ‖ E, the current density j(1)
out (r) acquires the form

j(1)
out (r) = 3q

4πr5
g̃

(
ẑ · r) [

r × ẑ
]

, (14)

6 Suppose there is a function with the structure similar to (7) (rep-
resenting a “field”) f (x) = θ(x − a)F(x) + θ(a − x)Q(x). It is
continuous in the point x = a, once F(a) = Q(a). Consider its
derivative (representing a “current”): f ′(x) = θ(x − a)F ′(x) + θ(a −
x)Q′(x) + δ(x − a)F(x) − δ(a − x)Q(x). The part of f ′(x) concen-
trated at x = a (“the surface current”) δ(x−a)F(x)−δ(a− x)Q(x) =
δ(x − a) (F(x) − Q(x)) = δ(x − a) (F(a) − Q(a)) = 0 disappears
due to the continuity of f (x). The remaining part of the “current”
f ′(x) = θ(x − a)F ′(x) + θ(a − x)Q′(x) is discontinuous provided
F ′(x) �= Q′(x) at x = a.

Fig. 1 Flux of the electric current (14) linearly induced by static elec-
tric charge placed into parallel electric and magnetic background fields
(outside the charge). The current revolves about the axis drawn along
the common direction of the background fields. The brighter the arrow-
head lines, the larger the current density

where g̃ is a combination of derivatives of the effective
Lagrangian and field invariants,

g̃ = G
(
LGG − LFF

) + 2FLFG ,

G = −B · E , F = 1

2

(
B

2 − E
2
)

. (15)

The current flux (14) flows in opposite directions in the
upper and lower hemispheres; see Fig. 1. Hence, the total
current through the part of a fixed meridional plane ϕ = ϕ0,

0 < ϕ0 < 2π, enclosed between any two coordinate spheres
r1 < r < r2 is zero:

∫
j(1)
out (r) ds = 3q

4π
g̃

∫ r2

r1

dr

r2

∫ π

0
dθ cos θ sin θ = 0 .

Here cos θ = (
ẑ · r) /r . Once any two mutually non-

orthogonal constant fields may be reduced to parallelity by
an appropriate Lorentz transformation to a special inertial
frame, the current (13) differs from (14) by a contribution
due to the motion of the charge in that frame.

2.1 Magnetic response

Besides the linearized Maxwell equations (6), the magnetic
response B(1) (r) should obey also the equation

∇ · B(1) (r) = 0 , (16)

that excludes an overall magnetic charge and makes the for-
mulation of the theory in terms of potentials possible, in
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which case it corresponds to one of the Bianchi identities
in electrodynamics. Equations (6) and (16) are satisfied by
the magnetic response B(1) (r)

B(1)i (r) = H(0)i (r) + 1

4π
∂i∂ j

∫
dy

H(0) j (y)
|r − y| . (17)

The integrals on the rhs. of Eq. (17) can be evaluated fol-
lowing the method outlined in Appendix B in Ref. [36].
Their final expression can be obtained from Eqs. (B2) and
(B6) of that reference after the substitutions LF → −LG,

LFFE
j → LFFB

j
, LFGB

j → −LFGE
j
, LFGE

j →
LFGB

j
and LGGB

j → −LGGE
j
. As a result, the inner

part B(1)
in (r) takes the form

B(1)
in (r) = q

4π

{[
3

5R3LFG

(
E · r)

+ 1

5R3

(
LFF + 4LGG

) (
B · r)

]
E

+
[
− 3

5R3LFG

(
B · r)

− 1

5R3

(
4LFF + LGG

) (
E · r)

]
B + g̃

5R3 r
}

,

(18)

while the outer part B(1)
out (r) can be conveniently written as

B(1)
out (r) = B(1)

pl (r) + B(1)
out (r; R) . (19)

Here B(1)
pl (r) denotes an R-free part

B(1)
pl (r) = q

4π

{
g̃

2

r

r3 −
(
LGG + LFF

)
2r3

[(
E · r)B − (

B · r)E]

+ 3

2

[(
LGG − LFF

) (
E · r) (

B · r)

−LFG

((
B · r)2 − (

E · r)2
)] r

r5

}
, (20)

while B(1)
out (r; R), the R-dependent part, reads

B(1)
out (r; R) = q

8π

(
3R2

5r5

) {
2LFG

[(
E · r)E − (

B · r)B]

− (
LFF − LGG

) [(
B · r)E + (

E · r)B]

+
[
−g̃ + 5

r2

(
LFF − LGG

) (
E · r) (

B · r)

+ 5

r2 LFG

((
B · r)2 − (

E · r)2
)]

r
}

, (21)

The division in R-dependent and R-free terms, expressed in
Eq. (19), is aimed to emphasize that Eq. (21) corresponds
to a pure homogeneous solution ∇ × B(1)

out (r; R) = 0. This
is a consequence of the fact that the outer induced current
density, given by Eq. (13 ), does not depend on R or, in
other words, there is no R-dependent source providing (21).

Its real role is to provide continuity of the whole magnetic
response B(1) (r) = B(1)

in (r) θ (R − r) + B(1)
out (r) θ (r − R)

at the border of the Coulomb source. A similar feature has
been reported by us in [36], wherein R-dependent terms in
the electric response come automatically from the projection
operator with the same interpretation. These R-dependent
solutions are a consequence of the Coulomb source being an
extended charge distribution rather than a pointlike one. In
contrast, the R-independent part B(1)

pl (r) is the same as the
first-order linear response of the pointlike Coulomb source,
since it is the only survivor in the limit r � R (or R → 0),
bearing in mind that for any non-special direction, B(1)

pl (r)

decreases as r−2, while B(1)
out (r; R) decreases as r−4. There-

fore B(1)
pl (r) is identified as the first-order linear response

to the pointlike Coulomb source. Moreover, according to Eq.
(13), B(1)

pl (r) is provided by the outer induced current j(1)
out (r)

∇ × B(1)
pl (r) = ∇ × H

(0)
out (r) = j(1)

out (r) . (22)

The first-order linear magnetic response calculated above
does not carry any magnetic charge, as a consequence of the
Bianchi identity (16). This is reflected in the triviality of the
Gauss integral

∮
S

(
B(1) (r) · n̂

)
dS = 0 , (23)

for an arbitrary closed surface S embracing the charge q.
This integral vanishes for each magnetic response B(1)

in (r),

B(1)
pl (r) and B(1)

out (r; R), independently. (We refer the reader
to our arXiv preprint [40] for explicit demonstration of this
statement and other details.) This implies that magnetic lines
of force incoming to and outgoing from the charge q , com-
pensate each other, so that the corresponding magnetic flux
be zero.

To visualize the structure of the magnetic lines of force, let
us consider the particular case of parallel background fields,
E = E ẑ , B = Bẑ (

∣∣ẑ∣∣ = 1), whose response acquires a
simpler form

B(1)
in (r) = qg̃

4πR3

1

5

[
r − 3

(
ẑ · r) ẑ] , (24)

and

B(1)
out (r) = qg̃

4πr3

{[
1 − 3R2

5r2 − 3

(
1 − R2

r2

)(
ẑ · r
r

)2
]
r
2

− 3R2

5r2

(
ẑ · r) ẑ

}
. (25)

Moreover, in the limit r/R → ∞, we are left with a single
magnetic response, exclusively radial, although spherically
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nonsymmetric, corresponding to that of a pointlike Coulomb
source

B(1)
pl (r) = lim

r/R→∞B(1) (r) = q

4π

g̃

2

[
1 − 3

(
ẑ · r
r

)2
]

r
r3 .

(26)

The magnetic lines of force are straight lines, vanishing at
the angles cos θ = ζ = ζ0 = 1/

√
3. As no net magnetic

charge exists for producing a nontrivial magnetic flux, there
are inward magnetic lines (pointing to q) and outward mag-
netic lines (lines leaving q), in the same proportion (see Fig.
2).

The magnetic field found (26) may be understood as two
pointlike magnetic poles of equal, but opposite, polarities
superposed in one point, so to say, a pointlike magnetic
dipole.

2.2 Vector potentials

In this subsection, we extend the above consideration to the
level of electromagnetic potentials, restricting ourselves to
the case of electromagnetic responses generated by a point-
like charge distribution since, as discussed before, the role
of the regularization ) is simply to avoid divergent integrals
in the calculation of magnetic responses (17) if a pointlike
source is considered from the beginning. In this case, the
vector potential is sought in the form,7

A(1) (r) = [
ẑ × r

] A (ζ, ξ)

r2 + [
ν̂×r

] C (ζ, ξ)

r2 +
[
ẑ × ν̂

]
r

N ,

ẑ = B

B
, ν̂ = E

E
, ζ = ẑ · r

r
, ξ = ν̂ · r

r
, (27)

where N is a constant and A (ζ, ξ) , C (ζ, ξ) are functions
of the cosines of the angles between directions of E, B and
the radius vector r. Although this form may be not the most
general one, its use is sufficient for finding at least a certain
class of the vector-potentials A(1) (r), all the variety of other
possible values for A(1) (r) being gauge-equivalent to those
found. The fulfillment of the program of finding the vector
potentia in the form (27) is presented in detail in Ref. [40]. It
includes solving a first-order partial differential equation for
two functionsA (ζ, ξ) and C (ζ, ξ) . Boundary conditions for
this equation span different choices of the gauge. There is a
remarkable choice that results in an expression for A(1) (r)
(27), free of the singularity along directions of the two back-
ground fields specified by ξ, ζ = ±1

7 For the sake of convenience, we remove the subscript “pl” on the
magnetic response generated by a pointlike Coulomb distribution, given
by Eq. (20 ). Thus B(1)

pl (r) ≡ B(1) (r) from now on.

A(1) (r) = q

16πr2

[
B × r

]

×
[(

LGG − LFF

) (
E · r
r

)
− 2LFG

(
B · r
r

)]

+ q

16πr2

[
E × r

]

×
[(

LGG − LFF

) (
B · r
r

)
+ 2LFG

(
E · r
r

)]

+ q

8π

(
LFF + LGG

) [
B × E

]
r2 , (28)

which does not obey the Coulomb gauge condition

∇ · A(1) (r) = q
(
LFF + LGG

)
8π

r · [
E × B

]
r3 , (29)

on account of the non-parallelism between the background
fields. For parallel backgrounds, Eq. (28) reduces to

A(1) (r) = − q

4π

[
ẑ × r

]
r2

g̃

2
ζ , (30)

This is subject to the Coulomb gauge condition∇·A(1) (r) =0.

3 Results in QED

To visualize how the magnetic responses and related effects,
valid for any local nonlinear theory, depend on the constant
background, we apply the former results to a specific theory,
whose nonlinearity is provided by the local approximation of
the effective Lagrangian of QED found within one-fermion-
loop calculation by Heisenberg and Euler [16] (see e.g. [41])

L = m4
e

8π2

∫ ∞

0
dt

e−t

t3

{
− (ta cot ta) (tb coth tb)

+1 − 1

3

(
a2 − b2

)
t2

}
, (31)

where the integration contour is meant to circumvent the
poles on the real axis of t supplied by cot ta, above the

real axis. Here a = (
e/m2

e

)√
−F +

√
F

2 + G
2

and b =
(
e/m2

e

) √
F +

√
F

2 + G
2

are dimensionless combinations of
the field invariants, and have the meaning of the electric and
magnetic field in the Lorentz frame where these are parallel,
normalized to the characteristic field value m2

e/e. Here m2
e

and e are the electron mass and charge (in absolute value),
respectively. As it is well known, such a frame always exists
when G �= 0.

We are primarily interested in strong magnetic-dominated
backgrounds, in which the electric contribution is sufficiently
small in comparison to the magnetic part
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Fig. 2 Magnetic lines of force produced in a constant background
by the static charge. The left pattern corresponds to the extended
charge concentrated within the dashed circle, and the right pattern
corresponds to the point charge [according to Eq. (26)]. Magnetic
field B(1)

in (x) inside the charge is drawn following Eq. (24), and

its outer part B(1)
out (x) following Eq. (25). In the limit R → 0,

the red/blue arrows in the left pattern tend to straight lines,
becoming “inward” and “outward” magnetic lines of force,
as depicted in the right pattern. The inclined dashed lines indicate
regions of zero magnetic field on the right, whereas, on the left, they
only divide “inward” and “outward” magnetic lines of force in the limit
R → 0

a

b
� 1 , (32)

irrespective of whether a and b are small or not as compared
to the unity, implying the magnetic dominance B � E in
any reference frame. Such condition is enough to probe vac-
uum nonlinear effects8, and should be applied in final expres-
sions after all coefficients composing the magnetic responses,
in particular g̃ (15), have been calculated. The necessary
second derivatives of the effective Lagrangian (31) with a
and b arbitrary, i.e. not subjected to condition (32), are first
obtained as Eqs. (11) in Ref. [43] [see also Eqs. (51)–(54)
in Ref. [36] ]. The corresponding expressions are sufficient
to form g̃, but the arising integral representations are over-
complicated. For this reason, we address ourselves to their
magnetic-dominance limits, given by Eqs. (58) in Ref. [36].9

These expressions are obtained by expanding the trigonomet-
ric functions in the integral representations following from
(31) into ascending powers of a/b. In this way the leading

8 Note that the magnetic responses (18), (19) and the nonlinearly
induced currents (12), (13), vanish identically in the pure magnetic
background a/b = 0, since G = 0.
9 The remaining coefficient FL

(1)
FG resulting from the expansion

FLFG = (a/b)FL(1)
FG+O

(
a2/b2

)
formally coincides with

(
GLFG

)(2)

in Ref. [36] except by a multiplying factor of κ/2, namely FL
(1)
FG =

(κ/2)
(
GLFG

)(2).

term g̃(1) in the expansion g̃ = (a/b) g̃(1) + O
(
(a/b)3), is

obtained:

g̃(1) = κ
( α

2π

) ∫ ∞

0
dτ

e−τ/b

τ

[
1

τ
coth τ

−
(

1 + 2τ 2

3

)
1

sinh2 τ

]
, κ = sgn

(
G

)
. (33)

In the magnetic dominance case, the same as for the
purely magnetic background, it is possible to express all
above integrals in terms of the Hurwitz Zeta function
ζ (z, σ ), DiGamma function ψ (z) = �′ (z) /� (z) and
related functions [42]. The Zeta-function representations for
all the necessary derivatives of the Heisenberg–Euler effec-
tive Lagrangian can be found in Ref. [43]. The missing rep-
resentation – corresponding to FLFG – can be written anal-
ogously. Using Zeta-function regularization techniques (see
e. g., [44–46]), g̃(1) is expressed as follows

g̃(1) = κ
( α

2π

) {
1

2b2 − 1

3
+ 2

3
ψ

(
1

2b

)
− 8ζ ′

(
−1,

1

2b

)

+ 1

b

[
log

b

π
+ 2 log �

(
1

2b

)
+ 1

3
ψ(1)

(
1

2b

)]}
,

(34)

where ζ ′ (z, σ ) is the derivative of the Hurwitz Zeta func-
tion with respect to z, ψ( j) (z) is the j-th derivative of the
DiGamma function and γ ≈ 0.577 is the Euler constant
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[42]. Using asymptotic representations of special functions
appearing in Eq. (34), (see e.g., [44–47]) the above coeffi-
cient tends to the constant for growing magnetic field:

g̃(1) ∼ −κ
( α

2π

) (
1

3
+ 2

3
γ + 8ζ ′ (−1)

)

≈ κ
( α

2π

)
0.60523 , b → ∞ , (35)

Therefore, the leading-order contribution to g̃ = (a/b) g̃(1)+
O

(
(a/b)3) vanishes in the limit of infinite magnetic field.

The linearly growing with the magnetic field contribution
from LGG – known to be responsible for growing electric
response and growing screening of the Coulomb field of the
nucleus in an atom – is cancelled in g̃ by the analogous contri-
bution from LFG. As a result, no matter how large the back-
ground may be (as long as the condition (32) is preserved),
the perturbation parameter for the linear magnetic response
∼ (α/2π)×(a/b) remains small or tends to zero. Therefore,
the one-loop accuracy of α laid in this result is respected for
any magnitude of the magnetic-dominant background.

3.1 Magnetic response as a large-distance limit from
results beyond the infrared approximation

Since the infrared approximation restricts the consideration
to slow-varying electromagnetic fields and at points suffi-
ciently close to the charge distribution where the electric

perturbation is intrinsically fast-varying, it is essential to
study conditions by which the present results are justified.
To this aim we consider the exact approach developed in
Refs. [37,38] specialized to the magnetic dominated regime
(32). As we shall see below, the vector-potential (30) corre-
spond to the asymptotic expression valid far from the charge
for the linear magnetic response first calculated within the
approach free of the limitation that the response should be
slow-varying in space and time. Such approach is provided
by the use of the photon polarization tensor taken as the one-
loop diagram of the Furry picture formed by the electron
and positron exact Dirac propagators in the constant exter-
nal electric and magnetic field. The strength of that field is
not restricted from above, and the polarization tensor is not
derived from a local effective action. The needed polariza-
tion tensor beyond the photon mass shell, k2

0 − k2 �= 0, is
known since [37,38]. The 3-vector potential produced by a
point-like charge q is

Ai (x) = q

(2π)3

∫
Di0 (k) exp (−ikx) d3k , (36)

where Di0 (k) is the static limit of the photon propagator in
the background field, subject to the decomposition

Di0 (k) =
∑

a=1,2,3

�
(a)
i �

(a)
0

(�(a))2

1

k2 + �a
,

in terms of 4-eigenvectors �
(a)
μ and eigenvalues �a of the men-

tioned polarization tensor. It was shown in Ref. [38] that only
components numbered as “2” and “3” in this decomposition
give rise to magnetic field of the charge q. In the regime of
magnetic dominance under consideration one has for (36)10

A (x) = −iq

(2π)3

∫
c− �3(k) exp(−ikx)d3k

(k2 + �2)(k2 + �3)
,

A = (A⊥, Az = 0) . (37)

Here c− = [k⊥×ẑ]/|k⊥|, in whichk⊥ denotes the projection
of the photon 3-momentumk onto the plane orthogonal to the
common orientation of the background fields, ẑ. The Lorentz
scalar �3, as calculated to the first power in the fine-structure
constant α (as the one-loop diagram), is given in the static
limit k0 = 0 in the rest frame of the charge (remind that we
restrict ourselves to the case where the background fields are
parallel in that frame) by the integral

�3(k) = − iα

4π

G

F
|k⊥|k‖

∫ ∞

0

τdτ

sinh2 τ

∫ 1

−1
dη(1 − η)2 sinh2 τ(1 + η)

2
×

× exp

{
− k2⊥
eB

sinh
[
(1 + η) τ

2

]
sinh

[
(1 − η) τ

2

]
sinh τ

− k2‖
eB

(
1 − η2

4

)
τ − m2

e

eB
τ

}
. (38)

Here k‖ = (
kẑ

)
. Note that in accordance with the mag-

netic dominance adopted, the electric background field is
present only as the factor G. Eqs. (37) and (38) supply us
with the possibility of finding the linear magnetic response
to a point charge free of the limitation that the field of this
charge be slow-varying. Although both equations are suf-
ficient for studying the singularity of the linear magnetic
response near the charge, it is noteworthy that it corresponds
going beyond the quadratic approximation studied in Sect.
2, therefore beyond the scope of this work. Nevertheless, the
present approach gives the necessary information regarding
the distance from the point charge in comparison to elemen-
tary length scales.

To pass to large distances x⊥, x‖ , where the field of the
charge is expected to be slow-varying, we have to con-
sider the limit of small k in �3. As seen from (38), the

10 We have removed the unjustified factor i in c+
0 from Eq. (31) of Ref.

[38] to write the corrected Eq. (37).
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measures of smallness are different for k⊥ and k‖. When
k2‖ � m2

e and k2⊥ � eB (note, that the combination of hyper-
bolic sines in the exponential is a restricted function), we
can neglect all momentum-depending terms in the exponent
to get the asymptotic regime of large distances x‖ � �C,
|x⊥| � (eB)−1/2, with �C being the electron Compton

length, and (eB)− 1
2 its classical orbit radius in a magnetic

field. Such are, therefore, the two formation lengths of the
polarization tensor for two different directions in a magnetic
field.

The knowledge of these restrictions is important when
we need to enhance the rather small magnitude of the mag-
netic response (26), (30) as revealed in the discussion above.
With the most favorable admitted values for the ratio a

b taken
to be of the order of 0.4 ÷ 0.3, the coefficient g̃ is only
(0.2 ÷ 0.15) α

2π
.To enhance the magnetic response we have

to approach the point charge as close as the local approxima-
tion permits. Admitting that the magnetic part of the back-
ground field exceeds the characteristic value of m2

e , that is that

b � 1 or �C �
(
eB

)−1/2
, we are permitted in agreement

with above to approach the charge along any direction down
to the Compton length �C .Then the maximum magnetic field
of the response (26) will be of the order of11 B(1)

pl ∼ Bcr g̃

αZ ∼ Bcr10−1α2Z , where Z is the charge number Z = q/e.
Large charges are favorable.

After setting k2‖ = k2⊥ = 0, the remaining η -integral in
(38) can be readily calculated, leading to the following limit
of �3:

�3(k)|kμ→0 = −i
κα

2π

(a
b

)
|k⊥|k‖

∫ ∞

0
dτ

e−τ/b

τ
×

[
coth τ

τ
−

(
1 + 2

3
τ 2

)
1

sinh2 τ

]
. (39)

Bearing in mind the desired identity of the τ -integral in (39)
and (33), we can represent �3 in the magnetic dominance
regime as

�3(k) = −i |k⊥| k‖g̃ . (40)

Using this in (37) we obtain for large distances from the point
charge, x‖ � �C, x⊥ � (eB)−1/2 ,

A(x⊥, x‖)
∣∣|x|→∞ ≈ qg̃

(2π)3

∫
k‖[k⊥ × ẑ]exp(−ikx)d3k

k4 .

(41)

11 To give an idea of the scale, consider the field Bp ∼ M
r3 of a magnetic

moment of 3 nuclear magnetonsM = 3 e
2mp

, characteristic of the proton

in the vacuum, at a distance r = �C from its centre, Bp ∼ 3
2
em3

e
mp

≈
3
2

em2
e

(mp/me)
= 3παBcr

103 . This field is one order of magnitude larger than

our magnetic response at Z = 1, but it decays with distance following
the cubic law as compared to quadratic law in (26).

In order to keep the same accuracy as the first term in expan-
sion (4 ), adopted when solving Eq. (3), we disregarded con-
tributions from �2, �3 to denominators as providing higher
orders in α.

Now we are in a position to compare the large-distance
asymptotic behavior (41) with our Heisenberg–Euler-based
result (30). It follows from the rotational covariance that Eq.
(41) can be expressed in terms of an scalar integral I

(
rẑ

)
,

I
(
rẑ

) = 1

r2 sin2 θ

∫
k‖ (k⊥r⊥)

exp(−ikx)d3k

k4 , (42)

as A(x⊥, x‖) = qg̃
(2π)3 [r× ẑ]I (

rẑ
)
. First we integrate over k‖

by calculating the second-order residues in the points k‖ =
±ik⊥ for x ≷ 0 to establish that

I
(
rẑ

) = − iπx‖
2r2 sin2 θ

∫
(k⊥x⊥)

k⊥
exp(−ik⊥x⊥ − k⊥|x‖|)d2k⊥ .

Calculating the remaining integrals, we obtain

I
(
rẑ

) = −π2

r2 cos θ .

Substituting this result in (41) we see that the latter coincides
with (30).

This completes the explicit demonstration, performed in
the comparatively simple magnetic-dominance configuration
of the background fields, that the linear magnetic response

obtained in the previous part of the paper, when considered
within the local approximation of QED is indeed the large-
distance asymptotic limit of true QED of the magnetic field
created by a point-like electric charge placed into a combi-
nation of constant homogeneous electric and magnetic back-
ground fields, parallel with one another in the rest frame of
the charge.

4 Conclusions

Within a nonlinear local electrodynamics (2), we have
obtained magnetic fields created by a static electric charge
q placed in a background of arbitrarily strong constant elec-
tric, E, and magnetic, B, fields by solving (the second pair
of) the Maxwell equations (3) linearized near the background
and treated in the approximation of small nonlinearity. All
our formulas contain coefficients that are derivatives of the
nonlinear part of the Lagrangian (2), where the background
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values of the fields are meant to be substituted after the deriva-
tives have been calculated. These coefficients are related
to dielectric permeability and magnetic permittivity of the
equivalent “medium” formed by the background fields in the
vacuum.

Before considering the resulting magnetic fields we estab-
lish the character of their source, which comprises of the cur-
rents induced in the equivalent “medium” by the static charge.
The result for the current inside and outside of the charge is
given by Eqs. (12 ), (13). The flow of this current (14) for the
special case of parallel background fields is shown in Fig. 1.
There is no induced current inside the charge in this special
case.

The magnetic response B(1) (r) to an introduced small
extended electric charge homogeneously distributed over a
ball of the radius R is given by Eq. (18) inside the charge
distribution and by Eqs. (20), (21) outside it. The case of the
pointlike charge is covered by the R → 0 limit, Eq. (20).
In the simplified case of parallel background fields B ‖ E,
the magnetic response is given by Eqs. (24), (25) inside and
outside the extended charge, respectively, and by Eq. (26)
for the point charge. The pattern of magnetic lines of force is
presented in Fig. 2. To complete the study, vector potentials
associated with magnetic responses generated by a pointlike
Coulomb source were calculated in Sect. 2.2.

The present results are applied to QED, where the non-
linearity of the Maxwell equations is owing to the quantum
interaction between electromagnetic fields. In doing so, we
exploit integral representations for all the nonlinearity coeffi-
cients, in terms of which our results are expressed. These are
second derivatives with respect to the field invariants of the
effective Lagrangian of QED in its local approximation taken
as the Euler–Heisenberg (one-loop) effective Lagrangian.

Next, we consider the regime where the magnetic back-
ground dominates over the electric one. In that regime the
above integrals are conveniently expressed in terms of the
Hurwitz Zeta function. The resulting formula for g̃ (15), a
common coefficient in magnetic responses and their vector
potentials, also in linearly induced current densities is lin-
ear in the background electric field. The asymptotic behavior
with the large magnetic field is explicit in Zeta function rep-
resentation.

For the same magnetic-dominant regime we were able to
explicitly demonstrate how our result appears as the far-from-
the-charge limit of the magnetic response calculated in QED
independently of the local approximation of Heisenberg–
Euler, but given by more complicated formulae. It is notable
that the speed of approaching this asymptotic limit is dif-
ferent for directions across the background field and along
it.
Acknowledgements The work is supported by RFBR under Project
18-02-00149A, and by the Tomsk State University Competitiveness
Improvement Program. T.C.A. also thanks the Advanced Talents Devel-

opment Program of the Hebei University, Project no. 801260201271,
for the partial support. D.M.G. is also supported by the Grant no.
2016/03319-6, Fundação de Amparo à Pesquisa do Estado de São
Paulo (FAPESP), and permanently by Conselho Nacional de Desen-
volvimento Científico e Tecnológico (CNPq), Brazil.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There is no data
associated to this work due to its theoretical content.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. T. Erber, Rev. Mod Phys. 38, 626 (1966)
2. Z. Bialynicka-Birula, I. Bialynicki-Birula, Phys. Rev. D 2, 2341

(1970)
3. H. Euler, B. Kockel, Naturwiss 23, 246 (1935)
4. S. Weinberg, The Quantum Theory of Fields (University Press,

Cambridge, 2001)
5. F. Xing, et al. arXiv:1705.00495 (2017)
6. G. Zavattini et al., Eur. Phys. J. C 78, 585Z (2018)
7. S.R. Valluri et al., Mon. Not. R. Astron. Soc. 472, 2398 (2017)
8. M. Diachenko, O. Novak, R. Kholodov, Ukr. J. Phys.64, 181 (2019)
9. R.P. Mignani et al., Mon. Not. R. Astron. Soc. 465, 492 (2017)

10. S.L. Adler, Ann. Phys. (N. Y.) 67, 599 (1971)
11. R.J. Stoneham, J. Phys. A Math. Gen. 12, 2187 (1979)
12. V.O. Papanyan, V.I. Ritus, Sov. Phys. JETP 34, 1195 (1972)
13. V.O. Papanyan, V.I. Ritus, Sov. Phys. JETP 38, 879 (1974)
14. H. Gies, F. Karbstein, N. Seegert, Phys. Rev. D 93, 085034 (2016)
15. M. Aaboud et al. (ATLAS Collaboration), Evidence for light-by-

light scattering in heavy-ion collisions with the ATLAS detector at
the LHC. arXiv:1702.01625. Published in Nature Physics (2017)

16. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936); V. Wesskopf,
Kong. Dans. Vid. Selsk. Math-fys. Medd. XIV, 6 (1936) [English
translation in: Early Quantum Electrodynamics: A Source Book,
A. I. Miller (University Press, Cambridge, 1994).]

17. V. I. Ritus, in Issues in Intense-Field Quantum Electrodynamics,
Proc. Lebed. Phys. Inst.168, 5, ed. V. L. Ginzburg (Nauka, Moscow,
1986; Nova Science Publ., New York , 1987)

18. V.I. Ritus, Zh Exp, Theor. Phys. 69, 540 (1975)
19. V.I. Ritus, Sov. Phys. JETP 42, 275 (1975)
20. S. R. Valluri, U. D. Jentschura, D.R. Lamm. arXiv:hep-ph/0308223

(2003)
21. H. Gies, F. Karbstein, JHEP 03, 108 (2017)
22. I. Huet, M.R. de Traubenberg, C. Schubert, Int. J. Mod. Phys. Conf.

Ser. 14, 383–393 (2012)
23. I. Huet, M.R. de Traubenberg, C. Schubert, JHEP 3, 167 (2019)
24. S. Kruglov, Int. J. Mod. Phys. A 33, 1850023 (2018)
25. S. Kruglov, Grav. Cosmol. 25, 190 (2019)
26. V.P. Gusynin, I.A. Shovkovy, Can. J. Phys. 74, 282 (1996)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1705.00495
http://arxiv.org/abs/1702.01625
http://arxiv.org/abs/hep-ph/0308223


Eur. Phys. J. C           (2020) 80:308 Page 11 of 11   308 

27. V.P. Gusynin, I.A. Shovkovy, J. Math. Phys. 40, 5406 (1999)
28. D.M. Gitman, A.E. Shabad, Phys. Rev. D 86, 125028 (2012)
29. C.V. Costa, D.M. Gitman, A.E. Shabad, Phys. Rev. D 88, 085026

(2013)
30. T.C. Adorno, D.M. Gitman, A.E. Shabad, Eur. Phys. J. C 74, 2838

(2014)
31. T.C. Adorno, D.M. Gitman, A.E. Shabad, A. Shishmarev, Izvestiya

Vusov. FIZIKA 59, 45 (2016)
32. T.C. Adorno, D.M. Gitman, A.E. Shabad, A. Shishmarev, Izvestiya

Vusov. Russ. Phys. J. 59, 1775 (2017)
33. B. King, P. Böhl, H. Ruhl, Phys. Rev. D 90, 065018 (2014)
34. A. Di Piazza, Phys. Rev. A 95, 032121 (2017)
35. T.C. Adorno, D.M. Gitman, A.E. Shabad, Phys. Rev. D 89, 047504

(2014)
36. T.C. Adorno, D.M. Gitman, A.E. Shabad, Phys. Rev. D 93, 125031

(2016)
37. I.A. Batalin, A.E. Shabad, Zh Eksp, Teor. Fiz. 60, 894 (1971), I.A.

Batalin, A.E. Shabad, Sov. Phys. JETP 33, 483 (1971)
38. T.C. Adorno, D.M. Gitman, A.E. Shabad, Phys. Rev. D 92, 741

041702(R) (2015)

39. A.E. Shabad, V.V. Usov, Phys. Rev. D 81, 125008 (2010)
40. T.C. Adorno, D.M. Gitman, A.E. Shabad. arXiv:1710.00138v2

[hp-th] (2017)
41. V.B. Berestetsky, E.M. Lifshitz, L.P. Pitayevsky,Quantum Electro-

dynamics (Nauka, Moscow, 1989) (Pergamon Press, Oxford, 1982)
42. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Digi-

tal Handbook of Mathematical Functions (Cambridge University
Press, New York, 2010)

43. F. Karbstein, R. Shaisultanov, Phys. Rev. D 91, 085027 (2015)
44. W. Dittrich, H. Gies, Probing the Quantum Vacuum; Perturbative

Effective Action Approach in Quantum Electrodynamics and Its
Application, SpringerTracts inModernPhysics, vol. 166 (Springer,
Berlin, 2000)

45. E. Elizalde, Ten Physical Applications of Spectral Zeta Functions,
(Lecture Notes in Physics, Vol. 855, 2nd Ed., New York, 2012)

46. K. Kirsten, Spectral Functions in Mathematics and Physics (Chap-
man & Hall/CRC, Boca Raton, 2002)

47. G.V. Dunne, in From Fields to Strings: Circumnavigating Theo-
retical Physics, vol. 1, ed. by M. Shifman, et al. (World Scientific,
Singapore, 2005), p. 445

123

http://arxiv.org/abs/1710.00138v2

	Magnetic response from constant backgrounds to Coulomb sources
	Abstract 
	1 Introduction
	2 Linearly induced currents and magnetic responses in constant backgrounds
	2.1 Magnetic response
	2.2 Vector potentials

	3 Results in QED
	3.1 Magnetic response as a large-distance limit from results beyond the infrared approximation

	4 Conclusions
	Acknowledgements
	References




