4,557 research outputs found

    Line adapter provides quick disconnect under moderate side loading

    Get PDF
    Line adapter acts as quick and simple disconnect system. It quickly separates upon the application of a side load of 15 pounds with standing line pressure at 100 psig

    On the numerical analysis of triplet pair production cross-sections and the mean energy of produced particles for modelling electron-photon cascade in a soft photon field

    Full text link
    The double and single differential cross-sections with respect to positron and electron energies as well as the total cross-section of triplet production in the laboratory frame are calculated numerically in order to develop a Monte Carlo code for modelling electron-photon cascades in a soft photon field. To avoid numerical integration irregularities of the integrands, which are inherent to problems of this type, we have used suitable substitutions in combination with a modern powerful program code Mathematica allowing one to achieve reliable higher-precission results. The results obtained for the total cross-section closely agree with others estimated analytically or by a different numerical approach. The results for the double and single differential cross-sections turn out to be somewhat different from some reported recently. The mean energy of the produced particles, as a function of the characteristic collisional parameter (the electron rest frame photon energy), is calculated and approximated by an analytical expression that revises other known approximations over a wide range of values of the argument. The primary-electron energy loss rate due to triplet pair production is shown to prevail over the inverse Compton scattering loss rate at several (\sim2) orders of magnitude higher interaction energy than that predicted formerly.Comment: 18 pages, 8 figures, 2 tables, LaTex2e, Iopart.cls, Iopart12.clo, Iopams.st

    Nucleon form factors in the canonically quantized Skyrme model

    Full text link
    The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the {\it ab initio} quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, fπf_\pi and ee, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer.Comment: 14pp including figure

    Wither the sliding Luttinger liquid phase in the planar pyrochlore

    Full text link
    Using series expansion based on the flow equation method we study the zero temperature properties of the spin-1/2 planar pyrochlore antiferromagnet in the limit of strong diagonal coupling. Starting from the limit of decoupled crossed dimers we analyze the evolution of the ground state energy and the elementary triplet excitations in terms of two coupling constants describing the inter dimer exchange. In the limit of weakly coupled spin-1/2 chains we find that the fully frustrated inter chain coupling is critical, forcing a dimer phase which adiabatically connects to the state of isolated dimers. This result is consistent with findings by O. Starykh, A. Furusaki and L. Balents (Phys. Rev. B 72, 094416 (2005)) which is inconsistent with a two-dimensional sliding Luttinger liquid phase at finite inter chain coupling.Comment: 6 pages, 4 Postscript figures, 1 tabl

    On the Efficient Calculation of a Linear Combination of Chi-Square Random Variables with an Application in Counting String Vacua

    Full text link
    Linear combinations of chi square random variables occur in a wide range of fields. Unfortunately, a closed, analytic expression for the pdf is not yet known. As a first result of this work, an explicit analytic expression for the density of the sum of two gamma random variables is derived. Then a computationally efficient algorithm to numerically calculate the linear combination of chi square random variables is developed. An explicit expression for the error bound is obtained. The proposed technique is shown to be computationally efficient, i.e. only polynomial in growth in the number of terms compared to the exponential growth of most other methods. It provides a vast improvement in accuracy and shows only logarithmic growth in the required precision. In addition, it is applicable to a much greater number of terms and currently the only way of computing the distribution for hundreds of terms. As an application, the exponential dependence of the eigenvalue fluctuation probability of a random matrix model for 4d supergravity with N scalar fields is found to be of the asymptotic form exp(-0.35N).Comment: 21 pages, 19 figures. 3rd versio

    1/d1/d Expansion for kk-Core Percolation

    Get PDF
    The physics of kk-core percolation pertains to those systems whose constituents require a minimum number of kk connections to each other in order to participate in any clustering phenomenon. Examples of such a phenomenon range from orientational ordering in solid ortho-para H2{\rm H}_2 mixtures to the onset of rigidity in bar-joint networks to dynamical arrest in glass-forming liquids. Unlike ordinary (k=1k=1) and biconnected (k=2k=2) percolation, the mean field k3k\ge3-core percolation transition is both continuous and discontinuous, i.e. there is a jump in the order parameter accompanied with a diverging length scale. To determine whether or not this hybrid transition survives in finite dimensions, we present a 1/d1/d expansion for kk-core percolation on the dd-dimensional hypercubic lattice. We show that to order 1/d31/d^3 the singularity in the order parameter and in the susceptibility occur at the same value of the occupation probability. This result suggests that the unusual hybrid nature of the mean field kk-core transition survives in high dimensions.Comment: 47 pages, 26 figures, revtex

    Towards generalized measures grasping CA dynamics

    Get PDF
    In this paper we conceive Lyapunov exponents, measuring the rate of separation between two initially close configurations, and Jacobians, expressing the sensitivity of a CA's transition function to its inputs, for cellular automata (CA) based upon irregular tessellations of the n-dimensional Euclidean space. Further, we establish a relationship between both that enables us to derive a mean-field approximation of the upper bound of an irregular CA's maximum Lyapunov exponent. The soundness and usability of these measures is illustrated for a family of 2-state irregular totalistic CA

    Network Automata: Coupling structure and function in real-world networks

    Full text link
    We introduce Network Automata, a framework which couples the topological evolution of a network to its structure. It is useful for dealing with networks in which the topology evolves according to some specified microscopic rules and, simultaneously, there is a dynamic process taking place on the network that both depends on its structure but is also capable of modifying it. It is a generic framework for modeling systems in which network structure, dynamics, and function are interrelated. At the practical level, this framework allows for easy implementation of the microscopic rules involved in such systems. To demonstrate the approach, we develop a class of simple biologically inspired models of fungal growth.Comment: 7 pages, 5 figures, 1 tables. Revised content - surplus text and figures remove

    The functional integral with unconditional Wiener measure for anharmonic oscillator

    Full text link
    In this article we propose the calculation of the unconditional Wiener measure functional integral with a term of the fourth order in the exponent by an alternative method as in the conventional perturbative approach. In contrast to the conventional perturbation theory, we expand into power series the term linear in the integration variable in the exponent. In such a case we can profit from the representation of the integral in question by the parabolic cylinder functions. We show that in such a case the series expansions are uniformly convergent and we find recurrence relations for the Wiener functional integral in the NN - dimensional approximation. In continuum limit we find that the generalized Gelfand - Yaglom differential equation with solution yields the desired functional integral (similarly as the standard Gelfand - Yaglom differential equation yields the functional integral for linear harmonic oscillator).Comment: Source file which we sent to journa
    corecore