220 research outputs found

    New Electronic Phase Transitions in \alpha-(BEDT-TTF)2KHg(SCN)4

    Full text link
    \alpha-(BEDT-TTF)2KHg(SCN)4 is considered to be in the charge-density-wave (CDW) state below 8 K. We present new magnetoresistance data suggesting that the material undergoes a series of field-induced CDW (FICDW) transitions at pressures slightly exceeding the critical pressure Pc at which the zero-field CDW state is destroyed. Further, we argue that a novel kind of FICDW transitions, entirely determined by a superposition of the strong Pauli and quantizing orbital effects of magnetic field on the CDW wavevector, arises when the field is strongly tilted towards the conducting layers. These new transitions can take place even in the case of a relatively well nested Fermi surface. Finally we report on the superconducting (SC) state and its coexistence with the CDW in the title compound under quasi-hydrostatic pressure. Below Pc the material is most likely a heterogeneous SC/CDW mixture, with the SC phase persisting down to ambient pressure. The SC onset temperature appears to drastically increase upon entering the SC/CDW coexistence region.Comment: 7 pages, 6 figures; invited talk at ISCOM'2003, 21-26.09.2003, Port Bourgenay, France to be published in J. Phys. IV Franc

    Interplay between unconventional superconductivity and heavy-fermion quantum criticality: CeCu2_2Si2_2 versus YbRh2_2Si2_2

    Get PDF
    In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2_2Si2_2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2_2Si2_2. In YbRh2_2Si2_2, superconductivity appears to be suppressed at T 10T\gtrsim~10 mK by AF order (TNT_N = 70 mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TAT_A slightly above 2 mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at TcT_c = 2 mK. Like the pressure - induced QCP in CeRhIn5_5, the magnetic field - induced one in YbRh2_2Si2_2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-TT unconventional heavy - fermion superconductors and other families of unconventional superconductors with higher TcT_cs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.Comment: 30 pages, 7 Figures, Accepted for publication in Philosophical Magazin

    A Covariant OBE Model for η\eta Production in NN Collisions

    Full text link
    A relativistic covariant one boson exchange model, previously applied to describe elastic nucleon-nucleon scattering, is extended to study η\eta production in NN collisions. The transition amplitude for the elementary BN->η\etaN process with B being the meson exchanged (B=π\pi, sigma|sigma,η\eta, ρ\rho, ω\omega and δ\delta) are taken to be the sum of four terms corresponding to s and u-channels with a nucleon or a nucleon isobar N*(1535MeV) in the intermediate states. Taking the relative phases of the various exchange amplitudes to be +1, the model reproduces the cross sections for the NNXηNN\to X\eta reactions in a consistent manner. In the limit where all η\eta's are produced via N^* excitations, interference terms between the overall contributions from the exchange of pseudoscalart and scalar mesons with that of vector mesons cancel out. Consequently, much of the ambiguities in the model predictions due to unknown relative phases of different vector pseudoscalar exchanges are strongly reduced.Comment: 40 pages, 15 figure

    Effect of Pressure on Tiny Antiferromagnetic Moment in the Heavy-Electron Compound URu_2Si_2

    Get PDF
    We have performed elastic neutron-scattering experiments on the heavy-electron compound URu_2Si_2 for pressure P up to 2.8 GPa. We have found that the antiferrmagnetic (100) Bragg reflection below T_m ~ 17.5 K is strongly enhanced by applying pressure. For P < 1.1 GPa, the staggered moment mu_o at 1.4 K increases linearly from ~ 0.017(3) mu_B to ~ 0.25(2) mu_B, while T_m increases slightly at a rate ~ 1 K/GPa, roughly following the transition temperature T_o determined from macroscopic anomalies. We have also observed a sharp phase transition at P_c ~ 1.5 GPa, above which a 3D-Ising type of antiferromagnetic phase (mu_o ~ 0.4 mu_B) appears with a slightly reduced lattice constant.Comment: RevTeX, 4 pages, 4 eps figures, accepted for publication in Phys. Rev. Let

    Low Temperature Properties of Anisotropic Superconductors with Kondo Impurities

    Full text link
    We present a self-consistent theory of superconductors in the presence of Kondo impurities, using large-NN slave-boson methods to treat the impurity dynamics. The technique is tested on the s-wave case and shown to give good results compared to other methods for TK>TcT_K > T_c. We calculate low temperature thermodynamic and transport properties for various superconducting states, including isotropic s-wave and representative anisotropic model states with line and point nodes on the Fermi surface.Comment: 21 pages, RevTeX 3.0, 12 figures available upon request, UF preprin

    Compact Stellar Systems around NGC 1399

    Full text link
    We have obtained spectroscopic redshifts of colour-selected point sources in four wide area VLT-FLAMES fields around the Fornax Cluster giant elliptical galaxy NGC 1399, identifying as cluster members 30 previously unknown faint (-10.5<M_g'<-8.8) compact stellar systems (CSS), and improving redshift accuracy for 23 previously catalogued CSS. By amalgamating our results with CSS from previous 2dF observations and excluding CSS dynamically associated with prominent (non-dwarf) galaxies surrounding NGC 1399, we have isolated 80 `unbound' systems that are either part of NGC 1399's globular cluster (GC) system or intracluster GCs. For these unbound systems, we find (i) they are mostly located off the main stellar locus in colour-colour space; (ii) their projected distribution about NGC 1399 is anisotropic, following the Fornax Cluster galaxy distribution, and there is weak evidence for group rotation about NGC 1399; (iii) their completeness-adjusted radial surface density profile has a slope similar to that of NGC 1399's inner GC system; (iv) their mean heliocentric recessional velocity is between that of NGC 1399's inner GCs and that of the surrounding dwarf galaxies, but their velocity dispersion is significantly lower; (v) bright CSS (M_V<-11) are slightly redder than the fainter systems, suggesting they have higher metallicity; (vi) CSS show no significant trend in gig' - i' colour index with radial distance from NGC 1399.Comment: 13 pages (including supplementary table), 13 figures, 5 tables. Accepted for publication in MNRA

    On The pp->pp\eta (eta') Reactions Near Threshold

    Full text link
    The production rate for \eta' in pp ->pp \eta' at rest is calculated in a covariant one boson exchange model, previously applied to study pi^0 and \eta production in NN collisions. The transition amplitudes for the elementary BN -> eta' N processes with B being the meson exchanged (B = pi, sigma, eta, rho, omega and delta) are taken to be the sum of s and u channels with a nucleon in the intermediate states, and a delta meson pole in a t-channel. The couplings of the eta' to hadrons are a factor 0.437 weaker than the respective eta-hadron couplings, as suggested by a quark model and a singlet-octetmixing angle theta = -23 degree. The model reproduces near threshold cross sections for the quasielastic processes pi- p ->n eta (eta') and pp -> pp eta (eta') reactions.Comment: 15 pages, 6 figure

    Superconductivity in heavy-fermion U(Pt,Pd)3 and its interplay with magnetism

    Full text link
    The effect of Pd doping on the superconducting phase diagram of the unconventional superconductor UPt3 has been measured by (magneto)resistance, specific heat, thermal expansion and magnetostriction. Experiments on single- and polycrystalline U(Pt1-xPdx)3 for x<= 0.006 show that the superconducting transition temperatures of the A phase, Tc+, and of the B phase, Tc-, both decrease, while the splitting DTc increases at a rate of 0.30(2)K/at.%Pd. We find that DTc(x) correlates with an increase of the weak magnetic moment m(x) upon Pd doping. This provides further evidence for Ginzburg-Landau scenarios with magnetism as the symmetry breaking field, i.e. the 2D E representation and the 1D odd parity model. Only for small splittings DTc is proportional to m^2(Tc+) (DTc<= 0.05 K) as predicted. The results at larger splittings call for Ginzburg-Landau expansions beyond 4th order. The tetracritical point in the B-T plane persists till at least x= 0.002 for B perpendicular to c, while it is rapidly suppressed for B||c. Upon alloying the A and B phases gain stability at the expense of the C phase.Comment: 25 pages text (PS), 8 pages with 14 figures (PS), submitted to Phys.Rev.

    Superconductivity in the charge-density-wave state of the organic metal \alpha-(BEDT-TTF)2KHg(SCN)4

    Full text link
    The superconducting transition in the layered organic compound \alpha-(BEDT-TTF)_2KHg(SCN)_4 has been studied in the two hydrostatic pressure regimes where a charge-density wave is either present or completely suppressed. Within the charge-density-wave state the experimental results reveal a network of weakly coupled superconducting regions. This is especially seen in a strong enhancement of the measured critical field and the corresponding positive curvature of its temperature dependence. Further, it is shown that on lowering the pressure into the density-wave state traces of a superconducting phase already start to appear at a much higher temperature.Comment: 8 pages, 9 figures, Phys. Rev. B, in pres

    A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for Ubiquitin Conjugates in Targeting Rad23 to the Proteasome

    Get PDF
    E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin–proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo
    corecore