1,613 research outputs found

    Metallicity-dependendent kinematics and morphology of the Milky Way bulge

    Get PDF
    We use N-body chemo-dynamic simulations to study the coupling between morphology, kinematics and metallicity of the bar/bulge region of our Galaxy. We make qualitative comparisons of our results with available observations and find very good agreement. We conclude that this region is complex, since it comprises several stellar components with different properties -- i.e. a boxy/peanut bulge, thin and thick disc components, and, to lesser extents, a disky pseudobulge, a stellar halo and a small classical bulge -- all cohabiting in dynamical equilibrium. Our models show strong links between kinematics and metallicity, or morphology and metallicity, as already suggested by a number of recent observations. We discuss and explain these links.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Forming disc galaxies in major mergers: III. The effect of angular momentum on the radial density profiles of disc galaxies

    Full text link
    We study the effect of angular momentum on the surface density profiles of disc galaxies, using high resolution simulations of major mergers whose remnants have downbending radial density profiles (type II). As described in the previous papers of this series, in this scenario, most of the disc mass is acquired after the collision via accretion from a hot gaseous halo. We find that the inner and outer disc scalelengths, as well as the break radius, correlate with the total angular momentum of the initial merging system, and are larger for high angular momentum systems. We follow the angular momentum redistribution in our simulated galaxies, and find that, like the mass, the disc angular momentum is acquired via accretion, i.e. to the detriment of the gaseous halo. Furthermore, high angular momentum systems give more angular momentum to their discs, which affects directly their radial density profile. Adding simulations of isolated galaxies to our sample, we find that the correlations are valid also for disc galaxies evolved in isolation. We show that the outer part of the disc at the end of the simulation is populated mainly by inside-out stellar migration, and that in galaxies with higher angular momentum, stars travel radially further out. This, however, does not mean that outer disc stars (in type II discs) were mostly born in the inner disc. Indeed, generally the break radius increases over time, and not taking this into account leads to overestimating the number of stars born in the inner disc.Comment: 12 pages, 13 figures, accepted for publication in MNRA

    Bar formation and evolution in disc galaxies with gas and a triaxial halo: Morphology, bar strength and halo properties

    Full text link
    We follow the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo. We find that both the relative gas fraction and the halo shape play a major role in the formation and evolution of the bar. In gas-rich simulations, the disc stays near-axisymmetric much longer than in gas-poor ones, and, when the bar starts growing, it does so at a much slower rate. Due to these two effects combined, large-scale bars form much later in gas-rich than in gas-poor discs. This can explain the observation that bars are in place earlier in massive red disc galaxies than in blue spirals. We also find that the morphological characteristics in the bar region are strongly influenced by the gas fraction. In particular, the bar at the end of the simulation is much weaker in gas-rich cases. In no case did we witness bar destruction. Halo triaxiality has a dual influence on bar strength. In the very early stages of the simulation it induces bar formation to start earlier. On the other hand, during the later, secular evolution phase, triaxial haloes lead to considerably less increase of the bar strength than spherical ones. The shape of the halo evolves considerably with time. The inner halo parts may become more elongated, or more spherical, depending on the bar strength. The main body of initially triaxial haloes evolves towards sphericity, but in initially strongly triaxial cases it stops well short of becoming spherical. Part of the angular momentum absorbed by the halo generates considerable rotation of the halo particles that stay located relatively near the disc for long periods of time. Another part generates halo bulk rotation, which, contrary to that of the bar, increases with time but stays small.Comment: 21 pages, 16 figures, accepted for publication in MNRAS. A high resolution version is at http://195.221.212.246:4780/dynam/paper/amr12/rm_3axhalo_gas.pd

    On Influence of Intensive Stationary Electromagnetic Field on the Behavior of Fermionic Systems

    Full text link
    Exact solutions of Schroedinger and Pauli equations for charged particles in an external stationary electromagnetic field of an arbitrary configuration are constructed. Green functions of scalar and spinor particles are calculated in this field. The corresponding equations for complex energy of particles bounded by short range potential are deduced. Boundary condition typical for delta - potential is not used in the treatment. Explicit analytical expressions are given for the shift and width of a quasistationary level for different configurations of the external field. The critical value of electric field in which the idea of quasistationary level becomes meaningless is calculated. It is shown that the common view on the stabilizing role of magnetic field concerns only scalar particles.Comment: 15 pages, no figures, LaTeX2

    Forming disk galaxies in wet major mergers. I. Three fiducial examples

    Full text link
    Using three fiducial Nbody+SPH simulations, we follow the merging of two disk galaxies with a hot gaseous halo component each, and examine whether the merger remnant can be a spiral galaxy. The stellar progenitor disks are destroyed by violent relaxation during the merging and most of their stars form a classical bulge, while the remaining form a thick disk and its bar. A new stellar disk forms subsequently and gradually in the remnant from the gas accreted mainly from the halo. It is vertically thin and well extended in its equatorial plane. A bar starts forming before the disk is fully in place, contrary to what is assumed in idealised simulations of isolated bar-forming galaxies. It has morphological features such as ansae and boxy/peanut bulges. Stars of different ages populate different parts of the box/peanut. A disky pseudobulge forms also, so that by the end of the simulation, all three types of bulges coexist. The oldest stars are found in the classical bulge, followed by those of the thick disk, then by those in the thin disk. The youngest stars are in the spiral arms and the disky pseudobulge. The disk surface density profiles are of type II (exponential with downbending), and the circular velocity curves are flat and show that the disks are submaximum in these examples: two clearly so and one near-borderline between maximum and submaximum. On average, only roughly between 10 and 20% of the stellar mass is in the classical bulge of the final models, i.e. much less than in previous simulations.Comment: 17 pages, 8 figures, accepted for publication in ApJ. V2: replaced Figure 4 with correct versio

    RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach

    Get PDF
    RegPredict web server is designed to provide comparative genomics tools for reconstruction and analysis of microbial regulons using comparative genomics approach. The server allows the user to rapidly generate reference sets of regulons and regulatory motif profiles in a group of prokaryotic genomes. The new concept of a cluster of co-regulated orthologous operons allows the user to distribute the analysis of large regulons and to perform the comparative analysis of multiple clusters independently. Two major workflows currently implemented in RegPredict are: (i) regulon reconstruction for a known regulatory motif and (ii) ab initio inference of a novel regulon using several scenarios for the generation of starting gene sets. RegPredict provides a comprehensive collection of manually curated positional weight matrices of regulatory motifs. It is based on genomic sequences, ortholog and operon predictions from the MicrobesOnline. An interactive web interface of RegPredict integrates and presents diverse genomic and functional information about the candidate regulon members from several web resources. RegPredict is freely accessible at http://regpredict.lbl.gov

    Evaluation of atlas-based segmentation of hippocampi in healthy humans

    Get PDF
    Introduction and aim: Region of interest (ROI)-based functional magnetic resonance imaging (fMRI) data analysis relies on extracting signals from a specific area which is presumed to be involved in the brain activity being studied. The hippocampus is of interest in many functional connectivity studies for example in epilepsy as it plays an important role in epileptogenesis. In this context, ROI may be defined using different techniques. Our study aims at evaluating the spatial correspondence of hippocampal ROIs obtained using three brain atlases with hippocampal ROI obtained using an automatic segmentation algorithm dedicated to the hippocampus. Material and methods: High-resolution volumetric T1-weighted MR images of 18 healthy volunteers (five females) were acquired on a 3T scanner. Individual ROIs for both hippocampi of each subject were segmented from the MR images using an automatic hippocampus and amygdala segmentation software called SACHA providing the gold standard ROI for comparison with the atlas-derived results. For each subject, hippocampal ROIs were also obtained using three brain atlases: PickAtlas available as a commonly used software toolbox; automated anatomical labeling (AAL) atlas included as a subset of ROI into PickAtlas toolbox and a frequency-based brain atlas by Hammers et al. The levels of agreement between the SACHA results and those obtained using the atlases were assessed based on quantitative indices measuring volume differences and spatial overlap. The comparison was performed in standard Montreal Neurological Institute space, the registration being obtained with SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). Results: The mean volumetric error across all subjects was 73% for hippocampal ROIs derived from AAL atlas; 20% in case of ROIs derived from the Hammers atlas and 107% for ROIs derived from PickAtlas. The mean false-positive and false-negative classification rates were 60% and 10% respectively for the AAL atlas; 16% and 32% for the Hammers atlas and 6% and 72% for the PickAtlas. Conclusion: Though atlas-based ROI definition may be convenient, the resulting ROIs may be poor representations of the hippocampus in some studies critical to under- or oversampling. Performance of the AAL atlas was inferior to that of the Hammers atlas. Hippocampal ROIs derived from PickAtlas are highly significantly smaller, and this results in the worst performance out of three atlases. It is advisable that the defined ROIs should be verified with knowledge of neuroanatomy before using it for further data analysis

    Human development and income inequality as factors of regional economic growth

    Get PDF
    This paper examines the impact of the Human Development Index and the Gini index on the Real Gross Regional Product (GRP) per person employed in 68 regions of the Russian Federation during the 2000 – 2014 period. We test and compare the results from two groups of models. The first group of models reveals that higher GRP per person employed is associated with higher levels of human development and income inequality in the Russian Federation regions. These results stay robust within the models estimated by linear regression with panel-corrected standard errors, where Regional FE, Time FE and Federal District FE are controlled. The estimation results from the second group of models provide evidence that regions with higher levels of Real Gross Regional Product (GRP) per person, human development and income inequality were growing slower, on average, than regions with lower levels of these parameters.peer-reviewe

    Texture controls on the size distribution and properties of nano- and small microaggreates in soil

    Get PDF
    Soil microaggregates (SMA) with a size of <250 µm are one of the key factors influencing soil properties of ecological and structural relevance. In order to better understand their role in soil ecosystems, a quantitative understanding about the building units (BU) is necessary. The BU (divided into small SMA (<20 µm) and nanoparticles (NP, <220 nm)) where analyzed to quantify their size distribution and chemical composition. This approach will help to evaluate the properties of BU required for SMA formation.Soils with different clay contents of a Luvisol site (Scheyern, Germany) were fractionated into SMA and NP by wet sieving and pressure filtration. The differentiation between free and occluded BU was carried out by mechanical disaggregation using ultrasonic treatment. The size distribution of small SMA was analyzed with a XPT particle analyzer, while the abundance and chemical composition of NP were analyzed by field flow fractionation (AF4) coupled to a UV detector and ICP-MS.According to the mass distribution of the macroaggregate (8 mm-250 µm), large and small SMA fractions, the soils could be grouped into low (15, 18 and 19%) and high (28 and 30%) clay content. The proportion of occluded small and large SMA was increased with clay content. Interestingly the free small SMA proportion was constant and independent from clay content. Also the particle size distribution (PSD) of free small SMA did not correlate with clay content. The similar PSD of free and occluded small SMA was interpreted as a pool of potential BU for the formation of new aggregates. The NP showed three different size fractions. The evaluation of the elements Al, Si and Fe in these size fractions revealed different mass ratios and gave an insight into the composition of free and occluded NP

    Multifragmentation and nuclear phase transitions (liquid-fog and liquid-gas)

    Full text link
    Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition. The charge distributions of the intermediate mass fragments produced in p(3.6 GeV) + Au and p(8.1 GeV) + Au collisions are analyzed within the statistical multifragmentation model with the critical temperature for the nuclear liquid-gas phase transition Tc as a free parameter. The analysis presented here provides strong support for a value of Tc > 15 MeV.Comment: 4 pages, 2 figures, Submittet to Proc. of NN2003 to be published in Nucl. Phys.
    corecore