328 research outputs found

    О влиянии свойств инструментального материала на усадку стружки при резании сталей

    Get PDF
    The exploitation of solar power for energy supply is of increasing importance. While technical development mainly takes place in the engineering disciplines, computer science offers adequate techniques for simulation, optimisation and controller synthesis. In this paper we describe a work from this interdisciplinary area. We introduce our tool for the optimisation of parameterised solar thermal power plants, and report on the employment of genetic algorithms and neural networks for parameter synthesis. Experimental results show the applicability of our approach

    Dense cores in the dark cloud complex LDN1188

    Full text link
    We present a molecular line emission study of the LDN1188 dark cloud complex located in Cepheus. In this work we focused on the densest parts of the cloud and on the close neighbourhood of infrared point sources. We made ammonia mapping with the Effelsberg 100-m radio telescope and identified 3 dense cores. CS(1--0), CS(2--1) and HCO+^{+}(1--0) measurements performed with the Onsala 20\,m telescope revealed the distribution of dense molecular material. The molecular line measurements were supplemented by mapping the dust emission at 1.2\,mm in some selected directions using the IRAM 30\,m telescope. With these data we could work out a likely evolutionary sequence in this dark clould complex.Comment: YouResAstro2012 conference presentation; accepted to Astronomishen Nachrichten (25-July-2013

    UP-TO-DATE DESIGN METHODS FOR OUTER WALLS

    Get PDF

    Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using cylindrical algebraic coverings

    Get PDF
    We present a new algorithm for determining the satisfiability of conjunctions of non-linear polynomial constraints over the reals, which can be used as a theory solver for satisfiability modulo theory (SMT) solving for non-linear real arithmetic. The algorithm is a variant of Cylindrical Algebraic Decomposition (CAD) adapted for satisfiability, where solution candidates (sample points) are constructed incrementally, either until a satisfying sample is found or sufficient samples have been sampled to conclude unsatisfiability. The choice of samples is guided by the input constraints and previous conflicts. The key idea behind our new approach is to start with a partial sample; demonstrate that it cannot be extended to a full sample; and from the reasons for that rule out a larger space around the partial sample, which build up incrementally into a cylindrical algebraic covering of the space. There are similarities with the incremental variant of CAD, the NLSAT method of Jovanovic and de Moura, and the NuCAD algorithm of Brown; but we present worked examples and experimental results on a preliminary implementation to demonstrate the differences to these, and the benefits of the new approach

    Identification of Young Stellar Object candidates in the GaiaGaia DR2 x AllWISE catalogue with machine learning methods

    Get PDF
    The second GaiaGaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean GaiaGaia GG magnitude <<20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the GaiaGaia DR2 database with WISE and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars and evolved stars. At a 90% probability threshold we identified 1,129,295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published GaiaGaia Science Alerts. As GaiaGaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disk. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30% more of the published GaiaGaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future GaiaGaia alerts.Comment: 19 pages, 12 figures, 3 table

    Heap-Abstraction for an Object-Oriented Calculus with Thread Classes

    Get PDF
    This paper formalizes an open semantics for a calculus featuring thread classes, where the environment, consisting in particular of an overapproximation of the heap topology, is abstractly represented. From an observational point of view, considering classes as part of a component makes instantiation a possible interaction between component and environment or observer. For thread classes it means that a component may create external activity, which influences what can be observed. The fact that cross-border instantiation is possible requires that the connectivity of the objects needs to be incorporated into the semantics. We extend our prior work not only by adding thread classes, but also in that thread names may be communicated, which means that the semantics needs to account explicitly for the possible acquaintance of objects with threads. We show soundness of the abstraction

    Symbolic Reachability Analysis of B through ProB and LTSmin

    Get PDF
    We present a symbolic reachability analysis approach for B that can provide a significant speedup over traditional explicit state model checking. The symbolic analysis is implemented by linking ProB to LTSmin, a high-performance language independent model checker. The link is achieved via LTSmin's PINS interface, allowing ProB to benefit from LTSmin's analysis algorithms, while only writing a few hundred lines of glue-code, along with a bridge between ProB and C using ZeroMQ. ProB supports model checking of several formal specification languages such as B, Event-B, Z and TLA. Our experiments are based on a wide variety of B-Method and Event-B models to demonstrate the efficiency of the new link. Among the tested categories are state space generation and deadlock detection; but action detection and invariant checking are also feasible in principle. In many cases we observe speedups of several orders of magnitude. We also compare the results with other approaches for improving model checking, such as partial order reduction or symmetry reduction. We thus provide a new scalable, symbolic analysis algorithm for the B-Method and Event-B, along with a platform to integrate other model checking improvements via LTSmin in the future

    Mass transport from the envelope to the disk of V346 Nor: a case study for the luminosity problem in an FUor-type young eruptive star

    Get PDF
    A long-standing open issue of the paradigm of low-mass star formation is the luminosity problem: most protostars are less luminous than theoretically predicted. One possible solution is that the accretion process is episodic. FU Ori-type stars (FUors) are thought to be the visible examples for objects in the high accretion state. FUors are often surrounded by massive envelopes, which replenish the disk material and enable the disk to produce accretion outbursts. However, we have insufficient information on the envelope dynamics in FUors, about where and how mass transfer from the envelope to the disk happens. Here we present ALMA observations of the FUor-type star V346 Nor at 1.3 mm continuum and in different CO rotational lines. We mapped the density and velocity structure of its envelope and analyze the results using channel maps, position-velocity diagrams, and spectro-astrometric methods. We found that V346 Nor is surrounded by gaseous material on 10000 au scale in which a prominent outflow cavity is carved. Within the central \sim700 au, the circumstellar matter forms a flattened pseudo-disk where material is infalling with conserved angular momentum. Within \sim350 au, the velocity profile is more consistent with a disk in Keplerian rotation around a central star of 0.1 MM_{\odot}. We determined an infall rate from the envelope onto the disk of 6×\times106M^{-6}\,M_{\odot}yr1^{-1}, a factor of few higher than the quiescent accretion rate from the disk onto the star, hinting for a mismatch between the infall and accretion rates as the cause of the eruption.Comment: 16 pages, 8 figures, published in Ap

    The Potential and Challenges of CAD with Equational Constraints for SC-Square

    Get PDF
    Cylindrical algebraic decomposition (CAD) is a core algorithm within Symbolic Computation, particularly for quantifier elimination over the reals and polynomial systems solving more generally. It is now finding increased application as a decision procedure for Satisfiability Modulo Theories (SMT) solvers when working with non-linear real arithmetic. We discuss the potentials from increased focus on the logical structure of the input brought by the SMT applications and SC-Square project, particularly the presence of equational constraints. We also highlight the challenges for exploiting these: primitivity restrictions, well-orientedness questions, and the prospect of incrementality.Comment: Accepted into proceedings of MACIS 201
    corecore