788 research outputs found

    Functional Graph Contrastive Learning of Hyperscanning EEG Reveals Emotional Contagion Evoked by Stereotype-Based Stressors

    Full text link
    This study delves into the intricacies of emotional contagion and its impact on performance within dyadic interactions. Specifically, it focuses on the context of stereotype-based stress (SBS) during collaborative problem-solving tasks among female pairs. Through an exploration of emotional contagion, this study seeks to unveil its underlying mechanisms and effects. Leveraging EEG-based hyperscanning technology, we introduced an innovative approach known as the functional Graph Contrastive Learning (fGCL), which extracts subject-invariant representations of neural activity patterns from feedback trials. These representations are further subjected to analysis using the Dynamic Graph Classification (DGC) model, aimed at dissecting the process of emotional contagion along three independent temporal stages. The results underscore the substantial role of emotional contagion in shaping the trajectories of participants' performance during collaborative tasks in the presence of SBS conditions. Overall, our research contributes invaluable insights into the neural underpinnings of emotional contagion, thereby enriching our comprehension of the complexities underlying social interactions and emotional dynamics.Comment: 14 pages, 4 figures, 5 table

    Caractérisation physique de sables silteux au Togo

    Get PDF
    Le sable est l’un des matériaux les plus utilisés dans la réalisation des ouvrages de génie civil au Togo, notamment dans la confection du béton ainsi que du mortier. La présente étude est destinée à analyser certains gisements de sables silteux du Togo dans le but de déterminer leurs propriétés granulaires. 72 échantillons de sables silteux ont été prélevés dans 16 sites d’extraction et soumis aux essais en laboratoire. Il ressort des résultats que les sables silteux étudiés sont globalement très fins (Mf~1,966), de catégorie « f3 », de classe granulaire 0/1 (d~0,08mm), mal gradués (SP), de granulométrie serrée, très mal classés (Si~9,119), de forte asymétrie vers les petites tailles (Sk~0,451) et légèrement argileux (ES~66,32). Globalement inadaptés comme granulats pour bétons classiques, les carrières prises individuellement regorgent de sables silteux dont les qualités sont adaptées soit aux bétons classiques dont la résistance est exigée, soit aux bétons dont la facilité de mise en oeuvre est plus recherchée.Mots-clés : sables silteux, Togo, propriétés granulaires, propreté

    Comprehensive and quantitative profiling of B vitamins and related compounds in the mammalian liver

    Get PDF
    A method for the simultaneous quantification of B vitamins and related amines in one-carbon (1C) metabolism would benefit the study of diet and genetic/epigenetic regulation of mammalian development and health. We present a validated method for the simultaneous quantitative analysis of 13 B vitamers and four related 1C-pathway amine intermediates in liver using hydrophilic interaction chromatography (HILIC) coupled to electrospray ionization tandem mass spectrometry. Frozen sheep liver samples (50 mg) were homogenized in cold 50% acetonitrile containing 1% acetic acid with the addition of two isotope labelled internal standards. Hot acid hydrolysis was applied to release the protein-bound forms. The separation of 17 analytes was achieved using a pHILIC column with a total run time of 13 min. Detection was achieved in electrospray positive ionisation mode. Limits of detection for the majority of analytes were within the range of 0.4-3.2 pmol/g. The method was applied to 266 sheep liver samples and revealed that adenosylcobalamin, methylcobalamin, pyridoxic acid, flavin adenine dinucleotide and thiamine were the major forms of the B vitamers present with pyridoxal 5’-phosphate and thiamine pyrophosphate being detected at lower concentrations. Trimethylglycine and methylglycine were the predominant 1C-related amines measured. As anticipated, the B vitamin status of individuals varied considerably, reflecting dietary and genetic variation in our chosen outbred model species. This method offers a simple sample extraction procedure and provides comprehensive coverage of B vitamins coupled with good sensitivity and reliability

    Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida)

    Get PDF
    Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea. We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea. Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens

    Investigative power of Genomic Informational Field Theory (GIFT) relative to GWAS for genotype-phenotype mapping

    Get PDF
    Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.</p

    Significant Seismic Risk Potential From Buried Faults Beneath Almaty City, Kazakhstan, Revealed From High-Resolution Satellite DEMs

    Get PDF
    Major faults of the Tien Shan, Central Asia, have long repeat times, but fail in large (Mw 7+) earthquakes. In addition, there may be smaller, buried faults off the major faults which are not properly characterized or even recognized as active. These all pose hazard to cities along the mountain range front such as Almaty, Kazakhstan. Here, we explore the seismic hazard and risk for Almaty from specific earthquake scenarios. We run three historical-based earthquake scenarios (1887 Verny Mw 7.3, 1889 Chilik Mw 8.0 and 1911 Chon-Kemin Mw 8.0) on the current population and four hypothetical scenarios for near-field faulting. By making high-resolution Digital Elevation Models (DEMs) from SPOT and Pleiades stereo optical satellite imagery, we identify fault splays near and under Almaty. We assess the feasibility of using DEMs to estimate city building heights, aiming to better constrain future exposure datasets. Both Pleiades and SPOT-derived DEMs find accurate building heights of the majority of sampled buildings within error; Pleiades tri-stereo estimates 80% of 15 building heights within one sigma and has the smallest average percentage difference to field-measured heights (14%). A moderately sized Mw 6.5 earthquake rupture occurring on a blind thrust fault, under folding north of Almaty is the most damaging scenario explored here due to the modeled fault stretching under Almaty, with estimated 12,300±5,000 completely damaged buildings, 4,100 ± 3,500 fatalities and an economic cost of 4,700 ± Million US dollars (one sigma uncertainty). This highlights the importance of characterizing location, extent, geometry, and activity of small faults beneath cities

    Validating First-Principles Phonon Lifetimes via Inelastic Neutron Scattering

    Full text link
    Phonon lifetimes are a key component of quasiparticle theories of transport, yet first-principles lifetimes are rarely directly compared to inelastic neutron scattering (INS) results. Existing comparisons show discrepancies even at temperatures where perturbation theory is expected to be reliable. In this work, we demonstrate that the reciprocal space voxel (qq-voxel), which is the finite region in reciprocal space required in INS data analysis, must be explicitly accounted for within theory in order to draw a meaningful comparison. We demonstrate accurate predictions of peak widths of the scattering function when accounting for the qq-voxel in CaF2_2 and ThO2_2. Passing this test implies high fidelity of the phonon interactions and the approximations used to compute the Green's function, serving as critical benchmark of theory, and indicating that other material properties should be accurately predicted; which we demonstrate for thermal conductivity

    Sources of uncertainty in estimating stream solute export from headwater catchments at three sites

    Get PDF
    Uncertainty in the estimation of hydrologic export of solutes has never been fully evaluated at the scale of a small-watershed ecosystem. We used data from the Gomadansan Experimental Forest, Japan, Hubbard Brook Experimental Forest, USA, and Coweeta Hydrologic Laboratory, USA, to evaluate many sources of uncertainty, including the precision and accuracy of measurements, selection of models, and spatial and temporal variation. Uncertainty in the analysis of stream chemistry samples was generally small but could be large in relative terms for solutes near detection limits, as is common for ammonium and phosphate in forested catchments. Instantaneous flow deviated from the theoretical curve relating height to discharge by up to 10% at Hubbard Brook, but the resulting corrections to the theoretical curve generally amounted to \u3c0.5% of annual flows. Calibrations were limited to low flows; uncertainties at high flows were not evaluated because of the difficulties in performing calibrations during events. However, high flows likely contribute more uncertainty to annual flows because of the greater volume of water that is exported during these events. Uncertainty in catchment area was as much as 5%, based on a comparison of digital elevation maps with ground surveys. Three different interpolation methods are used at the three sites to combine periodic chemistry samples with streamflow to calculate fluxes. The three methods differed by \u3c5% in annual export calculations for calcium, but up to 12% for nitrate exports, when applied to a stream at Hubbard Brook for 1997–2008; nitrate has higher weekly variation at this site. Natural variation was larger than most other sources of uncertainty. Specifically, coefficients of variation across streams or across years, within site, for runoff and weighted annual concentrations of calcium, magnesium, potassium, sodium, sulphate, chloride, and silicate ranged from 5 to 50% and were even higher for nitrate. Uncertainty analysis can be used to guide efforts to improve confidence in estimated stream fluxes and also to optimize design of monitoring programmes
    • …
    corecore