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Abstract  
Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. 
Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) 
extract information using averages and variances from genotype-phenotype datasets. Averages and variances 
are legitimated upon creating distribution density functions obtained through the grouping of data into 
categories. However, as data from within a given category cannot be differentiated, the investigative power of 
such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed 
to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the 
extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree 
to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so 
requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-
phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone 
growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate 
that removing the informational barrier linked to categories enhances the investigative and discriminative 
powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that 
GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked. 
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Introduction  
Identifying associations between phenotype and genotype is the fundamental basis of genetic analysis.  The 
development of high-density genotyping and whole genome sequencing has enabled DNA variants to be 
directly identified and Genome-Wide Association Studies (GWASs) have become the method of choice for 
mapping genotype to phenotype in large populations of unrelated individuals. GWAS have been employed in 
many species, and especially in the study of human disease (1). By 2021 the NHGRI-EBI GWAS Catalog 
listed 316,782 associations identified in 5149 publications describing GWAS results (2). Additionally, 
extensive collection of data has been initiated through efforts such as the UK Biobank (3), Generation Scotland 
(4) and NIH All of Us research program (https://allofus.nih.gov/) in the expectation that large-scale GWAS 
will elucidate the basis of human health and disease and facilitate precision medicine. 
 
While genomic technologies have advanced rapidly, statistical models used to analyse genetic data are still 
based on the models developed by Fisher more than 100 years ago (5,6). GWASs essentially make use of the 
Fisher method of partitioning genotypic values by performing a linear regression of phenotype on marker 
allelic dosage (7). Regression coefficients estimate the average allele effect size, and the regression variance 
is the additive genetic variance due to the locus (8). However, an ongoing debate exists over whether the 
present analysis paradigm in quantitative genetics is at its limits for truly understanding complex traits, namely 
traits resulting from many genes each with very small effect size (9). As a result, one may wonder whether 
alternative statistical model(s) could be invented and used to determine genotype-phenotype mappings.  
 
GWASs are fundamentally linked to frequentist probabilities that, defined through relative frequencies, 
determines the validity of statistical inferences. In practice, frequentist probabilities are generated through the 
grouping of data into bins or categories to generate a bar chart, that is then interpolated to create a distribution 
density function (DDF) in the continuum limit. The DDF is, in turn, used to determine statistical inferences 
including average, variance, p-value and so on. However, since the DDF approximates the bar chart (and not 
the converse), and that it is not possible to differentiate data from within any given group/category, the DDF 
is constructed mathematically on the implicit assumption that information is missing to differentiate data from 
within any given group/category.  
 
The notion of ‘missing information’ can be legitimate and defined experimentally. For example, measuring 
the phenotype, human height with a ruler with centimetre graduations implies that any height can be measured 
to the nearest centimetre. Consequently, one centimetre-width bins/categories need to be used to generate a 
frequency table of range of phenotype values upon which the phenotype and genotype DDFs are defined. In 
this case, all the resulting statistical inferences are defined with a precision corresponding to the nearest 
centimetre. The ‘missing information’ (i.e., that what cannot be measured by the ruler) corresponds then to 
sub-centimetric scales (i.e., distances to the nearest millimetre for this example). In practice the ‘missing 
information’ is therefore linked to the one of ‘imprecision’ and deciding to provide more precise statistical 
inferences implies that the width of categories be reduced, which can only be achieved by increasing the 
sample size. It is not by chance that the ‘normal distribution’ created by mathematicians and physicists was 
initially called the ‘law of errors’, where the notion of error (misinformation) results from imprecisions in 
experimental measurements. As a result, GWAS is faced with a fundamental issue involving the extraction of 
precise information using a method that, conceptually, assumes that information is missing or that data is mis-
(in)formed.  
 
In general, the problem concerning the ‘missing information’ is never mentioned since the DDF in the 
continuum limit is never considered as an approximation but as something that has its own reality. Namely a 
DDF must exist independently of data measured (i.e., data must fit the DDF and not the converse). The latter 
remark leads to an interesting conceptual territory where the notions of average and variance, and their usage, 
may be questioned. If one considers the normal distribution (or any other DDFs) is inherent to life and that 
data must fit it (them), then the moments of the distribution (e.g., average and variance) are also essential 
parameters to describe life, and the variance often interpreted as noise in the data is then a nuisance. If, on the 
contrary, data is the important thing, and that the DDF is considered solely as a tool to interpolate data based 
on missing information, then average and variance are parameters derived from a lack of information and are, 
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as a result, poorly informative. The latter point should not come as a surprise as reducing the huge diversity 
of populations to a handful of parameters (i.e., average and variance) is highly reductionist and likely to be 
poorly descriptive. Thus, while the notions of average and variance may help representing datasets, they are 
inventions nonetheless (i.e., thought constructions akin to the field of frequentist probability. Thus, using 
average and variance as a starting point to map genotype-phenotype (GWAS) is a matter of choice. 
Accordingly, different statistical methods can be suggested. 
 
To avoid those conceptual and practical issues a new method called GIFT (Genomic Informational Field 
Theory) has been designed (10,11), reviewed in (12). In short, to associate genotype to phenotype GIFT does 
not presume that the only important information concerning the gene effect is found in averages or variances, 
nor does it presume that DDFs are central. On the contrary, GIFT starts with the pre-requisite that phenotypic 
values, or phenotypic residuals after considering the environment/fixed effects, may be measured with 
sufficient precision to be unique in a population. Then, by avoiding grouping data into bins/categories, which 
would otherwise create an artificial imprecision, GIFT considers the entire information contained in the data, 
(i.e., variance is not a nuisance anymore) making use of the cumulative sum of microstates. Figure 1 provides 
the intuition underscoring GIFT as a method.  
 
In the current article we demonstrate the informational/investigative power of GIFT relative to GWAS using 
two different datasets: 

i. Dataset-1 is derived from a study concerned with the genetic background of carcass composition in sheep 
(ovis aries) (13). Using GWAS this study demonstrated a strong association between chromosome 6 and 
the carcass composition trait ‘bone area at the ischium’. We now apply GIFT to this dataset such as to 
benchmark it against GWAS. Since GWAS has already informed the genetic background of the trait, we 
expect GIFT to at least replicate GWAS results.  

ii. Dataset-2 concerns biochemical data arising from an ongoing study in sheep which seeks to identify risk 
allele variants in genes whose products direct a series of metabolic pathways, collectively referred to as 
one carbon (1C) metabolism, and associated epigenetic regulators. The gene array was designed in such a 
way to include all the single nucleotide polymorphisms (SNPs) linked to known biochemical enzymes 
involved in these pathways. Given that Dataset-2 preselected genes for a targeted analysis of enzymes 
involved in these metabolic/epigenetic pathways, it can be considered more highly specific.  

 
The present article is structured as follows. In Part 1, the null hypothesis defined by GIFT will be established. 
Using Dataset-1 the concept of genetic path pertaining to GIFT will be introduced (Part 2) out of which a p-
value for GIFT will be defined (Part 3). Then Dataset-1 (Part 4) and Dataset-2 (Part 5) will be analysed 
comparing the informational/investigative power of GIFT relative to GWAS using Manhattan plots.  
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Materials and Methods: 
 
Biological datasets 
The first dataset (Dataset-1) analysed 600 pedigree-recorded Scottish Blackface lambs using CT scans to 
determine in vivo carcasses composition (13). The trait selected for the present study is the bone areas of the 
ischium (BAI) measured in mm2 from cross-sectional CT scans. The ischium is one of the three bones that 
make up the pelvis. It is located beneath the ilium and behind the pubis. The upper portion of the ischium 
forms a major part of the concave portion of the pelvis that forms the hip. As mentioned above this trait was 
strongly associated with the Chromosome 6 upon using residual phenotypic values. Residual phenotypic 
values were obtained using an additive model considering the population mean and, as covariates, dam age, 
year and day of birth, the effect of management group (as sheep were from different farms), sex and litter size. 
Further information can be found in Matika et al. (2016) (13).    
The second dataset (Dataset-2) analysed is new, and comes from a large ongoing programme of research 
which seeks to identify SNPs that determine individual metabolic and epigenetic responses to nutritionally 
induced deficiencies in one carbon metabolism (14,15). For this study sheep were used as an experimental 
model. All animal procedures relating to this study adhered to the Animals (Scientific Procedures) Act, 1986. 
Associated protocols complied with the ARRIVE guidelines and were approved by the University of 
Nottingham Animal Welfare and Ethical Review Body (AWERB) with Home-Office project licensed 
authority (30/3376;10th February 2016).  
 
Dataset-2: Sheep genome re-sequencing, custom array design and SNP profiling of test subjects 
Twenty-four unrelated Texel ewes were sequenced to a depth of 30x in 2 pools at Edinburgh Genomics. DNA 
samples were prepared using Illumina’s TruSeq PCR free kits and sequenced on an Illumina HiSeq 2500 
Rapid Mode (serial no. D00125), read length of 150PE. Reads were trimmed to remove adapter sequences 
and low-quality bases using skewer with commands (-Q 20, -q 3) (16) and mapped to the reference sheep 
genome assembly (Oar_v3.1) using bwa mem (options -M -t 4) (17). Following deduplication using picard-
tools version 1.92, variants were called using GATK pipeline (18) including realignment around known indels 
and recalibration of bases, and FreeBayes (--use-best-n-alleles 4 --pooled-discrete --min-alternate-count 4). 
Annotation of SNPs was performed using Ensembl variant effect predictor VEP version ensembl tools release 
79 (19). 15,347,831 variants were identified. Of these, ~3 million were novel SNPs and ~12 million were 
already present in the Ensembl genome database. SNPs within annotated coding regions (VEP annotated 
“downstream gene variant” or “intron variant” removed) and within 3Kb upstream of a gene were retained. 
SNPs with a minor allele frequency of greater than 0.5 were used to design an Illumina Infinium® iSelect® 
Custom Array consisting of 4,576 probes. This captured SNPs in 115 1C metabolism and related genes, and 
108 related epigenetic regulators as well as 33 control SNPs (Supplementary Material 1).  
 
Liver samples were next collected post-mortem from 360 male and female Texel lambs (6 to 11 months of 
age) representing 11 farms dispersed regionally across the UK. Collections took place at regional abattoirs 
and samples immediately snap frozen in liquid N and stored at -80°C until analyses. DNA was then extracted 
using AllPrep DNA/RNA Mini kit (Qiagen, Manchester UK). Briefly approximately 20 mg of liver were 
mechanically disrupted using a TissueLyser (Qiagen, Manchester, UK) in 600 RLT plus buffer containing β-
mercaptoethanol. Tissue lysates were then used to extract RNA and DNA according to the manufacturer 
instructions. The custom designed array was then used to SNP profile DNA from these Texel-sheep. For this 
purpose, liver samples were collected post-mortem from lambs (aged 6 to 11 months) representing 11 farms 
dispersed regionally across the UK. Collections took place at regional abattoirs and samples immediately snap 
frozen in liquid N and stored at -80°C until analyses. DNA was then extracted using AllPrep DNA/RNA Mini 
kit (Qiagen, Manchester UK). Briefly approximately 20 mg of liver were mechanically disrupted using a 
TissueLyser (Qiagen, Manchester, UK) in 600 RLT plus buffer containing β-mercaptoethanol. Tissue lysates 
were then used to extract RNA and DNA according to the manufacturer instructions. 
 
Dataset-2: Metabolic profiling  
For the purposes of the current study the following seven liver metabolites were selected from a larger pool 
of 1C metabolites: S-adenosyl methionine (SAM), methylcobalamin (mB12), adenosylcobalamin (aB12), 
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trimethylglycine (TMG), dimethylglycine (DMG), propionate (PPA) and methylmalonic acid (MMA). The 
first four metabolites were selected as representative intermediates of the methionine cycle whilst the latter 
two are intermediates in the hepatic synthesis of succinate (15) (Fig.2 & Supplementary Material 1). 
 
Hepatic concentrations of four metabolites (i.e., mB12, aB12, TMG and DMG) were determined by 
hydrophilic interaction chromatography (HILIC) coupled to electrospray ionization tandem mass 
spectrometry (MS/MS) as reported previously (20). For the analysis of SAM (determined separately by 
HILIC), the standard was purchased from Sigma-Aldrich (Poole, Dorset, UK). Stock solutions of this standard 
were prepared in potassium phosphate extraction buffer (KH2PO4 and K2HPO4; 40 mmol/L) containing 0.1% 
L-ascorbic acid, 0.15% citric acid and 0.1% MCE (adjusted to pH 7 with NaOH), each at a final concentration 
of 100 μmol/L. Also, for SAM the mobile phase was modified from that used for the three other reported 
metabolites by adjusting the pH of the aqueous ammonium carbonate buffer solution from 3.5 to 9.1. Mass 
spectrometer parameters for SAM were as follows: retention time = 7.69 min; Q1mass = 399.1 amu; Q3 mass 
= 250.1 amu; declustering potential = 56; collision energy = 25; collision cell exit potential = 16.          
 
Hepatic concentrations of PPA and MMA were determined by gas chromatography coupled to mass 
spectroscopic-detection (GC-MS). Briefly, for PPA, 750 μL 5-Sulfosalicylic acid (SSA, 0.04 mg/ml) was 
added to 150mg frozen liver, homogenised for 2 min and cooled on ice for 10 min. The sample was centrifuged 
for 15 min at 14,500 x g and 200 μL liver homogenate transferred to a 2.5 mL screw capped glass vial. To 
this, 20 μL internal standard (MBA, 400 μM), 3.5 μl HCl (37%) and 1 mL diethylether were added, vortexed 
for 2 min and centrifuged for 10 min at 14,500 x g. 600 μL of the upper layer was transferred to a screw capped 
glass vial containing 3.5 μL 1-(tert-butyldimethylsilyl)imidazole (TMDMSIM, 97%), vortexed for 2 min and 
heated at 60°C for 30 min. GC-MS analysis proceeded after cooling. The method used a DB-5MS column 
(J&W Scientific Agilent technology, 30 m x 0.25 mm; 0.25 μm film thickness). The carrier gas (He) was set 
at a constant flow rate of 1.3 ml/min. The injection volume was 5 μL for SCAN mode (for qualification) and 
SIM (selected ion monitoring) mode (for quantification), both using splitless mode. The injection port and MS 
selective detector interference temperatures were 260°C and 250°C respectively. The chromatograph was 
programmed for an initial temperature of 40°C for 1 min, increased to 60°C at 70°C min-1, then to 110°C at 
15°C min-1, and finally 250°C at 70°C min-1. MS was tuned regularly and operated in electron impact (EI) 
ionization mode with the ionization energy of 70eV. SCAN mode measured at m/z: 30-300 and SIM ions were 
set at 159 (for MBA) and 131 (for PPA). The same method was used to produce a calibration curve for PPA 
using standards at concentrations ranging from 19.5 nmol/g to 5μmol/g. The limit of detection was 19.5 
nmol/g. CVs for low, medium and high QCs were 10.4, 6.3 and 6.5% and the inter-assay CV was 4.7%. 
 
For MMA, 250 μL 80% MeOH was added to 50 mg frozen liver, homogenised for 2 min and cooled on ice 
for 10 min. The sample was ten centrifuged for 15 min at 14,500 x g and 200 μL liver homogenate transferred 
to a 2.5 mL screw capped glass vial. To this, 4 μL internal standard (1 mM 4-chlorobutyric acid (CBA) in 1 
mM HCl) followed by 250 μL 12% BF3-Methanol were added, vortexed for 1 min and heated at 95°C for 15 
min. After cooling, 250 μL cold distilled water and 250 μL cold dichloromethane (CH2Cl2) were added to the 
vial, vortexed for 30s and centrifuged for 10 min at 14,500 x g. The lower dichloromethane layer was 
transferred to a screw capped glass auto-sampler vial with insert for GC-MS analysis. The method used a DB-
WAX column (cross-linked polyethylene glycol; J&W Scientific Agilent technology) (30 mm x 0.25 mm; 
0.15 μm film thickness). The carrier gas (He) was set at a constant flow rate of 1.0 ml/min. The injection 
volume was 1 μL for SCAN mode (for qualification) and SIM mode (for quantification), both using splitless 
mode. The injection port and MS selective detector interference temperatures were 260°C and 280°C 
respectively. The chromatograph was programmed for an initial temperature of 50°C for 2 min, increasing to 
150°C at 8°C min-1, then to 220°C at 100°C min-1 and held for 5 min at the final temperature. MS was tuned 
regularly and operated in EI ionization mode with the ionization energy of 70eV. The limit of detection was 
0.75 nmol/g for both MMA and SA and inter-assay CVs were 8.4% for MMA and 11.0% for SA.   
 
Dataset-2: Determination of GWAS for 1C-metabolites  
Several statistical models were tested to adjust phenotypic values of 1C-metabolites and it was found that the 
most informative model was a linear univariate model once phenotypic data were log-transformed using the 
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natural logarithm (Supplementary Material 2). Transformed data were then pre-corrected for the fixed effects 
of farm (F) and sex (S) in ASReml using the following model, y୧୨ = μ + F୧ + S୨ + e୧୨, where y୧୨ is the log-

transformed phenotype, that is the log-transformed metabolite concentration studied; μ is the overall mean for 
the log-transformed metabolite concentration; F୧ is the effect of the ith farm (i =1,..,11); S୨ the effect of jth Sex 

(Male vs Female) and, e୧୨ is the residual error that was used to extract genotype-phenotype mapping 
information. The genotype dataset was filtered using PLINK (HWE p-value threshold of 10-6, call rate for 
genotypes of 10% and a MAF of 5%), the number of independent SNPs was determined using BCFTOOLS 
(r2-threshold=0.1) and the GWAS Manhattan plots, linked to the determination of pୋ୛୅ୗ, were obtained using 
GEMMA. The same genotype and residual phenotypes as filtered by GWAS were used by GIFT.   

Data representation using GIFT and related significance. 
Adjusted phenotypic data (i.e., residuals, from Dataset-1 and Dataset-2) were used for this study.  Regarding 
the representation of GIFT, upon selecting a SNP for all individuals, the different corresponding genotypes, 
aa, aA/Aa and AA, were assigned the arbitrary values +1, 0 and -1, respectively. With this convention any 
barcode can be represented by a string of numbers from which a GIFT analysis can be inferred. More 
specifically, the assignment of values +1, 0 and -1 were done as a function of the base pairs as follow: 
AA=TT=+1, GG=CC=-1 and 0 otherwise. As shown schematically in Fig.1, the residuals obtained were 
ranked by order of magnitude and the cumulative sum of their corresponding genotypic values performed to 
obtain the ‘genetic path’ for the SNP considered. The genetic path of a SNP is noted 𝜃(𝑖) in the text (Fig.1).  
The null hypothesis 𝜃଴(𝑖) for the SNP considered can be obtained by scrambling (a.k.a. permutation test) the 
string of microstates represented in Fig.1A (bottom), which is equivalent to losing the information accrued 
initially on phenotypic values. Repeating the scrambling an infinite number of times, and plotting the average 
scrambled genetic path, returns a straight line of the form, θ଴(j) = (+1 ∙ Nା/N + 0 ∙ N଴/N − 1 ∙ Nି/N)i. 
This result comes from the fact that, when scrambling an infinite number of times, the microstates in the string 
Fig.1A (bottom) is equivalent to determining, for any position i, the presence probability of each microstate 
in the string. Consequently, each SNP has its own null hypothesis that is a function of the number and type of 
microstates defining the SNP studied across the population.  
The p-value for GIFT was determined as explained in the text (a full part is dedicated to it) under the condition 
that the microstates composing the SNP were such that the minimum number of microstates of one type was 
at least 3. The rationale behind this condition is linked to the fact that, mathematically, n!, can be approximated 
by Stirling formula, n! = √2πnn୬eି୬, if n ≥ 3, which is reasonably accurate for n as low as 3. 
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Results and discussion  
 
Analyse of the null hypothesis θ଴(i) for GIFT  
While θ(i) is obtained using phenotypic information (Fig.1), it is also possible to plot the cumulative sum of 
microstates when no phenotypic information is present that is equivalent to ‘scrambling’ or permutating the 
string of microstates in Fig.1A also corresponding to the configuration ② in Fig.1B. Recall that since our 
focus is on a given SNP, then the number of microstates, Nା, N଴ and Nି, are identical between the 
configurations ① and ②. This new cumulative sum noted θ଴(i) is expected to be a sort of null hypothesis 
solely dependent on the bulk microstate frequencies Nା/N, N଴/N and Nି/N, where N୯ q ∈ {+,0, −} is the 

number of microstates of type q. This is so because there is no further information that could inform on the 
positioning of microstates in their list when the scrambled state is considered. However, while θ(i) is unique 
since phenotypic information is used to generate it, θ଴(i) is not as each time the string of microstates from 
Fig.1A is scrambled, a new θ଴(i) appears. Accordingly, one needs to consider the set of possible θ଴(i)s 
generated bounded to the microstate frequencies Nା/N, N଴/N and Nି/N.  
Using a selection of theoretic SNPs defined by different microstate frequencies (Table-1). Fig.3A illustrates 
the global shape resulting from simulating 1000 θ଴(i)s. The results demonstrate that the global shape of the 
θ଴(i)s plotted as a function of the position in the string is ellipsoidal with short and long axes changing as a 
function of microstate frequencies involved, and where the different averages of θ଴(i)s represented by black 
lines in Fig.3A, are straight lines with slopes linked to the difference, ∆N/N = (Nା − Nି)/N. The fact that 
the averages of θ଴(i)s for a given set of microstates, Nା, N଴ and Nି, is always a straight line linked to 
microstate frequencies, Nା/N, N଴/N and Nି/N, can be understood intuitively by the fact that scrambling or 
permutating an infinite number of times the string of microstates is equivalent to determining, for any position 
i, the presence probability, N୯/N, of each microstate in the string. Accordingly, for a given set of microstates, 

Nା, N଴ and Nି, the average of θ଴(i)s, noted 〈θ଴(i)〉, is 〈θ଴(i)〉 =
(୒శି୒ష)

୒
i. Further theoretic details can be 

found in (10,11). Using 〈θ଴(i)〉 as a reference for the null hypothesis, Fig.3B show the sur-imposition of the 
differences, ∆θ଴(i) = θ଴(i) − 〈θ଴(i)〉, obtained from simulations using SNPs from Table-1.  
Finally, to assess the impact of the sample size (population size) on the null hypothesis the initial size (N=565, 
Table-1) was divided (N=280) and multiplied (N=1130) by a factor ~2 while keeping constant the microstate 
frequencies Nା/N, N଴/N and Nି/N from Table-1. The simulations Fig.3A show that the appearance of 
ellipsoids is affected when the sample size changes, becoming thinner as the population size increases. Plotting 
the standard deviation as a function of the position once normalised by the sample size, σ(i/N) =

ටቂ〈൫θ଴(i/N)൯
ଶ

〉 − 〈θ଴(i/N)〉ଶቃ /N, resulting from the different simulations in Fig.3C demonstrates that the 

standard deviation from GIFT is quadratic, and independent of the sample size, as expected from a random 
allocation of different microstates in the string of positions.  
At first sight and with this primary analysis one could suggest that any genetic path departing from the cloud 
of genetic paths formed by the set of θ଴(i)s upon the permutation of microstates (grey surface in Fig.3A or 
black surface in Fig.3B) would likely result in an association between the genotype and the phenotype. While 
true this assumption needs to be handed carefully as it is not exhaustive. Indeed, some genetic paths may be 
highly structured and of relatively small amplitude. Example of genetic paths using real data from Dataset-1 
will demonstrate this point.  
 
Examples of genetic path using the bone area of the ischium (BAI) as phenotype (Dataset-1) 
The resulting average, 〈θ଴(i)〉, and variance, σ(i), can be used to inform the null hypothesis of a particular 
SNP from ‘real’ datasets. However, since there are as many different sets of  θ଴(i)s as number of SNPs, each 
SNP will return its own 〈θ଴(i)〉 (null hypothesis) upon scrambling. A comparison between SNPs using 
GIFT/genetic paths requires then to concentrate on the differences, ∆θ(i) = θ(i) − 〈θ଴(i)〉. In the remaining 
text one shall rewrite 〈θ଴(i)〉 as θ଴(i) to simplify notations. 
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Concentrating now on ‘real’ dataset, the genetic paths were obtained further to ranking BAI residual values 
(Dataset 1) using an incremental rank from small to large values. As an example, Fig.4 shows the two genetic 
paths θ(i) and  θ଴(i) for six SNPs, renamed SNP1-6 (see Table-2 for accurate genetic information) enabling 
us to appreciate the qualitative difference between the genetic paths. While the null hypothesis, i.e.,  θ଴(i), 
resulting from the scrambling of phenotypic values many times always returns a straight line with a different 
slope for each SNP as seen above, the θ(i)s have different shape. To represent the set of θ(i)s in relation to 
the different microstates involved, each datapoint of the θ(i)s is colour coded as in Fig.1C. 
Since  θ଴(i) is linked to the difference between the genetic microstate frequencies of homozygotes, ∆N =

Nା − Nି, in Fig.4 we represent by the angle α such difference. Since tan(α) = +Nା/N − Nି/N where N is 
the total number of positions (i = 1, 2, … , N) θ଴(i) can be rewritten as, θ଴(i) = tan(α)i. As any analysis must 
concentrate on the difference, ∆θ(i) = θ(i) −  θ଴(i), such as to cancel the apparent variability in the null 
hypothesis across SNPs, we represent the plots of the different ∆θ(i)s obtained in the right panel of Figs.4A-
4F.  
Figs.4A-4B display two distinct genetic paths that are globally similar. While they have different number of 
microstates of each type (see Table-2) the ∆θ(i)s of SNP1 and SNP2 are characterised by their small 
amplitudes and the fact that they are erratic crossing several times the axis of position corresponding to the 
null hypothesis. In those cases, using the information contained in the phenotypic residuals, namely ranking 
the phenotypic residuals from small to large values, does not permit to fully differentiate θ(i) from  θ଴(i). On 
the other hand, the right panel in Figs.4C-4D for SNP3 and SNP4 demonstrates, in a more noticeable way, a 
paraboloid shape for the ∆θ(i)s resulting from a segregation of microstates upon ordering the phenotypic 
residuals. The segregation of microstates +1 and -1 in opposite direction is reminiscent of Fisher theoretic 
works (Fig.1). As it turns out Figs.4C-4D show some similarities with Fig.1C based on a simulation inspired 
by Fisher’s seminal works. Importantly the ∆N-values of SNP1 and SNP4 while of opposite sign are similar 
in absolute value, are as those of SNP2 and SNP3, suggesting, in turn, the ∆N-values do not impact on the 
ability to differentiate θ(i) from θ଴(i). Namely that a segregation of microstates can be inferred also with 
relatively large and opposed ∆N-values.  
Envisaging the migration of microstates +1 and -1 in opposite direction as initially postulated by Fisher as the 
sole framework to associate genotype and phenotype is not always valid. This is demonstrated by SNP5 and 
SNP6 and the appearance of structured genetic paths displaying clear sigmoidal shapes for the ∆θ(i)s as shown 
in Figs.4E-4F. Theoretically this phenomenon can be understood and explained by the presence of non-linear 
phenotypic fields, see (11) also reviewed in (12), in turn breaking the symmetry postulated by Fisher assuming 
the sole presence of linear phenotypic fields. This type of sigmoidal shapes is of interest since they inform on 
potential regulation mechanisms involving very probably ‘regulatory variants’ (21). Indeed, the right panels 
in Figs.4E-4F can be envisioned as representing the genetic organisation of two distinct subpopulations of 
phenotypic residual values, one above the dashed line and the other one underneath it. Taken separately those 
two subpopulations draw curves like Figs.4C-4D or Fig.1C. In this context it is tempting to suggest that 
sigmoid genetic paths reveal a type of genotype-phenotype association that is inherently ‘scale-dependent’, 
namely function of the magnitude of phenotypic residuals. Because traditional GWAS concentrates on 
averages and variances, these sigmoid paths would be remarkably difficult to characterise with traditional 
methods. This is so because there is no clear antisymmetric segregation of microstates.  As an example, using 
SNPs1-6 (from Fig.4) we have plotted, in Fig.5, the average values of phenotypic residuals for each microstate, 
and in Table-2 we provide the resulting gene/size effects and the dominances associated with those. Fig.5 and 
Table-2 demonstrate that sigmoid genetic paths (SNP5 and SNP6) are much less detectable with traditional 
methods while paraboloid genetic paths (SNP3 and SNP4) are. Note that the numerical determination of 
‘−Logଵ଴(pୋ୍୊୘)’ in Table-2, that is the significance for GIFT, is explained in the next part below. 
To conclude, based on Fisher’s theoretic works, traditional GWAS method has been optimised to map SNPs 
that, using GIFT, would draw paraboloid genetic paths (see Fig.1C). The potential novelty using GIFT resides 
in its ability to provide new information and detect relatively regular/structured sigmoid genetic paths that 
would otherwise not be detected by traditional methods.  
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𝐩𝐆𝐈𝐅𝐓: p-value for GIFT  
GIFT and GWAS extract information on genotype-phenotype associations in totally different ways. While 
GIFT concentrates on the significance of curves drawn using ∆θ(i) = θ(i) −  θ଴(i), GWAS focuses solely on 
the significance of difference of averages. However, to compare GIFT to GWAS it is essential to determine a 
p-value for GIFT that is exhaustive enough such as to also capture the information that GWAS provides. To 
this end a p-value was derived that concentrates on the maximal amplitudes difference of genetic paths (see 
Figs.6A-6B).  
The p-value for GIFT can be understood as follows. Since the number of possible paths is linked to the number 
of configuration possible resulting from lodging Nା, N଴ and Nି microstates into a list composed of N = Nା +

N଴ + Nି components, the number of possible paths is, N୮ୟ୲୦
଴ =

୒!

୒శ!୒బ!୒ష!
. Let us now divide the genetic paths 

into regions, Δiଵ, Δiଶ and Δiଷ as shown in Figs.6A-6B. As the number of microstates of each sort can be 
determined in each region using an adequate algorithm, then the total number of possible genetic paths in this 

first, second and third regions are, respectively,  Nଵ =
୼୧భ!

(୬శ)భ!(୬బ)భ!(୬ష)భ!
, Nଶ =

୼୧మ!

(୬శ)మ!(୬బ)మ!(୬ష)మ!
 and, Nଷ =

୼୧య!

(୬శ)య!(୬బ)య!(୬ష)య!
, where ൫n୯൯

୮
 is the number of microstate of type q in the pth region, q ∈ {+,0, −} and p ∈

{1,2,3}. Consequently, the probability of a genetic path in this context is, pୋ୍୊୘ = NଵNଶNଷ/N୮ୟ୲୦
଴ . Using the 

null hypothesis simulations shown in Fig.3 based on the theoretic SNPs given in Table-1, pୋ୍୊୘ may be 
determined for each genetic path simulated. Its statistic plotted in Fig.6C for each SNP demonstrates very little 
variations across SNPs or when the sample size change by a factor two. Based on this observation confidence 
intervals were determined for all SNPs by averaging the pୋ୍୊୘ values obtained. The upper and lower red 
dashed lines represent the 99% and 95% confidence intervals. Returning to Table-2 the numerical value of 
pୋ୍୊୘ was determined for the genetic paths shown in Fig.4 demonstrating that GIFT can extract information 
when sigmoid genetic paths are involved while traditional GWAS is unable to do so.      
Armed with pୋ୍୊୘ an analysis of datasets can now be performed. 

Comparison between GWAS and GIFT considering the bone area of the ischium (BAI) as phenotype 
(Dataset-1)     
The first dataset (Dataset-1) analysed 567 pedigree-recorded Scottish Blackface lambs concentrating on the 
bone areas of the ischium measured in mm2 from cross-sectional CT scans (13). After adjusting phenotypic 
values, the work demonstrated a clear involvement of chromosome 6 as shown in Fig.7A. The thresholds 
applied for GWAS in Fig.7A correspond to 99% (upper red dashed line) and 95% confidence intervals (lower 
dashed red line) determined by using independent SNPs only. Formally a 99% (resp. 95%) confidence interval 
is given by, −Logଵ଴൫(1 − 99%)/N୧୬ୢିୗ୒୔ୱ൯ (resp. −Logଵ଴൫(1 − 95%)/N୧୬ୢିୗ୒୔ୱ൯ where N୧୬ୢିୗ୒୔ୱ =

10433 is the number of independent SNPs. Using its own thresholds (Fig.6C) GIFT was applied using the 
same set of phenotypic residuals. Figs.7A-7B demonstrate the results obtained by GWAS and GIFT using 
Manhattan plots. Overall, there is an agreement between GWAS and GIFT that chromosome 6 is involved. 
However, differences exist that are shown through the involvement of several chromosomes when GIFT is 
used. Considering the thresholds involved, for GWAS the phenotype studied may be considered as a sort of 
‘single gene trait’ while for GIFT, the phenotype looks very much like a ‘complex trait’ involving more 
chromosomes than the chromosome 6. A detailed information of all significant SNPs by GWAS or GIFT is 
given in Supplementary Material 3).   
Concentrating on Chromosome 6 to address the overlap of information provided by GIFT and GWAS, a Venn-
diagram including highly significant SNPs only, namely SNPs beyond the upper red dashed-line representing 
the 99% confidence interval in Figs.7A-7B, was plotted. The Venn-diagram (Fig.7C) reveals that most SNPs 
deemed significant by GWAS were also deemed significant by GIFT. Curiously, only one SNP seemed highly 
significant by GWAS but irrelevant for GIFT. As pୋ୍୊୘ was designed to collect exhaustive information from 
GWAS, the SNP was identified (OAR6_40311379) and its genetic path, i.e., its ∆θ(i), plotted (Fig.7D-left) 
together with its GWAS-representation (Fig.7D-right). The genetic path, being erratic of relatively small 
amplitude and crossing several times the axis of positions, did not display any obvious ‘parabolic or sigmoidal’ 
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associations at first sight, in turn justifying its small pୋ୍୊୘-value. The GWAS-representation of 
OAR6_40311379 however, demonstrated the absence of microstate ‘-1’ as well as a near overlap of the means 
for the microstates ‘0’ and ‘+1’ suggesting the occurrence of a false-positive. To confirm this a comparison 
of phenotypic means for the microstates ‘0’ and ‘+1’ was performed returning a t-test value of 1.1485 (p-value 
of 0.2512), confirming the presence of a false-positive.  
As SNPs were selected based on a 99%-interval confidence, to confirm that OAR6_40311379 corresponds to 
the 1%-aberration we plotted in Fig.7E the first 100 more significant SNPs detected by GIFT and GWAS. 
Results confirm an overlap of SNPs associated with the phenotypic residuals for large values of pୋ୍୊୘ and 
pୋ୛୅ୗ (see purple dots in Qଶ in Fig.7E). Interestingly, two SNPs considered as significant by GWAS (two 
blue dots in Qଶ) were not by GIFT. That is because the pୋ୍୊୘-values for these dots were less than other SNPs 
detected by GIFT. As already stated above many SNPs from other chromosomes were considered significant 
by GIFT that were not by GWAS (see red dots in Qସ). Finally, the quadrant Qଵ in Fig.7E confirms that 
OAR6_40311379 is a standalone SNP among the 100 SNPs (1%) since it is the only SNP for which pୋ୛୅ୗ >
pୋ୍୊୘, confirming its false-positive or 1%-aberration status.  
The biotype of significant SNPs on Chromosome 6 for GIFT and GWAS are also presented in Fig.7F.  
The primary conclusion provided by Fig.7 is that, when compared to GWAS, GIFT returns substantially more 
genetic information. At present, we do not know how the whole information provided by GIFT may inform 
on the putative biology of the phenotype studied (BAI). As it turns out, a full validation of the information 
provided by GIFT on Dataset-1 would require an in-depth mutational/deletion/insertion/gene-editing analyses 
in live animals, extending beyond the scope of this present article.  
Instead of revisiting the genetic basis of BAI, to demonstrate the relevance of the information provided by 
GIFT we decided to challenge GIFT using a different dataset (Dataset-2) concentrating on a complex trait 
related to 1C-metabolism.  
         
Comparison between GWAS and GIFT considering 1C-metabolites as phenotype (Dataset-2) 
Dataset-2 concerns biochemical data which seeks to identify risk allele variants in genes whose products direct 
a specific series of metabolic pathways, known as one carbon (1C) metabolism (Fig.2). The significance of 
1C metabolism is that it is a complex trait involving a series of interlinking metabolic pathways that provide 
1C units (methyl groups) for the synthesis and methylation of biological molecules. In Fig.8A the Manhattan 
plots obtained by GWAS and GIFT are shown clearly demonstrating that the informational power of GWAS 
is less than that of GIFT. Note that the number of independent SNPs, in this case is 624 (out of 3923 SNPs 
inputted in the gene array). Finally, in Fig.8B we provide the biotypes of the most significant SNPs, namely 
those above the 99% confidence interval shown by the upper red dashed lines obtained using GIFT. Detailed 
genetic information of the most significant SNPs obtained using GIFT is provided in Supplementary Material 
4.  
Besides validating that the information extracted by GIFT is meaningful, in turn positioning GIFT as a new 
method to map genotype to phenotype, it is worth underlying the biological importance and novelty of results 
obtained. One carbon metabolism in sheep is comparable to that in humans. The significance of 1C metabolism 
is that it is a complex trait involving a series of interlinking metabolic pathways that provide 1C units (methyl 
groups) for the synthesis and methylation of chromatin among other molecules (15). S-adenosylmethionine 
(SAM) is a potent methyl donor within these cycles and serves as the principal substrate for methylation of 
DNA, associated proteins, and RNA. It was previously demonstrated in sheep, cattle, rodent and human studies 
that disrupting these cycles during early pregnancy, by either dietary means (i.e., reducing dietary vitamin 
B12, folate, choline and/or methionine), or through exposure to environmental chemicals such as cigarette 
smoking, can lead to epigenetic dysregulation and impaired foetal development with long-term consequences 
for offspring cardiometabolic health (22–25). It was also advocated that interindividual and ethnic variability 
in epigenetic gene regulation arises because of single-nucleotide polymorphisms (SNPs) within 1C genes, 
associated epigenetic regulators, and differentially methylated target DNA sequences (15). However, 
information concerning the nature and extent of interactions between parental genotype, diet and EC exposure 
was, until now, limited to just a few 1C genes in humans (15). Consequently, data obtained by the current 
study provide new evidence concerning significant genetic variants in 1C-metabolism and directly associated 
metabolic genes and epigenetic regulators that rely on SAM as the methyl donor, potentially applicable to the 
human species. 
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Concluding remarks 

While statistical association methods should not favour any biases when analysing datasets, the way they are 
built mathematically is often indicative of a particular way of thinking. For example, with GWAS the 
phenotype is decomposed onto more fundamental sub-distributions characterised by the distribution of 
microstates (see Fig.1A). This approach underlines a sort of bottom-up approach that, within a reductionist 
framework, defines genes as biological agents controlling the phenotype aligned with the ‘Neo-Darwinian 
synthesis’. However, nothing prevents considering the opposite as far as statistical association methods are 
involved, and GIFT uses this degree of freedom. By using the full range of phenotypic information, GIFT 
transforms a random or disordered string of microstates (the straight line in the asymptotic limit seen in Fig.1C 
or Fig.3A) into an ‘ordered’ configuration of microstates (see Fig1C or Figs.4C-4F), in turn providing the 
signature of a genotype-phenotype association. Accordingly, since the phenotypic information controls the 
configuration of microstates it is a top-down approach, which turns out to be remarkably sensitive. GIFT has 
been estimated to be ~1000 more sensitive than GWAS (11).  

There are three main reasons as to why GIFT is more sensitive. The first is that GIFT determines the 
significance of curves composed of an entire population of datapoints. As curves provide greater level of 
significance than considering differences between microstate/phenotypic averages/variances as advocated by 
GWAS, hence GIFT is statistically more powerful. The second reason is that the null hypothesis for GIFT, 
namely θ଴(i), is contained in the definition of ∆θ(i) and is therefore specific to the genome position, or SNP, 
studied. With GIFT there are as many null hypotheses as SNPs. This contrasts with GWAS defining a null-
hypothesis valid for all SNPs at the population level when the average of microstate distributions overlap. 
Consequently, the discriminative power of GIFT is amplified. The third reason is that GIFT is simpler than 
GWAS. Indeed, based on R.A. Fisher’s seminal work, GWAS is based on a complex theory that seeks to 
determine genotype-phenotype associations on one hand (aim 1), and the heritability of phenotypes/traits 
studied on the other (aim 2). To achieve those two aims, the GWAS approach relies on frequentist probability 
to determine the validity of statistical inferences giving the notions of average and variance fundamental 
meanings related to aim 1 and 2, respectively. However, because average and variance are antinomic it is 
nearly impossible to have a clear picture of associations (size effects) since the noise (variance/heredity) blurs 
the average(s). On the opposite, by concentrating on genetic paths (curves) GIFT determines a global 
association. This does not mean that GIFT rules out the notions of size effect, dominance, and heritability, on 
the contrary, it encapsulates them under the generic notion of phenotypic field, i.e., size effect, dominance and 
heritability can be rederived from the phenotypic field. The term ‘field’ in the acronym GIFT is used to explain 
the disorder-order transition in the string of microstates using an analogy related to physics field theory, see 
(11,12) for more details.  

Finally, it is important to reframe GIFT within current debates in the field of biology. With GIFT it is the 
(information on the) phenotype that selects which SNP is required for its subsistence and it is interesting to 
note that, at the conceptual level and as a top-down approach, GIFT has some familiarity with the notion of 
phenotypic plasticity. Phenotypic plasticity refers to the ability of phenotypes to respond to a change in the 
environment favouring a divergence from the ancestor phenotype. As the phenotype relies on traits (modules), 
the responsiveness to any new input(s) must involve a re-organisation of the phenotype architecture by 
allowing phenotypic sub-components (modular traits) to adapt the changes (26). Namely that genetic 
accommodation linked to a standing pool of genetic variations characterising any trait is central to phenotypic 
plasticity that, through persistence, may genetically assimilate the new architecture (selection) (26,27). In this 
context the top-down method GIFT, which is essentially a phenotype-genotype (and not genotype-phenotype) 
association method, can pull out any standing genes awaiting to be used by phenotypes.  

To conclude, we provide evidence that GIFT is more powerful than GWAS in determining potential 
associations between continuous (phenotypes) and discontinuous (microstates) datasets. Additionally, we 
provide evidence also for the need to rethink the conceptual bases of genotype-phenotype associations, 
especially those giving too strong biological meanings to a bottom-up approach, such as to go beyond the 
notions of average, variance and use more information from the whole biodiversity of data.  
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Table 1: Theoretics SNPs used to capture the null hypothesis associated with GIFT upon 1000 
simulations of microstates permutation*.  

SNP NAME 𝐍ା 𝐍𝟎 𝐍ି 𝐍 
SNP1 25 25 515 565 
SNP2 25 125 415 565 
SNP3 25 225 315 565 
SNP4 25 325 215 565 
SNP5 25 425 115 565 
SNP6 25 525 15 565 

(*): The difference between consecutive SNPs in the table is linked to the transfer of 100 microstates from the 
microstates ‘-1’ to the microstate ‘0’ leaving the number of microstates ‘+’ invariant. By permutating the 
microstates ‘+’ and ‘-‘ in the table similar plots as those obtained in Fig.3A could have been obtained, the only 
difference would have been the slopes of the average 〈θ଴(i)〉 changing sign. 

 

Table 2: Determination of gene/size effect (a) and dominance (d) for SNP1-6 from dataset-1. The level 
of significance for GIFT and GWAS is colour coded: red=not-significant, green=significant.  

 
(a*): The gene/size effect is calculated considering the mid-distance between the average values of phenotypic 
residuals of microstates ‘-1’ and ‘+1’. (d**): The dominance is calculated considering the difference between 
the gene/size effect (a) and the position of the average value of phenotypic residuals for the microstate ‘0’. 
  

CHR NAME POSITION -Log10(pGIFT) -Log10(pGWAS) 𝑵ା 𝑵𝟎 𝑵ି a* d** 
9 OAR9_58767921 (SNP1) 56039025 2.844431 0.273539479 391 160 16 N/A N/A 
3 s02120 (SNP2) 213625709 2.950364 0.001827486 198 291 78 N/A N/A 
6 OAR6_40855809 (SNP3) 36655091 33.11563 9.8639336 229 262 76 96.85 -13.01 
6 OAR6_38315830 (SNP4) 34256151 24.58108 3.7366937 24 222 321 -70.02 -0.05 
23 OAR23_35510473 (SNP5) 33556377 23.48392 0.2301613 254 260 53 N/A N/A 
25 OAR25_30372586 (SNP6) 29046746 22.10658 1.0692863 90 266 211 N/A N/A 
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Legends 
 
Figure 1: (A) For diploid organisms and for a binary (bi-allelic, A or a) genetic marker, any microstate 
(genotype) can only take three values that we shall write as ‘+1’, ‘0’ and ‘-1’ corresponding to genotypes aa, 
Aa and AA, respectively. The genotypes are color-coded to facilitate the representation of GIFT (+1:aa (red), 
0: aA/Aa (black) and -1:AA (blue)). GWASs rely on probability density functions formed through the 
grouping of data into bins/categories. The phenotype distribution density function (A-top left) is then 
decomposed onto the distribution density function of genetic microstates (A-top right) for every single 
nucleotide polymophism (SNP). Using an analysis of averages and variances such decomposition determines 
whether the SNP studied is associated with the phenotype by comparing the average and variances of 
distributions. Repeating the same operation for every SNP in the genome permits to map genotype to 
phenotype. However, as more precise inferences can only come with, and are only legitimized by, a reduction 
in the width of categories, larger sample sizes are needed. To overcome this issue one way to proceed is to 
deconstruct density functions and wonder what would happen if one were able to reduce the width of 
categories, that is increasing the precision in the measurement of the phenotype or equivalently getting access 
to the whole information the datasets, without changing the sample sizes (A from top-to-bottom). The 
mathematical object that emerges is then a coloured barcode that is a list of microstates that can be analysed 
precisely by GIFT. (B) Such barcode can be obtained simply at the practical level through field studies. 
Assume a flock of sheep has been genotyped and that their phenotype has been measured sufficiently precisely 
such as to exclude the possibility that any two phenotypic values are identical. In the figure the magnitude of 
the phenotypic value for each sheep is characterised by the (unique) ‘size’ of the sheep. The barcode is 
obtained by ranking animals as a function of the magnitude of their phenotypic values (configuration ①in 
Fig.1B). The null hypothesis is obtained via the random ranking of sheep that is equivalent to a lack of 
information on phenotypic values (configuration ② in Fig.1B). As GWAS works on phenotypic residual 
values after adjusting for fixed/environmental effects a similar barcode can be generated considering the 
magnitude of residual phenotypic values. (C) GIFT proceeds by plotting the cumulative sum of microstates 
as a function of the position in the list generating a curve called genetic path that is represented by θ(i) in 
Fig.1C and is unique to the SNP considered. While the curve θ(i) does not provide any significant information 
on its own, one may generate, for the same SNP, a curve (genetic path) corresponding to a sort of null 
hypothesis when ranking the phenotype does not bring any informational value. This is possible by scrambling 
(permutating) the string of microstates an infinite number of times. It is then possible to show that, in the 
asymptotic limit, the null hypothesis returns a straight line, noted  θ଴(i) (Fig.1C) out of which inferences may 
be suggested regarding potential association between the genotype and the phenotype by comparing  θ଴(i) to 
θ(i). Note, the simulation shown in (A) adhering to Fisher seminal model is based on a constant sample size 
of 1000 involving an arbitrary normally distributed phenotype of mean and variance 68 and 4 units, 
respectively. Each microstate is normally distributed with a gene effect identical to the standard deviation of 
the phenotype but without dominance. The frequency of the genotypes aa (red), Aa/aA (Grey) and AA (blue) 
are 64%, 32% and 4%, respectively and within Hardy-Weinberg ratio.  
 
Figure 2: Linked methionine and propionate metabolism adapted from Clare et al. (2019) where all 
metabolites studied for this study are in red. The methionine cycle facilitates the re-methylation of 
homocysteine (Hcy) to methionine (Met) and ultimately S-adenosylmethionine (SAM) with methyl (CH3) 
groups donated either from folate (5-mTHF) or betaine (trimethylglycine; TMG), thus leading to the 
formation of dimethylglycine (DMG). Methylcobalamin (mB12) serves as a cofactor for the reduction of the 
inactive form of methionine synthase to its active state (MTR), which then transfers a methyl group from 5-
mTHF to Hcy. The linked metabolism of propionate (PPA) to succinate (an intermediary metabolite in the 
tricarboxylic cycle) requires adenosylcobalamin (aB12), which serves as a cofactor for methylmalonyl-CoA-
mutase (MUT) leading to the generation of succinyl-CoA and methylmalonic acid (MMA) in this pathway. 
Other intermediary metabolites and enzymes listed: glycine (Gly), sarcosine (Sar), S-adenosylhomocysteine 
(SAH), tetrahydrofolate (THF), serine (Ser), cystathionine (Cth), cysteine (Cys), alpha-ketobutyrate (α-KB), 
methylmalonic acid (MMA); Betaine homocysteine methyltransferase (BHMT), Methionine adenosyl-
transferase (MAT), Glycine methyl-transferase (GNMT), Adenosyl-homocysteinase (AHCY), Cystathionine 
beta-synthase (CBS), cystathionine gamma-lyase (Cth).   
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Figure 3: (A-left panel) Simulations of genetic paths corresponding to null hypotheses using GIFT as a 
method. The data used for the simulation are given in Table-1. (A-right panel) Simulations of genetic paths 
corresponding to null hypotheses when the sample size is divided or multiplied by a factor two. (B) 
Representation of ∆θ଴(i) = θ଴(i) − 〈θ଴(i)〉 for the microstates data as given in Table-1. (C) Plots of the 
standard deviation normalised by the square root of the sample size and where the position is also normalised 
by the sample size.   
 

Figure 4: A sample of genetic paths selected from Dataset-1. The details of the different SNPs displayed are 
given in Table 2.  

Figure 5: Analysis of averages (GWAS) for SNP1-6 (see Fig.4 and Table-2). Values for the size/gene effects 
(a) and dominances (d) are given in Table 2. 

Figure 6: To provide a p-value extracting genotype-phenotype associations in an exhaustive manner for both 
GWAS and GIFT a method concentrating on the largest and smallest extreme values of the genetic path was 
focused upon. This method can be applied to paraboloid (GWAS or GIFT-like) (A) and sigmoid (GIFT-like) 
(B) genetic paths. The overall idea consists in determining how many paths 𝑁ଵ, 𝑁ଶ and 𝑁ଷ can be generated 
from the respective interval of positions ∆𝑖ଵ, ∆𝑖ଶ and ∆𝑖ଷ given that the constraints for the extrema are Φଵ and 
Φଶ. Then a p-value (𝑝ீூி்) can be determined as seen in the text. (C) Using simulations (K=1000 replicates) 
a statistic of 𝑝ீூி் for the null hypothesis can be generated using theoretic SNPs (Table-1). Simulations 
demonstrate that 𝑝ீூி் is relatively independent of the microstate’s frequencies upon which a 99% (upper 
dashed line) and 95% (lower dashed line) interval confidences can be generated.   

Figure 7: Manhattan plots based on p-values obtained by GWAS (A) and GIFT (B) demonstrating significant 
differences between the methods concerning potential genotype-phenotype associations. Note that the 
presence of a chromosome ‘0’ results from the fact that some SNPs identified by (Matika et al., 2016) were 
not allocated to specific chromosomes/genomic positions due to lack of information at the time. A fathom 
chromosome (chromosome zero) was created to allocate those SNPs. (C) Venn-diagram representing the most 
significant SNPs (99%-confidence interval) by GWAS and GIFT. One SNP (OAR6_40311379) demonstrated 
a large p-value for GWAS and a small p-value for GIFT. A representation of its genetic path (D-left) did not 
underscore any ‘parabolic’ or ‘sigmoidal’ associations. As it turned out this SNP was a false-positive by 
GWAS since the difference between the phenotypic means was not significative (D-right). (E) The 100 most 
significant SNPs by GWAS and GIFT were extracted, and their p-values plotted against each other. The 
dashed lines represent the threshold applied for GWAS (blue dashed line) and GIFT (red dashed line). The 
SNP OAR6_40311379 pointed by the black arrow is the single one standing out in 𝑄ଵ confirming its false-
positive status. (F) The biotypes of the most significant SNPs by GIFT and GWAS are shown. 

Figure 8: (A) Comparison of the information extracted by GWAS and GIFT using Manhattan plots for the 
metabolites presented in red in Fig.2. We recall the acronyms, S-adenosyl methionine (SAM), 
methylcobalamin (mB12), adenosylcobalamin (aB12), trimethylglycine (TMG), dimethylglycine (DMG), 
propionate (PPA) and methylmalonic acid (MMA). It should be noted that due to inherent difficulty linked to 
the measure of metabolite the sample sizes were not similar across metabolites, that is the values for N differ 
between the Manhattan plots (SAM: N=344; mB12: N=183; aB12: N=338; DMG: N=338; TMG: N=340; 
MMA: N=348; PPA: N=345). (B) Biotypes corresponding to the most significant SNPs for each metabolite 
as determined by GIFT (a detailed list of information concerning those SNPs in given in supplementary 
material 4).     
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Figure 2 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 8 continued 
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