4,776 research outputs found

    Charge transport through single molecules, quantum dots, and quantum wires

    Full text link
    We review recent progresses in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires. A variety of physical phenomena is addressed, relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, nonequilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog

    Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion

    Full text link
    The potential for the discovery of a Standard Model Higgs boson in the mass range m_H < 2 m_Z in the vector boson fusion mode has been studied for the ATLAS experiment at the LHC. The characteristic signatures of additional jets in the forward regions of the detector and of low jet activity in the central region allow for an efficient background rejection. Analyses for the H -> WW and H -> tau tau decay modes have been performed using a realistic simulation of the expected detector performance. The results obtained demonstrate the large discovery potential in the H -> WW decay channel and the sensitivity to Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil

    Nonequilibrium functional RG with frequency dependent vertex function: A study of the single impurity Anderson model

    Full text link
    We investigate nonequilibrium properties of the single impurity Anderson model by means of the functional renormalization group (fRG) within Keldysh formalism. We present how the level broadening Gamma/2 can be used as flow parameter for the fRG. This choice preserves important aspects of the Fermi liquid behaviour that the model exhibits in case of particle-hole symmetry. An approximation scheme for the Keldysh fRG is developed which accounts for the frequency dependence of the two-particle vertex in a way similar but not equivalent to a recently published approximation to the equilibrium Matsubara fRG. Our method turns out to be a flexible tool for the study of weak to intermediate on-site interactions U <= 3 Gamma. In equilibrium we find excellent agreement with NRG results for the linear conductance at finite gate voltage, magnetic field, and temperature. In nonequilibrium, our results for the current agree well with TD-DMRG. For the nonlinear conductance as function of the bias voltage, we propose reliable results at finite magnetic field and finite temperature. Furthermore, we demonstrate the exponentially small scale of the Kondo temperature to appear in the second order derivative of the self-energy. We show that the approximation is, however, not able to reproduce the scaling of the effective mass at large interactions.Comment: [v2] - minor changes throughout the text; added new Fig. 3; corrected pert.-theory data in Figs. 10, 11; published versio

    Gluon-induced W-boson pair production at the LHC

    Get PDF
    Pair production of W bosons constitutes an important background to Higgs boson and new physics searches at the Large Hadron Collider LHC. We have calculated the loop-induced gluon-fusion process gg -> W*W* -> leptons, including intermediate light and heavy quarks and allowing for arbitrary invariant masses of the W bosons. While formally of next-to-next-to-leading order, the gg -> W*W* -> leptons process is enhanced by the large gluon flux at the LHC and by experimental Higgs search cuts, and increases the next-to-leading order WW background estimate for Higgs searches by about 30%. We have extended our previous calculation to include the contribution from the intermediate top-bottom massive quark loop and the Higgs signal process. We provide updated results for cross sections and differential distributions and study the interference between the different gluon scattering contributions. We describe important analytical and numerical aspects of our calculation and present the public GG2WW event generator.Comment: 20 pages, 4 figure

    Studying How Health Literacy Influences Attention during Online Information Seeking

    Get PDF
    Health literacy affects how people understand health information and, therefore, should be considered by search engines in health searches. In this work, we analyze how the level of health literacy is related to the eye movements of users searching the web for health information. We performed a user study with 30 participants that were asked to search online in the context of three work task situations defined by the authors. Their eye interactions with the Search Results Page and the Result Pages were logged using an eye-tracker and later analyzed. When searching online for health information, people with adequate health literacy spend more time and have more fixations on Search Result Pages. In this type of page, they also pay more attention to the results' hyperlink and snippet and click in more results too. In Result Pages, adequate health literacy users spend more time analyzing textual content than people with lower health literacy. We found statistical differences in terms of clicks, fixations, and time spent that could be used as a starting point for further research. That we know of, this is the first work to use an eye-tracker to explore how users with different health literacy search online for health-related information. As traditional instruments are too intrusive to be used by search engines, an automatic prediction of health literacy would be very useful for this type of system

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    Optimal precision and accuracy in 4Pi-STORM using dynamic spline PSF models

    Get PDF
    Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2–3 nm, and we demonstrate its capa-bilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria

    The Higgs Working Group: Summary Report (2001)

    Full text link
    Report of the Higgs working group for the Workshop `Physics at TeV Colliders', Les Houches, France, 21 May - 1 June 2001. It contains 7 separate sections: A. Theoretical Developments B. Higgs Searches at the Tevatron C. Experimental Observation of an invisible Higgs Boson at LHC D. Search for the Standard Model Higgs Boson using Vector Boson Fusion at the LHC E. Study of the MSSM channel A/HττA/H \to \tau \tau at the LHC F. Searching for Higgs Bosons in ttˉHt\bar t H Production G. Studies of Charged Higgs Boson Signals for the Tevatron and the LHCComment: 120 pages, latex, many figures, proceedings of the Workshop `Physics at TeV Colliders', Les Houches, France, 21 May - 1 June 2001, full Author list included in paper. Typos corrected, author list and acknowledgements completed. Convernors: D. Cavalli, A. Djouadi, K. Jakobs, A. Nikitenko, M. Spira, C.E.M. Wagner, W.-M. Ya

    N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gas-chromatography-mass spectrometry

    Get PDF
    Background: Axonal degeneration is considered to play a major role in the development of clinical disability in multiple sclerosis (MS). N-AcetylAspartic Acid (NAA) is a neuron-specific marker constantly identified in MR-spectroscopy studies of the normal and MS brain. To our knowledge there are no studies available that evaluated NAA in cerebrospinal fluid (CSF) as a possible marker for disease severity. Objective: To evaluate CSF concentrations of NAA in MS in relation to disease phenotype, clinical measures of disability and MRI markers of disease burden. Methods: NAA concentrations were determined in CSF of 46 patients with MS (26 relapsing remitting (RRMS), 12 secondary progressive (SPMS) and 8 primary progressive (PPMS)). Prior to lumbar puncture, MS-patients underwent MRI and clinical examination, including the Expanded Disability Status Scale (EDSS) and the MS Functional Composite (MSFC). Additionally, CSF concentrations of NAA were determined in 12 patients with other neurological diseases (OND). Results: Median CSF NAA concentration was 0.74 (IQR: 0.59-0.94) in RRMS , 0.54 (IQR: 0.35-0.73) in SPMS and 0.83 μmol/l (IQR: 0.56-1.03) in PPMS patients. SPMS patients had a significantly lower NAA concentration than RRMS patients. NAA concentrations correlated with EDSS (r = )0.37, p = 0.016), MSFC (r = 0.41, p = 0.010), normalised brain volume (r = 0.49, p = 0.001), T2 lesion load (r = )0.35, p = 0.021) and black hole lesion load (r = )0.47, p = 0.002). No differences were observed between OND (median: 0.57 IQR: 0.28-0.73) and MS patients. Conclusions: CSF NAA concentration in MS patients is related to clinical performance and MRI measures of disease burden and may therefore be an important neuron specific marker of disease severity and possibly progression
    corecore