445 research outputs found

    Continued development of doped-germanium photoconductors for astronomical observations at wavelengths from 30 to 120 micrometers

    Get PDF
    The development of doped-germanium detectors which have optimized performance in the 30- to 120-mu m wavelength range and are capable of achieving the objectives of the infrared astronomical satellite (IRAS) space mission is discussed. Topics covered include the growth and evaluation of Ge:Ga and Ge:Be crystals, procedures for the fabrication and testing of detectors, irradiance calculations, detector responsivity, and resistance measurements through MOSFET. Test data are presented in graphs and charts

    MICROBIAL BASED CHLORINATED ETHENE DESTRUCTION

    Get PDF
    A mixed culture of Dehalococcoides species is provided that has an ability to catalyze the complete dechlorination of polychlorinated ethenes such as PCE, TCE, cDCE, 1,1-DCE and vinyl chloride as well as halogenated ethanes such as 1,2-DCA and EDB. The mixed culture demonstrates the ability to achieve dechlorination even in the presence of high source concentrations of chlorinated ethenes

    Evapotranspiration of Residential Lawns Across the United States

    Get PDF
    Despite interest in the contribution of evapotranspiration (ET) of residential turfgrass lawns to household and municipal water budgets across the United States, the spatial and temporal variability of residential lawn ET across large scales is highly uncertain. We measured instantaneous ET (ETinst) of lawns in 79 residential yards in six metropolitan areas: Baltimore, Boston, Miami, Minneapolis-St. Paul (mesic climates), Los Angeles and Phoenix (arid climates). Each yard had one of four landscape types and management practices: traditional lawn-dominated yards with high or low fertilizer input, yards with water-conserving features, and yards with wildlife-friendly features. We measured ETinst in situ during the growing season using portable chambers and identified environmental and anthropogenic factors controlling ET in residential lawns. For each household, we used ETinst to estimate daily ET of the lawn (ETdaily) and multiplied ETdaily by the lawn area to estimate the total volume of water lost through ET of the lawn (ETvol). ETdaily varied from 0.9 ± 0.4 mm d1 in mesic cities to 2.9 ± 0.7 mm d−1 in arid cities. Neither ETinst nor ETdaily was significantly influenced by yard landscape types and ETinst patterns indicated that lawns may be largely decoupled from regional rain-driven climate patterns. ETvol ranged from ∼0 L d−1 to over 2,000 L d−1, proportionally increasing with lawn area. Current irrigation and lawn management practices did not necessarily result in different ETinst or ETdaily among traditional, water-conserving, or wildlife-friendly yards, but smaller lawn areas in water-conserving and wildlife-friendly yards resulted in lower ETvol

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio

    Shaping the Development of Prejudice: Latent Growth Modeling of the Influence of Social Dominance Orientation on Outgroup Affect in Youth

    Get PDF
    Social dominance orientation (SDO) has been theorized as a stable, early-emerging trait influencing outgroup evaluations, a view supported by evidence from cross-sectional and two-wave longitudinal research. Yet, the limitations of identifying causal paths with cross-sectional and two-wave designs are increasingly being acknowledged. This article presents the first use of multi-wave data to test the over-time relationship between SDO and outgroup affect among young people. We use cross-lagged and latent growth modeling (LGM) of a three-wave data set employing Norwegian adolescents (over 2 years, N = 453) and a five-wave data set with American university students (over 4 years, N = 748). Overall, SDO exhibits high temporal rank-order stability and predicts changes in outgroup affect. This research represents the strongest test to date of SDO’s role as a stable trait that influences the development of prejudice, while highlighting LGM as a valuable tool for social and political psychology

    Feasibility of familial PSA screening: psychosocial issues and screening adherence

    Get PDF
    This study examined factors that predict psychological morbidity and screening adherence in first-degree relatives (FDRs) taking part in a familial PSA screening study. Prostate cancer patients (index cases – ICs) who gave consent for their FDRs to be contacted for a familial PSA screening study to contact their FDRs were also asked permission to invite these FDRs into a linked psychosocial study. Participants were assessed on measures of psychological morbidity (including the General Health Questionnaire; Cancer Worry Scale; Health Anxiety Questionnaire; Impact of Events Scale); and perceived benefits and barriers, knowledge; perceived risk/susceptibility; family history; and socio-demographics. Of 255 ICs, 155 (61%) consented to their FDRs being contacted. Of 207 FDRs approached, 128 (62%) consented and completed questionnaires. Multivariate logistic regression revealed that health anxiety, perceived risk and subjective stress predicted higher cancer worry (P=0.05). Measures of psychological morbidity did not predict screening adherence. Only past screening behaviour reliably predicted adherence to familial screening (P=0.05). First-degree relatives entering the linked familial PSA screening programme do not, in general, have high levels of psychological morbidity. However, a small number of men exhibited psychological distress

    Full nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks

    Full text link
    Dramatic progress has been made over the last decade in the numerical study of quantum chromodynamics (QCD) through the use of improved formulations of QCD on the lattice (improved actions), the development of new algorithms and the rapid increase in computing power available to lattice gauge theorists. In this article we describe simulations of full QCD using the improved staggered quark formalism, ``asqtad'' fermions. These simulations were carried out with two degenerate flavors of light quarks (up and down) and with one heavier flavor, the strange quark. Several light quark masses, down to about 3 times the physical light quark mass, and six lattice spacings have been used. These enable controlled continuum and chiral extrapolations of many low energy QCD observables. We review the improved staggered formalism, emphasizing both advantages and drawbacks. In particular, we review the procedure for removing unwanted staggered species in the continuum limit. We then describe the asqtad lattice ensembles created by the MILC Collaboration. All MILC lattice ensembles are publicly available, and they have been used extensively by a number of lattice gauge theory groups. We review physics results obtained with them, and discuss the impact of these results on phenomenology. Topics include the heavy quark potential, spectrum of light hadrons, quark masses, decay constant of light and heavy-light pseudoscalar mesons, semileptonic form factors, nucleon structure, scattering lengths and more. We conclude with a brief look at highly promising future prospects.Comment: 157 pages; prepared for Reviews of Modern Physics. v2: some rewriting throughout; references update
    corecore