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shooting test problems and evaluation of test results.

I S B .ice. C^J

PREFACE

This report describes the results of a technology development program

directed toward the optimization of the performance of beryllium-doped

germanium (Ge:Be) and gallium-doped germanium (Ge:Ga) infrared detectors

operating near 3°K at low backgrounds (10 8 photons/sec/cm2 ) and low

frequencies (z 0. 05 Hz). The work was performed at the Santa Barbara

Research Center over the period from 27 May 1977 to 12 April 1978.

The Project Manager for the program was Lawrence E. Long. The

Project Engineer was Nancy N. Lewis. The Project Technical Monitori for NASA/Ames was Craig McCreight. A number of other people at SBRC

made significant contributions to this project. Roger A. Cole and Eugene

D. Van Orsdell grew the Ge:Ga and Ge:Be crystals. David J. Calhoun

and James B. Knutsen raade the Hall effect measurements and data analysis.

Beulah L. Marolf fabricated detectors, and Courtney W. Manker and Fred

J. Strobach assisted in the design and assembly of the low-background test

fixtures. Most of the testing was done by James M. Fulton, Richard L.

Nielsen and H. Andrew Graham provided valuable assistance in trouble
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Section I
INTRODUCTION AND SUMMARY

The work described in this report was a continuation of a previous

technology development program on Ge:Be and Ge:Ga detectors funded by

NASA/Goddard and administered by Kitt Peak National Observatory; and is

a direct follow-on of work performed under NASA/ARC contract NASZ-9385.

During the first phase of this work, emphasis was on Ge:Ga detector develop-

ment. During the second phase, more emphasis was placed on Ge:Be detector

development. The ultimate goal was to develop the technology for production

of doped-germanium detectors which have optimized performance in the 30-

to 120-^Lm wavelength range and are capable of achieving the objectives of

the .Infrared Astronomical Satellite (IRAS) space mission. Because of the

short duration of the NASZ-9385 contract, the technology for producing fully

optimized detectors was not fully developed, although significant advances

were made.

The current contract was funded to continue this work, with the same

ultimate goal. The work on this phase was divided into the following major

tasks:

1. Growth of Ge:Ga crystals from high-purity starting material
with Ga concentrations of 4 and 8 x 101 4 atoms /cc or higher
using the zone leveling method developed on the previous

'	 program to produce a uniform Ga doping concentration.

Z. Growth of a Ge:Ga crystal with a Ga concentration of
1 to Z x 10 14 atoms /cm3.

3. Growth of uncompensated Ge:Be crystals from high-purity
starting material with a range of Be concentrations between
1 and Z x 10 15 atoms /cm3.

4. Growth of Ge:Be crystals using intentionally compensated
starting material.

5. Evaluation of crystals by means of Hall effect and resistance
measurements as a function of temperature.
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6. Fabrication and test of detectors made from both Ge:Be and
Ge:Ga crystals to determine the relative performance between

'	 different crystals. Correlation of detector test data with
material evaluation data and analysis of how to further
optimize detector performance.

Since the refining and doping techniques for Ge:Ga material were well

under control, one Ge:Ga crystal was grown immediately at the onset of the

program. The major emphasis after that point was concentrated on the Ge:Be

work. With the problems encountered during the Ge:Be crystal growth, and

with limited funding, it became evident that the Ge:Ga effort would have to be

curtailed; no more Ge:Ga crystals were grown.

Seven Ge:Be crystals were grown in the attempt to optimize the dopant

levels and perfect the growth and doping techniques. Four of the seven were
'	 grown using compensated material. The compensation level in three of these

was lower than expected, however.

Although not all of the tasks defined at the outset of the program were

performed, the major objectives were achieved. The results of this phase

may be summarized as follows:

The zone leveling technique for growing Ge:Ga crystals continued
to show that a method had been established for producing uniform
material to the desired concentration.

The results of the Ge:Ga crystal that was grown showed that the
dopant concentration used on the last phase of the program.was
closer to optimum than on this phase.

Although the detectors manufactured from the Ge:Ga crystal were
low in performance, the detector fabrication technology was
consistent and is adequate for fabrication of large focal plane
arrays.

Techniques for doping. the Ge:Be material were brought under
control, although several crystals were grown to achieve this.
The last few crystals were uniformly doped over large sections
of the crystal.

Detector fabrication techniques for Ge:Be were also consistent,
yielding several detectors of good quality. Fabrication techniques
are adequate .for. large focal plane arrays.

SANTA BARBARA RESEARCH CENTER
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Section z
REVIEW OF PREVIOUS WORK

Previous work involved exploratory development in Ge:Ga crystal

growth as well as detector fabrication technology using both Ge:Ga and

Ge:Be material. On the first phase of this work, Ge:Ga detectors were

made from material furnished by the Naval Research Laboratories (W. J.

Moore) and from material produced at SBRC. Ge:Be detectors were made

only from material furnished by NRL. The results of the Ge:Ga work were

very encouraging in that the crystal growth method used was shown to be

capable of producing a specified Ga doping concentration with very low

concentrations of residual donor impurities. Detector performance was
z

found to be reasonably good with NEP = 4 x 10 - l ^' watt/Hz z at 100 µm for
i.

a background flux of 1. 8 x 10 10 photons/sec/cmZ , and 1„ 3 x 10 -16 watt/Hzz

for a background flux of 1. z x 10 9 photons /s.ec/cm2. The Ge:Be detectorsi
made from NRL material achieved an NEP of 1 x 10' 15 watts/Hz?, at 40 tirn
with a background flux of 1, 9 x 10 9 photons/sec/cm?.

This work clearly demonstrated the feasibility of these detector

materials as very sensitive detectors of long-wavelength radiation under

low-temperature and low-background conditions of operation. It established

a starting point from which further technology development efforts could

proceed, and fostered a confidence that the ultimate performance goals

could be realized within reasonable time and cost constraints.

The zone melting method for growth of Ge:Ga crystals was implemented

and found -to work. well. .After. growth of a few: crystals, it was realized that

a more uniform. Ga doping concentration should be attainable by going to a

zone leveling modification using the same furnace. This became one of the

primary tasks for the next phase of the work. The zone leveling technique

for growing Ge:Ga crystals was implemented and shown to produce a uniform

Ga doping concentration over more than 5 inches of ingot length. This

SANTA BARBARA RESEARCH CENTER
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established a reliable material production method which yielded a quantity

of detector material more than adequate for the .IRAS focal plane array (FPA)

fabrication. The growth and evaluation of the Ge:Ga crystal is covered in the

final report for that programl.

No previous experience with the growth of Ge:Be crystals existed at

SBRC prior to the start of contract NAS2»9385. The determination and

perfection of the crystal growing methods therefore became a major new

task. Growth of Ge:Be crystals proved to be difficult because of small

amounts of oxygen in the zone melting furnace which either formed a Be--O

compound on the surface of the ingot or a Be-0 complex inside the ingot.

In either case, Be is effectively removed to an inactive site and cannot

produce impurity photoconductivity. The problem was solved by growing

Ge.Be crystals under vacuum. This yielded a small amount of material

for detector test and evaluation; however, uniformly doped Ge:Be ingots

were not obtained, and the control of Be doping concentration was not as

good as for Ga doping. Further work on the Ge:Be crystal growth technology

was warranted, and was continued in the current program, as reported herein.

Detector fabrication technology which had been previously developed at

SBRC for doped Ge detectors was found to work well on these longer wave-

length materials. In particular, the use of ion implantation in the formation

of electrical contacts to the crystals was shown to give an ohmic contact with

little or no excess noise for frequencies down to 1 Hz.

The fundamental principles of operation of a doped--germanium far

infrared detector were described in the Final Technical Report for the first

phase of this program2 . The detector operates as an extrinsic photoconductor.

Photoionization of the doping impurity atoms (Ga or Be) by infrared radiation

1. P. R. Bratt and N. N. Lewis, "Development of Doped Germanium Photo--
condactors for Astronomical Observations at Wavelengths from 30 to
120 Micrometers", Final Technical Report, Contract NAS2-9385, Santa
Barbara Research Center, 30 November 1977 (NASA-CR-152, 046)

Z. P. R. Bratt, "Improved Ge:Ga and Ge:Be Far Infrared Detector
Development," Final Technical Report, Contract No. 86310 (AURA),
Santa Barbara Research Center, October 1977

SANTA BARBARA RESEARCH CENTER	 2-2
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produces extra free holes in the crystal which increase its conductivity.

This conductivity increase can be easily measured using a suitable

electrical circuit.

The energy required for ionization of the Ga atoms in Ge is 0. 011 eV,

Thus, incoming photons with an energy greater than this value can cause

photoionization; those with a lesser energy cannot. This requirement can be

expressed in terms of the infrared photon's wavelength as follows:

	

^c E
i 	(1)

where h is Planck's constant, c the speed of light, X is the wavelength, and
E i is the ionization energy. For energies expressed in eV and wavelength

in µm, Equation (1) can be rewritten as

	

1 ' Z4	 (Z)
^I

Thus, photons of wavelength less than 100 p.m can produce photoconductivity

in Ge:Ga crystals. The Be atom in Ge has an ionization energy of 0. OZ4 eV.

Therefore, photons of wavelength less than SZ kan can produce photoconductivity
in Ge: Be crystals.

The optimization of a detector's sensitivity involves an attempt to

maximize the photoconductive response and minimize the various noise

sources present either in the detector itself or in the associated electrical

components.

A theorerical analysis of detector operation under low background

conditions has pointed out the directions in which to proceed toward optimiza-

tion of detector performance. These may be summarized as follows:

1, Grow Ge:Ga and Ge:Be crystals with doping concentrations as
large as possible so as to maximize the responsive quantum
efficiency, but keep the doping concentration below the point
where impurity hopping conductivity begins to significantly
lower detector resistance. This implies that there is some
optimum doping concentration which will be different for each
type of impurity atom. This concentration must be determined
experimentally for the particular temperatures of operation and
background photon flux levels expected in the IRAS mission,

SANTA BARBARA RESEARCH CENTER	 2-3
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Z. Maximize the photoconductive gain of the detector by using
material with long free-hole lifetime. This mandates the use
of high-purity Ge starting material with a very low concentra-
tion of residual donor impurities. Fabricate detector crystals
with a minimum interelectrode spacing and operate with applied
electric field strength as large as possible.

3. Provide electrical contacts to the doped Ge crystal, which do
not produce excess noise and are "ohmic'.' for transport of
charge carriers (free holes) into and out of the crystal.

These guidelines formed the basis for the development efforts that were

carried out in the two NASA. programs, the latter being covered in this report.



Section 3

Ge:Ga CRYSTAL GROWTH AND EVALUATION

CRYSTAL GROWTH

One Ge:Ga crystal was grown during this phase of the program. The

crystal was doped to two levels in different zones of the crystal 5 x 1014

and 8 x 10 14 atoms /cm	 The doping concentration was higher than that of

the previous crystal to see if material with a higher responsivity and impact

ionization level could be obtained.

The method of Ge purification by multipass zone refining described in

the first report was used 3 , Ga doping by means of pellet dropping spoons

was also used. The crystal grown contains over 4 inches of material in the

central region of the ingot, doped relatively uniformly to two levels in two

zones. The seed end was subsequently cut off for reuse and the tail end was

cut off and discarded as scrap.

DOPING CONCENTRATION

Samples were cut from. the doped region at 1--inch intervals for evalua-

tion by Hall effect measurements. The Ga doping concentration was found to

be as expected within the 4-inch length which was evaluated. The results

are shown in Figure 3--1. This provided high quality detector material with

a doping concentration Z to 3 times greater than that used in our previous

work.

Evaluation of selected samples by means of Hall effect measurements

versus temperature was also done.. Comparison of experimental data points

with theoretically generated curves provides a determination of the residual

donor atom concentration in the crystal. Details of the method of analysis
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Figure 3-1, Doping Profile for Ge:Ga Crystal No. 5

were given in a previous report 4. Figures 3--2 and 3-3 show experimentally

measured Hall coefficient data versus temperature and the. theoretical fit

which was obtained for the two samples which were evaluated.

Donor atwn concentrations deduced from the comparison between

theoretical and experimental data are listed in Table 3-1 for both samples.

The residual donor atom concentration in this crystal is in the 10 10 to 10 11

3.cm range as was the previous. Ge:Ga crystal grown, by this same technique.

The desired`Ga doping concentrations were also obtained, This result

demonstrates the reproducibility of the Ge:Ga crystal growth method.

4. Ibid.
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Table 3-1, Summary of Doping Parameters for Ge:Ga Crystal No. 5
Sample	 NA -_ND NA, ND ei

-	 No.	 (cm 3 ) (cm-3) (cm-3) (eV)

X 1014 X 10 14 X 1010
Ge:Ga 5-la	 4.6 4.6 3.0 0.0117

5-2a	 6.6 6.6 10.0 0.0115

HALL MOBILITY

The Hall mobility is plotted versus temperature in Figure 3-4 for the

two samples cut from crystal Ge:Ga 5. At higher temperatures, the mobility
is limited by lattice scattering, and both samples have essentially the same

mobility. At the lowest temperatures (below 10°K) there is evidence of

neutral impurity scattering. In this case, the mobility varies inversely as

the concentration of neutral scattering centers, i. e., gallium atoms. From

Table 3-1, Sample NO. 5-2a is seen to be a factor 1.43 more heavily doped

than Sample No. 5-1a. Therefore, the mobility of this sample should be

1/1.43 or 0. 70 of No. 5-1a. The experimentally measured ratio is 1. 5/2. 1 =

0. 71, in good agreement with theoretical expectations.
106

10^

a_r
N

J

s 104

103
1	 ]0	 100

TEMPERATURE 10M

Figure 3-4, Hall Mobility Versus Absolute Temperature
for Two Samples from Crystal Ge:Ga 5
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RESISTANCE VERSUS TEMPERATURE

Because of equipment limitations, the variable temperature Hall effect

measurements do not extend below 5°K. To obtain data at temperatures less

than 5°K, a Ge:Ga detector element was obtained and its resistance measured

versus temperature over the range from 10 0 to 3°K. The main objective of

this measurement was to determine if impurity hopping conductivity was

present. Figure 3-5 shows the circuit diagram used for the measurement.

Data were taken with a constant voltage of 0. 02 volt applied across the sample

producing an electric field strength of 0. 04 volt/cm. A carbon re sisto-

thermometer mounted close to &,e detector sample was used for temperature

measurement. Background radiation was excluded from the samples during

the measurements.
0

Figure 3--6 shows the results on two samples from crystal Ge:Ga 5.

These samples were taken from the same slice as were the detector samples.

In fact, they were surplus detector samples and were, therefore, fabricated

in the same manner as detector samples. Both samples show an exponentially

rising resistance down to about 4°K. The ionization energies obtained from

this part of the curves are 0. 0106 and 0. 0105 eV in reasonable agreement

with the values obtained from the Hall coefficient data. Below 4°K the

resistance curves level off at a value of about 10 10 ohms. The interpretation

of this result is that it is due to impurity hopping conductivity. The observa-

tion of a resistance plateau at about 10 10 ohms is in agreement with the

measurements made by Fritzsche and Cuevas. 5 However, it would be

expected that the sample with higher Ga concentration should exhibit the

lower resistance when impurity hopping is present. The data in Figure 3-6

shows the opposite behavior. The reason for this is unknown.

5. H. Fritzsche and M. Cuevas, Phys. Rev. 119, 1238 (1960)
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discussed in detail the problems encountered in doping the Ge:Be crystals,

It had been concluded that most of the Be was going into the crystal, but

that it was being made electrically inactive by combining with something,

probably oxygen.	 It was suspected that the hydrogen purifier system that

had been used to grow early crystals had a leak that allowed oxygen to

enter the furnace :	Subsequent crystals (through crystal No,	 10) were grown
t

under vacuum, with the objective being to reduce the oxygen content in the

melt.	 This method was considered successful, and, although other problems

were encountered while growing crystal No. 10, a Be doping of approximately

I X10 15 atoms/cm3 was achieved.

The growth process established for crystal No. 10 was used in the con-

tinued development of this program,	 Crystal No. 11 was grown with the

intent of producing two uniform zones within the crystal, doped to I X 1015
and Z x 10 15 atoms/cm3 ,	 Evaluation of the crystal, however, showed evidence

of an air leak in the vacuum system.	 One end of the crystal had a Be concen-

tration of 9, 1 X 10 14 atoms /cm3 .	 Under normal conditions it would be

expected that the dopant level would remain at 9 X 10 14 atones/cm3 for more

than an inch of material. 	 However, the Be concentration dropped to -1. 3 X 1013
atoms/cm3 at a point 1 inch from the measured 9 X 10 14 atoms/cm3 ,	 Where

the dopant had been added for a Be concentration of Z X 10 15 atoms /cm3 , the

measured Be level was only 5. 6 X 10 1 3 atoms /cm	 This is shown graphically
in Figure 4-1,

L

b.	 P. R. Bratt and N. N.	 Lewis,	 op, cit.
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Figure 4-1. Doping Profile for Ge:Be Crystal 11

Steps were taken to repair the portions of the vacuum system that were
thought to have contributed to the anomolous results of crystal No, 11, and
a second crystal was grown (No. 12), again with the intent to obtain two
dopant concentrations. The results of this crystal were similar to No, 11.

While the anomalous results of crystals 11 and 12 were being studied
to determine why the Be was not being evenly distributed throughout the
crystal, a third crystal (No. 13) was grown. In the interest of time, this

15was a shorter crystal, and was doped with only one Be level, 2 X 10 atoms/
^^ ..	 315 	 3cm . The measured Be concentration wasF,4 >e 10 atoms/cm atone end

of the crystal, falling off rapidly over the length evaluated.

Growth of crystal No, 14 was begun, after some repairs to the vacuum

equipment, but the material and seed were destroyed due to an equipment

malfunction.

SANTA BARBARA RESEARCH CENTiER	 4 -2
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Crystal No, 15 was then grown, again doping to 1 x 10 15 and 2 x 1015

atoms/cm 3. Once again, the desired concentration was achieved at the

doping points, but fell off rapidly, as shown in .Figure 4--2. This crystal

had been compensated with antimony.

After the growth of crystal No. 15, the vacuum equipment was extensively

modified, and some refinements of the procedure in growing the crystals

were incorporated. The modifications consisted of replacement of the

end caps for the quartz tube in which crystals are grown and enlargement

of the diameter of the line from the vacuum pump to the quartz tube. In

addition to these changes, several passes over the quartz tube were made at

elevated temperature (1000°C) before placing the ingot in the tube. After

the ingot was placed in the tube, four additional passes were made at a

reduced temperature (800°C) to further clean and outgas the tube without

melting the ingot.

After this equipment modification, Ge: Be crystal No. 16 was grown,

a:

	

	 Figure 4-3 shows the results of evaluation of Ge;Be crystal No, 16. From

these results it appears that the oxygen source had been eliminated, or at

least reduced to an insignificant level. The amounts of Be measured are

nearly twice the concentration intended, indicating that more Be per unit

added had actually entered the crystal than had been seen in prior attempts.

The vacuum pump used on the system was then replaced with a larger

capacity/ pumping speed pump, and all O--ring seals were replaced with ball

joints. The results of these and the prior modifications to the system can be

seen in the results of crystal No, 17, Figure 4-4. The crystal is uniform

within the doping regions, and the actual amount of Be in the ingot is near

the intended amount. These data indicate that the vacuum problem (allowing

the combination of oxygen with Be had been solved, and that better control

over the amount of dopant to add for a . given Be concentration had been

achieved. Crystal No. 17 had also been partially compensated with antimony.
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With these successful results, crystal No. 18 was grown. The intent

with No. 18 was to grow a crystal with uniform Be concentration over several

inches. Dopant pellets were placed every half-inch along the crystal. After

the dopant was added, two passes, one toward the seed and then back again,

were made over the crystal. The crystal was uncompensated with intended

Be concentration of Z. X 10 15 atoms/cm3,

The results of the evaluation of crystal 18 are shown in Figure 4-5,,

The crystal is very uniform, The Be concentration is less than intended;

however, this can be accounted for by the fact that there was a delay of

approximately 15 hours between the first and second passes over the ingot

after the dopant was added, During that interval, the zone remained molten

and some of the Be diffused out of the ingot,
r	 ^.
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Figure 4-5. Doping Profile for Ge:Be Crystal 18

Since the results from ("rystal 18 showed that the technique for
doping a crystal to a predetermined amount and obtaining a uniformly
doped crystal had been established, it had been intended to grow at least one
additional crystal, this time with a higher amount of compensation than pre-
vious crystals. The development effort of this .program was discontinued,
however, before that could be accomplished.

C01"ENSATED Ge:Be

After extensive zone refining of Ge, some residual impurities still,
remain which produce shallow donor and acceptor levels within the Ge band
gap. The acceptor levels usually dominate the donors causing the material
to be p-.type. These shallow acceptors are probably due to B and Al
impurities, and their concentration is on the order of 10 12	 I3to 10 atoms/
cm3 . The residual donor concentration is on the order of 10 10 to 1011
atoms /CM3. The addition of Be to such material produces what we have
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called an "uncompensated" Ge:Be crystal. The energy level diagram for such

material is shown in Figure 4-6(A), This diagram illustrates the !act that the

shallow acceptor atoms are both thermally and optically active at low temper-
atures. Free holes may be thermally activated out of these centers. Thus,

the low-temperature Hall coefficient and resistance versus temperature curves

reflect the shallow acceptor levels rather than the deeper Be levels. Optical

excitation of free holes from these levels may also.occur producing a long-

wavelength response beyond the cutoff of the response due to the first Be level.

Moore 7 has measured this long-wavelength response and found it to be signi-

ficant compared to the response from the Be atoms. Thus, for many sensor

applications, a long-wavelength cutoff filter would be required to eliminate this

long--wavelength response.

A.	 B.

BANDDUCTIDN

-	 — - — — — ND

.i AL NBel

—	 D	 Z .R .024eV	 O !. a	 NSA

VALENCE
BAND

,

RESPONSE DUE TO FREE HOLE

EXCITED FROM Be ATOM,©

RESPONSE DUE TO FREE

1	 HOLE EXCITED FROM

r	 SHALLOW: ACCEPTOR

ATOM,

1
1

WAVELENGTH Ipml

Figure 4-6. A. Energy Band Diagram for Uncompensated Ge:Be
B. Energy Band Diagram for Compensated Ge:Be

C. Relative Spectral Response for Ge:Be Showing Long Wavelength
Response Due to Uncompensated Shallow Acceptors

7. W. J. Moore, private communication.
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Another way to eliminate this unwanted long-wavelength response is to

produce "compensated" Ge: Be material, By this we mean material to which

small amounts of donor impurity atoms are added at the same time as the Be

dopant. The concentration of donor atoms should be just slightly greater

than the residual acceptor concentration. Then at low temperatures,- elec-

trons from the compensating donor will fill all of the residual shallow acceptors

as well as some of the Be levels. This situation is shown in Figure 4-6(B).

Now the shallow acceptors are effectively inactive as to their influence on the

thermal and optical activation of free holes. However, they may possibly

take part in the free hole recombination process either as trapping or recom-

bination centers.

In the production of compensated Ge-.Be material, one attempt to make

the added donor concentration just slightly greater than the residual acceptor

concentration. This keeps the number of compensated Be atoms to a minimum.

If too many donors are added and the number of electrons residing on Be

levels becomes too large, the free hole lifetime will be seriously degraded.

This, in turn, can degrade the detector responsivity. During this contract

phase, three Ge: Be crystals were grown which were intentionally compensated

with Sb donor atoms. These were Ge:Be crystal Nos. 15, 16 and 17, The

Hall data analysis of the next section present the results of this effort,

Ge:Be CRYSTAL EVALUATION

Prelimini-.ry evaluation of Ge:Be crystals was made by Hall effect

measurements at room temperature. Since the Be atom is a double acceptor

in Ge with ionization energies of 0. 024 and 0. 064 eV, each Be atom will

y
	 contribute two free holes at room temperature. . Thus the hole concentration

calculated from the measured Hall coefficient must be divided by two to

obtain the concentration of electrically active Be centers. A magnetic field

strength of 15 kgauss was used in the room temperature Hall measurements.

Examples of some of the results of these measurements were given in the
previous section,
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belected Ge: Be samples were subjected to Hall effect measurements
versus temperature. Analysis of these data provides additional information
on the crystal doping parameters such as concentration of shallow acceptor
impurities (probably B or Al) and compensating donor impurities. A . four-
level model w4s used to analyze the Ge:Be variable temperature Hall data.
These levels are: one shallow acceptor, one shallow donor, and the two Be
levels. Based on this model, theoretical Hall coefficient curves were gen-
erated and fit to the experimental data by adjusting the values of the various
dopant concentrations. Further details of . this analysis were presented in
the previous report, 8

Figure 4-7 shows Hall coefficient versus temperature data taken on
sampler from crystals Ge:Be 11 and Ge:Be 15. The solid line represents the
theoretical fit to the data points which are shown as crosses. Table 4--1
gives the activation energies and doping concentrations used to generate the
theoretical curves. It is to be noted that these two crystals have about the
same Be concentration. However, crystal 15 was intentionally compensated
with a small amount of S6 donors whereas crystal 11 was not. This has the
effect of raising the magnitude of the Hall coefficient curve in the low-
temperature range and in clearly demonstrated in the Figure. The intent
was to totally compensate all the shallow acceptor levels by making ND
just slightly larger than NSA. If this is done, the Hall coefficient curve will
take on a shape shown by the dotted line in Fig + ire 4-7. The data in Table
4--1 as well as the Figure show that this attempt failed by only a narrow
margin.

Figure 4-8 shows Hall coefficient data on two other samples that were
tested from crystals 16 and 17. These crystals had about twice the amount of
Sb compensation added as for crystal 15. However, it was still insufficient
to totally compensate the shallow acceptors, undoubta.bly due to the fact that
these crystals contained more shallow acceptors than crystal 15.

L
8.. P. R. Bratt, op. city
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PARAMETER UNITS
SAMPLE NUMBER

11-IA-2 15-2A-2

18811 eV 0.0218 0.0219

(00
2

1 eV 0.0710 0.0737

(SA) eV 0.0132 0.0100

N(Be) cm
-3

1.25 x 10i5 1.60 x 1015

N(SA) cm-3 I.64 x 1013 3.34 x 1012

N(D) cm
-3

4.56 x 1010 2.38 x 1012

E	 IONIZATION ENERGY IN eV

N	 DOPING CONCENTRATION IN cm-3

Bel • FIRST Be ACCEPTOR LEVEL.

Bet * SECOND Ba ACCEPTOR LEVEL

SA = SHALLOW ACCEPTORS

D • SHALLOW DONORS

Io10

s
+ •

* o* •

•

•
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• a *	 •. 17-2b-2 MEASURED DATA

+ +
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Figure 4--8, Hall Coefficient Versus Reciprocal Temperature for
Ge:Be Samples 16 -1a-2 and 17-Zb-2
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Close compensation is a delicate art in crystal growth as evidenced by

this work. One attempt to keep the Sb concentration low enough to just

slightly over-compensate the shallow donors. This must be done because

excessive amounts of compensation result in decreases in the free hole

lifetime which could be detrimental to detector. responsivity. Because of the

early termination of the program, wwxk on compensated Ge:Be ^rystal growth

could not be completed. Enough information was obtained, however, to be

able to proceed in future crystal runs with confidence that proper compensa-

tion can be achieved.

HALL MOBILITY

The Hall mobility measured on three Ge:Be samples is shown in Figure

4-9 as a function of temperature. All samples show a continually rising

mobility down to the lowest temperature attained. The more heavily doped

sample, Ge:Be 17-ZB-Z exhibits a somewhat lower mobility in the low-

temperature range presumably due to neutral impurity scattering,
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Figure 4-9. Hall Mobility Versus Temperature for Ge:Be Samples
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Section 5
DETECTOR FABRICATION AND TEST

DETECTOR FABRICATION

Detector chips were cut from the Ge:Ga or Ge;Be crystals and fabricated
into detector elements using standard processing technology which was pre-
viously developed at SBRC. Electrical contacts to the detector were formed
by ion implantation of boron ions. This produces a p +-p contact with uniform

P+ doping and a highly planar interface with the p-type crystal bulk. Each
detector element was assembled onto a tungsten metal mount along with a
load resistor and cryogenic preamplifier. This assembly is shown in Figure
5-1. The load resistor had a nominal value of 5 x 10 10 ohms at 3°K. The
MOSFET was a Hughes W164 p-channel enhancement mode device.

All Ge:Ga detectors fabricated during this phase of the work were cut
from two slices of crystal Ge:Ga 5, lal and g al, with Ga doping concentra-
tions of 4. 6 x 1014 and 6. 6 x 10 14 atorns/cm3 . Figure 3-I.shows the location
of these slices in the ingot. The Ge:Be detectors were fabricated from
several of the .crystals produced, with Be concentrations ranging from

14	 15	 39.1 x 10 to Z. 5 x 10 atoms /cm .

LOW BACKGROUND TEST DEWARS

The detector assemblies were mounted to a two-part copper heat sink
which was designed to provide a vise-like clamping of the tungsten detector
mount to the copper heat sink. This design was chosen to obtain good thermal
conduction to the detector mount. A carbon resistor thermometer was im-
bedded in a hole drilled into the copper heat sink. Figure 5-2 shows a sketch
of the heat sink design.
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This copper heat sink was mounted in a Janis Model RD liquid helium.

dewat An aperture defining the sensitive area (z mm. x 1 a mm for Ge:Be;

1 mm. x 1 ? mm for Ge-Ga) of the detector was placed directly over the detector

s	 and a baffle plate with 2, 0 min diameter aperture was placed directly over

that, This configuration was used in an effort to prevent stray radiation from

getting to the sides of the detector. A series of aperture ;olates and cold filters

were located between the detector and the dewar outer window to provide the

desired attenuation of background radiation. Figures 5-3 and 5-4 show the

filtering arrangements used in testing Ge:Ga and Ge:Be detectors.

The background photon flux density arriving at the detector plane was

calculated from the following formula,

QB (AX) = Q (300°K, AX.) TRsin z 9/2	 (3)

where Q(300°K, tom) = photon irradiance from 27r sterradians of 300°K
blackbody radiation integrated over the filter
pass--band.

T R total peak transmittance of all filters,

6 = detector field-of-view angle defined by aperture and
distance from detector to aperture,

The details of this calculation for the different low-background conditions used

in detector evaluation are presented in Appendix A.

For Ge.:Ga, the cold filtering consisted of two special black polyethylene

filters and two neutral density filters. The special black polyethylene* acts

as along-pass filter with a cut-on wavelength of about 80 µm, It is a scatter-

ing filter made by mixing various alkali halide crystal powders together with

polyethylene and hot rolling them into a thin film. Some carbon particles

also.. may be in the: mixture. The true constituents in the film are not known

We are grateful to K. Shi.vanaridan of NRL for supplying us with this
filter material and its relative spectral transmittance curve.
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Figure 5-3,	 Low-Temperature, Low-Background Dewar Setup
for Testing of Ge:Ga Detectors at 100 µm
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Figure 5-4. Low-Temperature, Low-Background Dewar Setup
for Testing of Ge:Be Detectors
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to us. The neutral density filters were made at SBRC by evaporating a thin-

nichrorne metal film onto z-cut crystal quartz flats. The relative spectral

transmittance of these filters was not measured, but was assumed to be

essentially flat in the 60 to 120- µm range. The average transmittance of

these filters was checked at room temperature by placing each filter in front

of a dewar containing a. Ge:Ga detector (also filtered to detect only radiation

beyond about 6.0 ^Lm) and measuring the attenuation of the detector signal, from

the 500°K blackbody source.

In all the Ge:Ga detector testing done on this program, a filter combina-^

tion was used which gave a calculated background flux Q B = 3. 7 x 10 8 photons/

cm2 /sec at the detector plane.

For Ge:Be detector testing, a combination of a 15- to 20. 5 ^Lm multi-

layer interference band-pass filter'- and two neutral c?ensity filters was used.

In this case, the neutral density filters were made by evaporating nichrome

metal onto germanium flats. This filtering combination had worked well for

testing doped Si detectors in past work at SBRC and was easy to implement

for the Ge:Be detectors. Due to the unavailability of the bandpass filter for

most of the program period for the Ge:Be tests, some of the detector testing

was performed without a bandpass filter, in the interest of time. Background

flux levels for these tests must be considered as best estimates. In other

tests, a Z5-[Crn cut-on filter was used to test in the 30- to 50 -11m range.

Extrapolation of NEP data from the 15- to 20. 5 -µxn range to 50 ^Lm can be

made with little additional expected error. The filter combination used for

Ge:Be detector testing gave a calculated background photon flux at the

detector of Q  = 1. Z x 10 9 photons/cm2 sec. Table 5-1 shows the filtering
combinations used for the various detectors, and the estimate of the back-
ground flux levels.

Obtained from Optical Coating Laboratories, Inc.

SANTA BARBARA RESEARCH CENTER	 5-5



SBRC

Table 5-1. Filtering Combinations Used for Ge:Be Testing }
itDetectors .	 . Neutral Density Other QB

2Tested Window Filters (Ge) Filters ph/sec/cm

11-1 al -1 G 1. 5%n and 1. 676 None 6 x 109
15-2a1 -1 KRS-5 1. 5% and 1, 6% None l x 1010
16-la1--1 KRS-5 1, 5%v and 1. 6 %Q 25 µm cut--on* 6 x.108
17-1al-1 KRS-5 1, 5% and 1., 6% 25 uLm .gut-on* 6 x I08
17»2bl-1	 KRS-5	 1.50/0 and 1.6%	 15 - 20. 5 lira	 1. 2 x 109

*Sapphire with ZnO, diamond .scattering and poly AR coating (Infrared
Laboratories Inc., Tucson., Arizona)

The signal radiation was obtained from a 500°K blackbody located in

close proximity to the dewar outer window. A variable speed chopped pro-

vided modulation frequencies from 1 to 1000 Hz, The blackbody has a large

opening and the detector "looks into" this opening through the small FOV

defining aperture located within the dewar. Therefore, the blackbody radia-

tion is effectively emanating from this aperture rather than from the black-

body cavity itself. The blackbody signal irradiance at the detector plane

is given by the formula

H B B ( sX) 
_ WBB(6X) ABB VRF

7r D2

where W B B(tlh) = blackbody radiant emittance integrated over filter passband

A BB = FOV defining aperture area

V R = total filter transmittance

F = chopper form factor

D =! aperture to defector distance

The :signal irradiance on the detector is due to the temperature difference

between the 500°K blackbody cavity and the roam temperature chopper blade

(assumed to be at 300°K). Therefore the signal photon flux density impinging

on the detector is greater than the 300 0 K background photon flux density. For

noise measurements, the blackbody opening is covered with a shutter so that

the detector then only sees 300°K background photons.

i

4

(4)
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The blackbody radiant emittance was numerically integrated over the
filter pass-band to obtain that fraction W BB (AX) which would pass through
the filter. The details of this calculation are given in Appendix A.

The chopper wave-forin. factor is used to convert peak-to-peak signal
irradiance values to root-mean--square values. For the chopper used, this
factor had a value of 0. 40. A listing of all the parameter values used in
Equations (5) and (6) are .given in Table 5-2,

Table 5-2. Lust of Parameters Used in Blackbody
Irradiance Calculations

Parameter Units Ge:Ga Ge: Be

WB B (AX) w /cmZ 3. 29 X 10-4 1. 62 x 10-2
A BB cmZ 7. 85 X 10- 3 7.85 x 10-3

T'R 3.85.x10 5 1.47x10-4

TR 6.1 x 10 5 Z. 4 x 10-4

D cm 9.58 8,59
F 0.40 0.40

H BB (L>') w(rms)/cmZ 1. 38 x 10 -13 3. 22 x 10-11
B degrees 0.60 0. 60
Q B (300 0 , AA) photons/sec cmZ 1.49 x 10 17 5. 68 x 1017

QB (Ak) photons/sec cmZ 2. 5 x 10 8 4.6 x 109

TEST PROCEDURE

All testing was done in a screen room. Tests were performed using a

source follower cryogenic preamplifier and the external circuit compoaents

shown in Figure 5-5. The preamplifier output was coupled to a Quan Tech
Mode1 . 206C amplifier which provided a . voltage gain of 10 3 . Amplifier

frequency response was fl-.t between, l Hz and 100 kHz. The low-frequency
gain was -3 db at 0. 5 Hz, Signal and noise readings were taken on a Quan-.
Tech Model 304 Wave Analyzer and also visually monitored on an oscilloscope.

I	 SANTA BARBARA RESEARCH CENTER	 5-7
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Tests were designed with the object of evaluating detector performance
as a function of frequency, voltage, and temperature. Not all dependencies
were studied on all detectors, in the interest of time, however. Tempera-
tares below 4 2°K were obtained by pumping over the liquid helium reservoir
of. the. Janie Dewar. A calibrated carbon resistance thermometer mounted in

a hold drilled into the copper heat sink shown in Figure 5--2 was used to

monitor detector temperature.

17— 	
DRAIN

LOAD	 I

RESISTOR	 QUAN TECH
WAVE

ANALYZER

^	 0

1	 QUAN TECH
I	 DEFECTOR 206C
I	 AMPLIFIER

OSCILLOSCOPE

SOURCE

RESISTOR

Figure 5-5. Diagram of Circuit Used for Ge:Ga and Ge:Be
Detector Tests

Note: Circuit elements within dashed line are at cold temperature,
..^	 those outside are at room temperature.

RESULTS -- Ge:Ga DETECTORS

Three Ge:Ga detectors were tested, one from slice 5--2al, and two from

slice 5-lal. No signals were obtained on either of the 5--lal detectors. No

tests were made to determine if this was a result of material problems,

detector processing problems, or test setup problems. It was determined,

however, that the resistances of both detectors were 4 to 8 x 10 9 0, an order

of magnitude lower than resistances of the detectors made from crystal No. 4

on the previous contract.
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The detector from slice 5-2al (5-2al -1) showed optimum. SIN ratio

when operated at a bias voltage of 0. 059 volt. The NEP values for this
detector -ranged from 2 to 4x 10- 6 watt, in the frequency range from 1 Hz

to 800 Hz, at 2. 5 °K, and with a background flux of 3, 7 x 10 8 photons/sec/
crn	 This is a factor of 2 to 3times higher than would be expected at this

background, based on the results of the No. 4 crystal,

Detailed data from this detector are plotted in Figures 5-6, 5-7 and
5 -8. The data were taken at 2. 5°K; we were unable to achieve 2. 0°K during
the first test, and since the NEP was high and the resistance low, the test
was discontinued.

Figure 5-6 shows that the detector resistance decreases with increased
bias. This is due primarily to an increase in free carrier density because
of an increasing lifetime with bias. Signal ^.nd noise voltages increase at a
rate somewhat greater than linearly with bias. This may also be due to an
increasing free carrier lifetime. There is no evidence of signal saturation
in this detector as might be expected if the sweep-out limit were being
approached,

The detector signal data in Figure 5-7 can be used to calculate detector
responsivity values and from these one can obtain estimates of quantum
efficiency and photoconductive gain. The voltage responsivity at wavelength k
is a function of frequency due to the circuit RC rolloff, This frequency
dependence can be written as

i
Rv (X, f) = Rv(h, o) [1 + (2TrfTRC) 2 ] z	 (5)

where Rv(h, o) is the do or low-frequency responsivity and TRC is the circuit
response time. By fitting a curve having the functional dependence on
frequency shown by this equation to the signal data in Figure 5-7
it was found that the 1-Hz responsivity values are sufficiently close to the
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Figure 5-8. NEP Versus Frequency for Ge:Ga Detector 5-Zal-1 at Z. 5°K

do value to be used in an approximate calculation. The 1--Hz voltage respon--

sivity was calculated from experimentally measured data using the formula

R S•(, 1 } - HB B (AX)ADg	
(6 )

	

where S(AX)	 signal voltage measured at output of preamplifier

HBB(A)L) = blackbody irradiance at detector (see Table 5-1)

AD	 = detector area (1. 5 X 10- 2 cxnz)

g	 = preamplifier gain (0, 85),
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The short-circuit current responsivity was calculated from the voltage
E

j

responsivity using the equation

Is(k , 1 ) = Rv(X, 1)/R11	 (7)

where R I , is the parallel resistance formed by the load and the detector ac
resistance values,

a a
RacR L 

R1[	
{$)

- Rac +'RL
and

r	 V	 d. R.dc - l
Rac =. Rdc I1 - R	 dV	 (9)

L	 do

According to detector theory, the short-circuit current responsivity is given
by

I(X, °) -	 Gpc	 (10)he

where G pc = LE = photoconductive gain

T	 = free-hole lifetime

^t	 = hole mobility

E	 = electric field strength

L	 = interelectrode spacing

= quantum efficiency

e	 electronic charge

X	 = wavelength

h	 = Planck's constant

c	 = speed .of light.

Therefore, once a value for I(X, o) is obtained, some estimates of values for

77. and Gp c can be made.

Using the foregoing equations and the measured experimental date., the

...value of current responsivity was calculated for the Ge:Ga detector to be

b. 37 A/W at Z. 5°K. 	 The current responsivity value is at the peak of the
detector's	 spectral response curve which was taken to be 100 µm. 	 This

value of current responsivity is comparable to that obtained in previous
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Ge:Ga crystals and is considered to be quite good for a detector which is not

mounted in an integration chamber. It implies an 11 Gpc product of 0. 08. r

r	 Therefore, if 11 were 0. 3, Gpc would be 0. 27 which is below the sweep-out
limited value of 0. 5.

The measured signal-and-noise data were used to calculate the NEP

data which are shown in Figure 5-8. The NEP versus frequency data shows

an essentially flat behavior with a small decrease as the frequency increases.

As stated previously, no further testing (i, e. , NEP versus temperature,

NEP versus background flux level) was performed on this detector because of
its marginal performance.

RESULTS - Ge:Be DETECTORS

Detectors were fabricated and tested from Ge:Be crystal 11, 15, 16,

and 17 on this program. Crystals lZ and 13 were not processed beyond the

Hall data samples since the doping level of No. 12 was nearly identical to
that of No, 11, and the Hall data from No. 13 showed evidence of too high

a Be concentration. Detector studies from crystal No. 18 were not completed

before the development effort was discontinued.

Crystals 15, 16, and 17 were partially compensated with antimony,

although test results showed the compensation level to be less than desired.

Crystals 11, 12, 13, and 18 were grown from uncompensated material.

Because of the filtering limitations in testing the Ge:Be detectors,

detector 17--2bl -1 is the only detector for which quantitative analysis is

accurate. Figures 57 9 through 5-11 illustrate the relationship between bias

voltage, resistance, sigiial noise, and NEP for this and other detectors.

Figure 5-9 shows the measured signal and noise data versus frequency

at 3"K for several detectors. The signal data for only one of these detectors

was analyzed in the same way as for the Ge:Ga detectors to obtain ,short-

circuit..current responsi;vity values and estimates of the rj G product. The
P

results are given in Table 5-2. The blackbody signal radiation was restricted
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Ge:Be

3°K

l^ Y +^ T+

LEGEND

DETECTOR

NO.

QB

phlsecicm2

VD

VOLTS

Be CONCENSATION

atomslcm

17-2b1-1 1.2 x 10	 • 0.118 2.5 x 101

— — ^— 17-lal-I --6 x 148 0.176 1.4 x 1015
16-1a1-1 =6 x I08 0.176 2.0 x 1015

---- 15-2a1-1 1.0 x 1010 0.412 1.9 x I015
----- 11-la1-I 6.0 x 109 0.118 9.1 x 1014

I

10-4

10-5

10_6

10-7

L

I.

t

4

6
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Figure 5-9. Signal and Noise Versus Frequency for Ge:Be
Detectors at 3, 0°K
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Figure 5-10. NEP Versus Frequency for Ge:Be Detectors at 3. 0°Y,
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Figure 5-11. DC Resistance Versus Detector Voltage
for Ge:Be Detectors at 3°K
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PARAMETER UNITS DATA...

TEMPERATURE
(°K)

BIAS VOLTAGE VOLTS 0.118 3. 0

ELECTR I C F I ELD VOLTS I OM 2.36 3.0

Rae OHMS . 2.6 x 101 3.0

S (0X,	 1) MILLIVOLTS 0.99 3.0

Ry (X p,	 1) VOLTS /WATT 4.2 x 1010 3.0

I s . (%p,	 1) AMPS /WATT 2.6 3.0

TIGpe 0. Q8 10

L

— ---- ------- -
RL = 5 x 1010 OHMS (NOMINAL VALUE)

xp = 40m

A D 7.5 x 10-3 cm2 (1.5 x 0.5 mm)

f = 1 Hz

to the 15- to 20. 5-^Lm band by a filter. Therefore, direct use of Equation (6)

gives the voltage responsivity at a wavelength of about 19 ^Lm. To convert

this value to responsivity at the peak of the Ge:Be spectral response which

is at 40 µLrA, the calculated responsivity was multiplied by a factor of 2.

This factor is based on the relative spectral response of Ge:Be reported by

Shenker, et al. The values of voltage and current responsivity listed in

Table 5-2 are at the detectors peak wavelength of 40 ^Lin. The calculated

current. responsivity is z. 6 am.p./'watt. If one assumes a quantum efficiency

of 0. 3, then the photoconductive gain would be 0. V. This is a reasonable

value for the low-frequency gain (1 Hz) which would not be limited by carrier

sweep-out.

Calculated NEP values at 3. 0°K are plotted versus frequency in Figure

5-10. Figure 5-10 shows the NE P of 17 - 2b l -- I to be essentially flat with

9. H. Shenker, E. M. Swiggard and W. J. Moore, Trans. Me.tallurgical
Soc. of ATME, 239, 347 (1967)
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are shown in Figure 5-12, The NEP data point at 3°K is probably erroneously

high; and should be down between 2 and 3 x`10 16 watt/Hzz. Another measure-
	 j

ment at this temperature (see Figure 5-10) showed such an NEP value. The

NEP values achieved by this detector are. comparable to what was obtained on

the previous contract with Ge:Be crystal No. 10. This demonstrates that the

addition of compensating donor atoms does not degrade detector NEP in the

- 2° to 3°K range.

a
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g.	
Section 6

C ONC LUSIONS	 r
w

The work described in : -this report has provided significant advances

.	 especially in the technology of Ge:Be arid, when reviewed in conjunction with

1 :	 the previous work, ih2 the technology of Ge:Ga photoconductors for use in

astronomical observations at wavelengths from 30 to 120 Um. The primary

conclusions that can-be drawn from the work performed thus far are as

follows.

E	 Ge:Ga. DETECTORS

From previous work;

A Ge purification method was developed which reduces the
residual donor impurity concentration to the 10 10 atoms/
CM3 range. Residual acceptor i.inpurity content may be
much Higher but is inconsequential to detector performance.

Introduction of Ga by the zone leveling method was shown to
produce uniformly doped ingots with sufficient material for
fabrication of many detectors. The doping concentration can
be controlled within an acceptable tolerance.

Short-circuit current responsivity for 100 ^Lm radiation has
been measured to be in the range of 6 to 10 amps/ watt at
3. 0' K operation. This implies an T) G

C 
product of 0. 074 -

0.124. Quantum efficiency was estima-ted to be- around 0. 25.

Detectors were not enclosed in an integrating cavity. The use
of such a scheme could significantly improve quantum efficiency.

-17
• An NEP of 4 x 10	 watts/Hz z had been measured on a Ge:Ga

detector at 1 Hz with a background flux of 3. .7 x 10 S photons/
. sec/cm2 at 3. 0°K operating temperature. This compares

favorably with the calculated BLIP value of 1..Z x 10- 17 watts/
Hz2 (11 = 0. 30, Xp = 100 Um).

The NEP is minimized at an operating temperature very close
to 3. 0°K. Higher or lower operating temperatures may cause

s	
a degradation of. NEP.
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• Reproducibility and yield of good detector elements were
excellent for Ge:Ga detectors,	 Most of the technology
development on this material has been completed and the
producibility of detectors which meet or exceed the NEP
objectives for the IRAS mission has been demonstrated.

From current program:

Crystals doped to 4. 6 and 6, 6 x 10 14 Ga atoms/cm3 exhibit
hopping conductivity at temperatures below 2, 5°K. 	 The low
background NEP of this material is inferior to that of the
crystal grown on the previous program which was doped to
2, 5 x 10 14 Ga atoms/cm2.

Ge: Be DETECTORS

From previous work:

A Oxygen must be eliminated during growth of.Ge:Be crystals to
Prevent Be =O complexing.	 A vacuum zone melting process
was developed which provided a method for doing this, and
unproved to'the extent of being able to dope the crystals to
predetermined levels.

ig With uncompensated Ge:Be; the NEP is optimized at 3, 0°K
or lower;	 There was no clear indication of a minimum in 	 +
the NEP versus temperature plot.

The yield of Ge:Be detectors from a given slice of material
As good.	 There is no reasons to believe that the yield of Ge:Be
detector. .s :should be any different from that of Ge:Ga detectors,.
once a good crystal has been grown:

Detectors were not enclosed in an integrating cavity. 	 The use
of such a scheme could significantly improve quantum efficiency.

The Be concentration: should be kept below 2 . x 10 i.	atoms/cm3
to prevent impurity hopping conductivity from seriously
lowering detector resistance at 3. 0°K.

The electric field strength that can be .applied to uncompensated
Ge:Be is limited to less than 10 v/ cm due to impact ionization
of shallow acceptor levels.

®.. Short-circuit current `responsivty for 40 ^Sm radiation was
measured to be in the range of 2 to 5 amps/watt for 3. O'K
operation.
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This appendix ,presents details. of the calculation of blackbody signal

3

	

	 irradiance and background photon flux density at the detector focal plane in

the law-background test dewars,

Ge:Ga TEST DEWAR

As mentioned in Section 5, in the main text, the Ge;Ga detectors were

tested using a long-wavelength pass filter consisting of two pieces of "special"

black polyethylene and crystal quartz. These materials, along with the

detector's natural cutoff at about 120 pm produced a relative spectral response

as shown in Figure A-1. ;= This isolated a spectral band about 35 µm wide

in the 100--µm region, Neutral density filters were also used to further

attenuate the background photon flux on the detector.

The effective blackbody signal irradiance on the detector was calculated

by numerically integrating the blackbody flux over the filter spectral range.

To do this, the spectral range was broken up into intervals each 5 p.m wide

as shown in Figure A-1, The blackbody radiant emittance for each spectral

interval was then obtained from a radiation slide rule. These values are

shown in Table A-1 along with the spectral intervals and the relative filter

transmittance in each spectral interval. Since the signal radiation is

produced by the. difference between the 500 K blackbody and a 300°K chopper

blade, these values were obtained from the slide rule and one was subtracted
fro-m the other to obtain the actual signal: radiant em'ittance in each interval.

The difference values are listed in column 5 of the table. Multiplication of
each number.in column 5 by the correspond.ing.relative filter transmittance. .

"SBRC is indebted to .K.. Shiva nandan of NR  fox furnishing. these data.
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Table A-1. Listing by Spectral Interval of Blackbody Signal Radiant Exxxittance and
ZBackground Photon Flux Values Used for Ge:Ga Detector Testing

a
{1} {2} {3} (4) (5). {6} {7} (8}

h RF{A} W500{A} W300W W500W -W300{),} WBB {a} Q300(k) QB{X}
ktm) (%vlcm2) {wlcm2} (w/cm2} {wlcm2} {phlsecicm2} {phlsecicm2}

x 10-3 x 10-3 x 10-3 x 10-5 x 1017 x 1016
40-45	 .. 0 ; 1.436 0.670 0.766 0 1.430 0
45-50 0 0.912 0.444 0.468 0 1.060 0
50-55 0.070 0.632 0.310 0.322 2.254 0.818 0.57
55-60 0.125_ 0.454 0.230 0.224 2.800 0.664 0.83
60-65 0.165 0.334 0.172 .0.162 2.673 0.540 0.89
65-70 0.250 0.248 0.130 0.118 3.068 0.441 1.15
70-75 0.320 0..190 0.100 0.090 2.880 0.364 1.17
75-80 0.375 0.150 0.080 0.070 2.625 0.312 1.17
80-85 0.585 0.118 0.062 0.056 3.276 0.257 1.50
85-90 0.685 0.094 0.050 0.044 3.014 0.220 1.51 
90-95 0.810 0.076 0.040 0.036 2.916 0.186 1.51
95-100 0.950 0.058 0.032 0.026 2.470 0.157 1.49

100-105 0.900 0.050 0.028 0.022 1.980 0.144 L 30
105-110 0.750 0.040 0.020 0.020 1.500 0.108 0.81
110-115 0.600 0.032 0.018 0.014 0.840 0.102 0.61
115-120 0.350 0,030 0.016 .0.014 0.490 0.094 0.33
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in column Z gives the effective blackbody radiant emittance in teach spectral

interval. 	 These values are listed in column 6.	 Summation overall spectral	 ;t
; intervals them gives the total blackbody radiant emittance in the filter pass band,

This total radiant emittance number is then used in Equation (6) to

calculate the irradiance at the detector focal plane. 	 Also needed for this

calculation are the absolute peak transmittance values for each filter and
z.

the dewar window.	 These are as follows,

Absolute Peak
Transmittance

Z Quartz windows	 (0. 85 x 2)	 .0. 7z
First neutral density filter 	 0. 015
Second neutral density. filter	 0'.015
Z Special black polyethylene filters 	 (0. 52)2
Atmospheric water vapor	 0. 88,

Total transmittance, T 'R _ 3. 85 x 10 5

A transmittance factor for atmospheric water vapor was also included.

Although this produces a small effect on total transmittance, it was found to

be not negligible.	 The effect of atmospheric absorption was checked .by

flushing the space between the blackbody opening and the d.ewar window with

dry.nitrogen.	 This produced an increase . in a Ge:Ga detector's signal by 13%.

Since it was impractical to continue flushing this space during all tests,

the atmospheric correction factor was applied to the blackbody irradiance

calculation,.

The equation for signal irradiance, Equation (6) in Section 5, was

written as
W.BB(AX) ABB T`'RF

J
HBB (L1k) -	 {A1). IT D 2.
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Substituting the values calculated above, along with those other values listed

in Table 5-1, gives

{3; 29 x 10	 (7. 85 X 10 3 ).(3. 8.5 X 10 5 ) ( 0 + 4)
HBB O	 -I. 38	 10'13(3. l4) (9.`58)Z	

w/cm2,

The. background photon, flux density at the detector plane was calculated

in a similar manner. : Column 7 of Table A-- 1 lists 300 0 K photon flux density

values for each spectral .interval as obtained from a. radiation slide rule.

Column. 8 gives the effective values passing through the filter (column 2 X 7)

.:. and .their sum, over all the spectral intervals,

Equation (5) in Section.5 was then used. to calculate the background

..photon flux density at the detector 'plane. 	 This equation is

Q 13 (AX) _ Q(300'K, Ak) TR sinZ B/2. 	 (A2)

The filter transmittance factor in this case does not include the outer

warm quartz window nor does it include the atmospheric water vapor loss.

It includes just the two neutral density filters and the two special polyethylene

filters.	 Thus T.R = 6. 1 X 1"0^^. . Using this value along with the appropriate

values from Tables A- I and 5 --1 gives. 

 05 z
	

$	 2
QB(^) = (l. 49 X 10 17 ) (61 1  X 10	 )	 _. 2.48 x 10	 ph/sec /cm. .

9.58

Ge.Be`,TEST DEWAR

The Ge:Be Detectors were tested.u.sing a 15- to 20; 5;;_^L:M multilayer band_.

pass filter plus neutral density filters an germanium.. 	 The relative trans-

rriittance.' curve for'this m 1^and.=pass filter a s shown in Figure A 2. 	 The 'black--

body signal irradiance through this filter.was calculated by ;numerical
in 	 in.-the :same. manner as vas: describe,d.for the :case of Ge-Ga..

Table A.-2 lists the rel_.e=rant data:

{
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Table A-2. Listing by Spectral Interval of Blackbody Signal Radiant Emittance and
Background Photon Flux Values Used for Ge:Be Detector Testing

(1) (21 (3) (4) (5) (6) (7) (8)

A RFW W5W k) W300(A) W500(X) -W30}(k) Wgg(x) Q300(1k) QO(A)
0m) (w1cm2) (wlcm2 ) (WIcm2) (wlcm2) (phl5eclem2 ) Ohlsecicm2)

X 10-3 x ID-3 x 10-3 x 10-3 x 1017 x 1017
14-15 0.03 9.70 2.20 7.50 0..23 1.56 0.05

15-16 0.84 7.70 2.20 5.50 4.62 1.56 1.31

16-17 0.96 6.30 I.75 4.55 4.37 1.44 1.38

17-18 0.74 5.25 1.52 3.73 2.76 1.40 1.04

18-19 0.59 4.55 1.38- 3.17 1.87 1.31 0.77

19-20 0.59 3.85 1.29 2.56 1.51 1.23 0.73

20-21 0.35 3.50 1.10 2.40 0.84 1.15 0.40

SUMMATION Wgg(Ak)	 = I.62 x IC2 Qg(30Q,&1\) 5.68 x 1017
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Using the data from Tables A-Z and 5-1, and substituting into Equation

(A 1) gives
f	

v

HBB(^) - (1-_62 X 10 -2 )(7. 85 X 10" 3 )(1. 47 x 10,4)(0.4) _	 .
(3, 14) (8. 59) 2	 3, 22 x dQ -11 w/cm.2

The background photon flux density at the detector was obtained by sub-
stituting data from Tables A - 1 and 5--1 into Equation (AZ) to get

Q B (300°K, ^) = (5. 68 >t 10 17 )(2. 4 X 10- 4 ] (-0 ' - 2 = 4, 6 x 10 9 ph/sec /cmZ.
l8. 5R

DETECTOR RESPONSIVITY

The blackbody signal irradiance values calculated in this appendix were

used to obtain detector responsivity by the usual formula

VS (,AX)
Rv (x) - HBB. (Ah) AD	 (A3]

where Rv (X) is the responsivity in volts/watt, VS(AX) is the measured signal

voltage, A D is the detector sensitive area, and H BB (AX) is the effective signal

irradiance. It turns out that this procedure yields the responsivity at the

peak of the filter spectral distribution hp, A derivation of this result is as
follows,

If Rv(h) is the detector responsivity at any wavelength and PX is the

signal power per unit of wavelength (watts/p.m) on the detector at this wave-

length, then for a given wavelength range between h 1 and A 2 , the detector
signal voltage will be given by

A2

VS(AX) = J RV(X) P>, dA	 (A4)
X1

where AX refers to the spectral interval X 1 - XZ.

SANTA BARBARA RESEARCH CENTER	 A-8



If the detector's Rv(>,) curve is expressed as a relative response

normalized to unity as shown in Figures A=1 and A-Z, then equation (A4)

can be written as

VS(L1k) = Rv(Xp) ^' RR(X) PX dX	 (A5)

X1
{

where RR(X) is the relative response (= l at Xp) and Rv(X p) is the responsivity

at Xp. This equation can be rewritten as

VS (AX)
Rv(Xp)	

X 	
(Ab)

J R R (X) PX dX	 -
^l

The integral in the denominator is the same as HBg(AX) AD when

Hgg(*k) is calculated by the numerical integration method described

previously in this Appendix. Therefore, the responsivity calculated from

equation (A3) is the responsivity at the peak of the relative spectral response

curve Xp.
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	Appendix B	
;.

DETECTOR RESISTANCE MEASUREMENTS THROUGH MOSFET

r

This appendix describes the method used for determining detector

resistance values when the detector is connected to the cryogenic MOSFET

source follower preamplifier.
i
is	 The .circuit diagram is shown in Figure. B-1. The detector do resistance

is given by

j'
	Rdc VDII	 (B1)

where

I = VB	 L	 do1(R + R )-

	

(B2)	 i

The voltage drop across the detector VD will appear at the MOSFET source 	 $

terminal multiplied by the gain of the source follower. This. voltage is

measured by observing the change in VS as the detector bias voltage is

switched from zero to ON. Thus,

is	 VD = DVS /0. 85	 (B3)

whe're AVS is the observed charge . in source voltage and 0. 85 is the source

follower gain. Combining equations (B1), (B2) and (B3) gives
R

	

R dc - 0, 85 Vg	 (B4)

AVS	 _1

Use of this equation requires prior knowledge of the load resistance .
R Z,, Since the load resistance value can vary with temperature and bias
voltage, this may introduce. considerable error into the . determination of

,y
Rdc by this method'. Values of 'VB and AVS can be measured with good

precision and will not produce a large error,
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LOAD
3	 RESISTOR	 RL
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DETECTOR ----1-►(	 Rdc

^PJ

I

VB = BIAS VOLTAGE APPLIED EXTERNALLY ACROSS BOTH
DETECTOR AND LOAD

VD VOLTAGE DROP. ACROSS DETECTOR

VS = SOURCE VOLTAGE

Figure B-1. Circuit Diagram for Low- Background Detector Testing

Table B-1 shows measured resistance values versus temperature and

applied voltage for a typical load resistor used in the detector assemblies

delivered on this program. It is clear from these data that good calibration

of the load resistor must be accomplished to obtain accurate values for
Rdc from equation (B4),

Table. B-1, Resistance Versus Temperature of Typical Load
Resistor Used in IRAS Device Assemblies	 j

Temperature Resistance (S1) Resistance (0) Resistance (0)
K) at at at

0. O20 V 0.200 V Z.00 V

4.2 3.8X1010 3.7X 10 10 2.7X1010

4. 0 3.7x1010 3.9X-101Q Z.8 x1010

3.5 4.4X1010 4.7 X 10 10 3,2X1010

3.0 5.1X1010 6.0X1010 3.7x1010
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. Another obvious method for determining Rdc would be to attach an

additional wire to the detector at the connection to the MOSFET gate and

bring this lead out of the dewar, ..Measurements of detector current and

voltage could then. be made directly.	 However, two problems arise with

this method.	 First, the additional lead .to. the detector produces an. added

capacitance at the gate input which will cause the circuit response to roll

s- off at lower frequencies.. Since the combination of MOSFET gate input and

detector capacitance is only about 5 pf, distributed capacitance from the

additional,wire could easily equal or exceed this value. 	 Secondly, the

insulation resistance of the dewar feed-thxoughs has to be very high; in fact,

much higher than the detector resistance. 	 If detector resistance values are
f_ in the 10 1 » ohm range, the insulator resistance should be greater than 1012

ohms.	 The metal-glass feed-throughs used on our dewars can have this

high an insulation resistance. if properly cleaned and kept dry. 	 However,

past experience has shown that they are easily contaminated with use and 	 J

;. leakage  problems result.	 It was because of these problems that the indirect
i method of detector resistarrr. a measurement described above was adopted.

y`

3

r
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